
Aura as a Platform for Distributed Sensing and Control
Roger B. Dannenberg
Carnegie Mellon University
School of Computer Science
Pittsburgh, PA 15213, USA

1-412-268-3827
rbd@cs.cmu.edu

ABSTRACT
Aura is an evolving software architecture and “real-time
middleware” implementation that has been in use since 1994. As
an integrated solution to many problems encountered in the
design of distributed, real-time, interactive, multimedia programs,
experience with Aura offers lessons for designers. By identifying
common problems and evaluating how different systems solve
them, we hope to learn how to design better systems in the future.
Aspects of the Aura design considered here include message
passing, how objects are interconnected, the avoidance of shared
memory, the grouping of tasks and objects according to latency
requirements, networking and communication issues, debugging,
and the scripting language.

Keywords
Aura, Languages, Real-Time Systems, Architecture, Networks

1. INTRODUCTION
Aura is a software platform for building sophisticated applications
involving real-time, concurrent activity, multiple sensors, and
multiple modes of output. Aura supports distributed systems using
local-area and wide-area networks. Although these requirements
may appear to be “pie-in-the-sky” desiderata, Aura was designed
to overcome real limitations encountered in previous systems.
Aura has achieved all of these goals in real applications.
Aura is essentially “real-time middleware” that includes a
distributed object system. As such, Aura has many similarities and
parallels to systems such as CORBA, DCOM, constraint systems,
cooperative multitasking systems used for graphical user
interfaces, and publish/subscribe systems. In general, Aura is
intended for single applications running on dedicated, reliable
hardware as opposed to shared services in an unreliable,
distributed network.

1.1 Complications in the Design of Sensing
and Control Systems
It is not simple to describe Aura because there are many
seemingly disparate factors that constrain its design. Perhaps the
most important message of this paper is that sensing and control
systems are more complex than they appear on the surface. Many

factors enter into the design, and there are many subtle
interactions between different design goals.
To give just one example, portability requires that designs avoid
making too many assumptions about the underlying operating
system. Many operating systems do not handle priority inversion,
which means that something as simple as a critical section
protected by semaphores can cause real-time failures. Aura’s
solution is to avoid semaphores completely, and this decision has
ramifications for memory allocation and communication
mechanisms.
Different designs will place more emphasis on different problems
or on solving different classes of applications. This tends to lead
to many different approaches. Since we have few if any ways to
evaluate designs of complex systems objectively, the best we can
do is to gather experience using various designs and report on
how well they work in practice. Problems and successes relating
to different design decisions can guide future work. Throughout
this paper, I will try to explain some of the key issues in
distributed, interactive, real-time systems and how they are solved
in Aura.
The focus of this paper is on lessons learned. The question is not
so much whether Aura is good or bad, but what can we learn from
it? I am especially interested in making complex interactive
systems easier to build, especially to support creative work in the
performing arts. As technical requirements increase to require
distributed systems, low-latency, and a variety of media, the
implementation task can become daunting, yet resources for the
performing arts are always very limited. The typical big-system
software engineering approach is not an option. Aura must make
application building seem more like building simple algorithms in
a high-level scripting language and less like low-level real-time
systems programming. Some of the features and approaches of
Aura are listed in the sections that follow. I present a critical
assessment of how well these features work in practice, based on
experience building several applications with Aura.

2. MESSAGE-BASED COMMUNICATION
Perhaps the main feature of Aura is the use of “real” messages for
communication between objects. By “real,” I mean that messages
exist as data objects as opposed to SmallTalk-style messages that
are essentially stack-based function calls. [9]
To send a message, the sender calls

send(msg_ptr, len, timestamp)

which sends an arbitrary message. The timestamp is used to
determine when the message is delivered. Notice that the message
destination is not specified (see Section 3). The most common

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Roger Dannenberg
Originally published as: Roger B. Dannenberg, "Aura as a Platform for Distributed Sensing and Control." In

Roger Dannenberg
Symposium on Sensing and Input for Media-Centric Systems (SIMS 02)

Roger Dannenberg


Roger Dannenberg
, Santa Barbara: University of

Roger Dannenberg


Roger Dannenberg


Roger Dannenberg
California Santa Barbara Center for Research in Electronic Art Technology, (2002), pp. 49-57.

Roger Dannenberg


Roger Dannenberg




message is a “set” message that sets the value of an attribute in the
receiver. Although send can be used, it is convenient to call one
of the set functions, e.g.

set_int(attribute, value, timestamp)

sets an integer attribute to an integer value at the specified time.
(Attributes in Aura are globally unique 32-bit identifiers managed
by a preprocessor.)
Interactive music and animation programs tend to have many
parameters that can be adjusted. The output and behavior of these
programs is determined by artistic choices rather than by a formal
specification that allows only one correct answer. Therefore, it is
common to make many adjustments after the program is running
correctly. Providing convenient access to these parameters is an
important goal of the Aura design.
It is convenient to store parameters as values within objects and to
express object behavior in terms of these values (instance
variables). In typical object-oriented languages, values are hidden
and can be accessed only by invoking methods. In Aura, values
are directly accessible via set messages. Thus, it is easy to
control the behavior of objects and to adjust their parameter
values interactively by sending set messages.
In practice, this works quite well. The programmer only writes a
simple comment to make a C++ member variable “settable” by
Aura messages. This is a big advantage over the precursor to
Aura, the CMU MIDI Toolkit [5], where many lines of code were
typically required to support parameter updates. In addition,
messages offer a single real-time mechanism that works well for:
(1) local communication within a single thread, (2) asynchronous
communication between threads, and (3) network communication.
This is a drastic simplification over typical program organizations
where multiple asynchronous threads must communicate and
synchronize using carefully designed protocols.

3. EXTERNAL CONNECTIONS
The Aura design evolved from earlier work on constraint systems.
[13] Since global constraint solvers are not consistent with real-
time performance in a distributed system, we tried to simplify,
first with one-way equality constraints between attributes, and
then by expressing constraints as connections between objects.
Conceptually, when an object changes its state, it sends the state
change as a set message. To constrain another attribute to this
value, one makes a connection to the dependent object. For
example,

connect_attributes(from,fromattr,to,toattr)

connects the fromattr attribute of object from to the toattr
attribute of object to. Thus, connections between objects are
managed exernally to the objects. This is quite different from
standard object-oriented systems, where the sender must have a
reference to the receiving object in order to send a message.
Although Aura was inspired by constraint systems, we realized
later that we had come quite close to reinventing MAX semantics.
[16] Objects can be “wired together” more like stereo components
than typical programming objects. This facilitates rapid
prototyping and end-user programming, but the hidden state in the
form of connections can lead to obfuscation.
Different programmers may have different opinions about this, but
my belief is that the important concept here is visual continuity in

the representation of program flow. To illustrate this, consider the
visual program in Figure 1.

f g h

Figure 1. A simple visual programming example.
This is simple to read and understand. A direct translation into
text might be:

a = new f; b = new g; c = new h;
connect(input, a); connect(a, b);
connect(b, c); connect(c, output);

I believe this is hard to read because the functions, as
implemented by f, g, and h, and their connections, as specified by
connect functions, are visually discontinuous. The following is
much easier to read:

output(h(g(f(input))));

not so much because the program is shorter but because it is easy
to tell how the input is operated on step-by-step to form the
output. Thus, a programming style that seems to work well in a
visual programming language like MAX may be inappropriate in
a textual programming language like C++ or Aura even if the two
are semantically the same.
This aspect of Aura’s design is still being explored. One
possibility is a visual interface to make connections easier to
manage, but visual languages tend to lead to static configurations,
whereas a strength of Aura is the ability to dynamically change
connections and to create new objects on the fly. Alternatively,
graphical debuggers might display connections visually at
runtime.
The other direction is to move away from these constraint-like
connections. Aura already offers a variation on the set functions
where the caller specifies the destination. This is often used, even
though it makes it difficult to tap into message streams, e.g. to
display them or save them to a log file for debugging. Recently, I
developed a way to specify audio “instruments” using a very
readable functional style that automatically constructs objects and
their connections. [3]

4. NO SHARED MEMORY
Shared memory refers to memory regions that can be accessed by
more than one thread. Although shared memory is used in the
Aura implementation for efficiency, the use of shared memory at
the application level is strongly discouraged in Aura. Instead,
shared state is copied via messages as needed. In my opinion, this
approach is critical for simplifying programs and for program
reliability.
In a more traditional system, multiple threads would have free
access to many shared objects. This creates the danger that two
threads will try to execute within the same object at the same time,
causing various kinds of race conditions and unpredictable
behavior. To prevent these problems, objects must place locks
around code that accesses data, preventing concurrent access. In
some cases, objects limit execution to a single thread at a time.
These objects are commonly called monitors. [8]
Locks and concurrency are difficult for programmers. If you
forget to use locks, data values may be changed at unexpected
times and lead to errors. If you forget to release a lock, all threads



may block forever waiting to gain access to an object. Interactions
between locks can lead to deadlock, where all threads are waiting
on one another in a set of circular dependencies. If a high priority
thread is blocked waiting for a low-priority thread, real-time
performance may degrade in ways that cannot be reproduced.
Locks must be implemented by operating systems in order to
solve the priority inversion problem that can be encountered in a
real-time system. [19] Not all operating systems prevent priority
inversion, and even if they do, the overhead of making a system
call for every lock and unlock operation is considerable.
Aura avoids all of this by never exposing shared memory to the
application and by never using locks. Instead, memory is divided
into zones, each of which is exclusively managed by a single
thread. Objects are allocated within a zone and therefore an
object’s methods can only be executed by a single thread, hence
no locks are needed. To communicate, objects send messages to
another zone. Incoming messages are delivered and processed
one-at-a-time, eliminating any concurrency within a zone.
Messages are delivered via single-writer/single-reader queues,
which can be implemented correctly without locks or system calls.
This approach, which works in conjunction with the Aura object
model and Aura messages, is probably the single most important
feature of Aura supporting and simplifying programming. These
techniques are often used in other applications, especially to
connect a graphical user interface to a real-time “back end” [20],
but Aura goes further by offering a general-purpose run-time
structure supporting this programming model.
Because there are at most a few fixed threads, debugging is
simplified. Also, because most bugs occur in the context of a few
objects running in a single zone, eliminating a real-time Aura bug
is often no more difficult than finding a bug in a single-threaded,
non-real-time program. In my experience, the most common
difficult bugs in concurrent systems have to do with
synchronization and communication. Aura practically eliminates
all of these bugs. Of course, there are sometimes timing-
dependent bugs or strange interactions between objects running in
different threads. In practice, these are quite rare.

5. LATENCY-BASED RATHER THAN
TASK-BASED THREADS
In Aura, objects are allocated to different threads (called zones)
according to their real-time requirements. A time-critical audio
object will reside in a high-priority zone, while a graphical user
interface object will reside in a low-priority zone. This approach
minimizes the number of threads, stacks, and task switches,
resulting in great efficiency and simple structure.
Thus, rather than arbitrarily deciding that the user interface runs
in one thread and all “application” code runs in another thread,
Aura objects can be distributed across many zones/threads
according to their real-time requirements. A good example is
running OpenGL-based animation and file I/O in the same zone as
the user interface because the desired latencies are all on the same
order (tens of milliseconds).
Another example of the use of zones is that, commonly, MIDI
processing and “control” processing is performed in one zone,
while audio processing is performed in another. This means that
compositional algorithms that generate notes and control-rate
updates may occasionally compute for 10 or 20ms because these
delays will not be noticeable. Meanwhile, audio processing takes

place at higher priority and runs with lower latency and hard
deadlines. If these tasks were merged into a single thread (as in
various implementations of MAX with sound extensions [15]),
then either the MIDI and control processing would have to be
optimized to lower the worst-case latency, or audio buffering
would need to be added to prevent audio buffer underflow. In the
latter case, the audio latency would suffer.
After working with this zone structure, I can report that it works
very well. In one composition, Aura was able to devote most of
the processor to animations that took nearly 40ms to compute. At
the same time, it ran interactive MIDI algorithms with typical
response times less than 3ms. More recent work with audio has
demonstrated audio latency in Aura below 10ms. This was
achieved under Linux, with real-time kernel modifications [10].

6. NETWORKING
Aura objects can reside on different machines. They use the same
basic message-passing mechanisms to communicate between
machines as within a single machine. Important network issues
that Aura does not address are efficient utilization of bandwidth
and latency-sensitive congestion control.

6.1 Networks and Timing
One of the important simplifications in programming supported
by Aura is explicit and precise timing. Aura uses double-precision
floating-point numbers to represent time, and messages are
scheduled for delivery at a particular time. Using timestamps, the
order of message delivery can be precisely controlled, and often,
timing can substitute for intricate synchronization. For example, if
it is important to set audio attenuation before generating a sound,
the attenuation can be set with a slightly earlier timestamp than
the message that triggers sound generation.
To get the same advantages using networks, clocks must be
synchronized. Aura clock objects adjust the local time to track
that of the “master” Aura system. Given that all machines have
stable crystal clock hardware, it is simple to maintain
synchronization within a few milliseconds. Algorithms for even
tighter synchronization have been simulated but not yet
implemented. [2]
Synchronized clocks and accurate scheduling offers a tradeoff
between latency and jitter. In the low-latency case, the goal is to
deliver information from one machine to another as soon as
possible. This is accomplished by sending a message for
immediate delivery. The message will arrive quickly, but the exact
delay is unpredictable. In the low-jitter case, a message is sent
with a future timestamp that is greater than the expected delivery
time. The message arrives early and is delivered according to the
timestamp, making delivery times very predictable, but at the cost
of added delay (latency). We call this the forward synchronous
model. [2]
One standard trick developed by the computer music community
is to base timestamps on logical time, the time at which an event
is scheduled to execute, rather than physical time, the time on the
local clock. The idea is that if an event is scheduled for time t,
then output generated by the event should be scheduled for time
t+δ, where δ is a constant representing latency. Suppose the
system has fallen slightly behind schedule so that the event
actually executes at time t+ε and the output command is delivered
across a network at t+ε+λ. As long as ε+λ < δ, the output



command will be executed at precisely t+δ; thus, the timestamp
masks the variation in timing caused by computation time and
message delivery time. Some systems, notably Formula [1],
automatically delay output to t+δ, which simplifies the
programming model. In Aura, since messages do not flow strictly
from input to output, adding a delay of δ to all messages is very
confusing. If jitter-reducing delay is desired, the user must decide
where this should occur and add the delay explicitly.

6.2 Network Transparency
One of the advantages of Aura’s design is that object location is
largely transparent to the programmer. Two objects on separate
machines can be connected just as two objects running in the
same zone. Of course, there may be timing and performance
differences, but most algorithms continue to function correctly.
This opens the possibility that programs can be first debugged and
tested on a single machine, even in a single zone, and then later
distributed over multiple machines. Distributed systems might
achieve better performance or gain access to additional sensors,
screens, audio interfaces, and other resources.
In its present form, Aura is not as easy to reconfigure as it should
be. Device interfaces exist in particular zones, and objects are
allocated in specific zones. It would make more sense to denote
zones by symbolic names and to make a compile time or even
load time association between symbolic zones and actual zones.
Then, some sort of configuration file could be used to decide how
objects are to be distributed among various machines and threads.

6.3 Real-Time Communication
Aura assumes communication is inexpensive and does not need to
be scheduled. In reality, if there is network contention, we might
want the threads that are executed at high priority to get priority
on the network as well. In the current implementation, messages
do not carry priority (which would be specified in terms of
allowable latency), so all messages receive equal treatment.
Messages are sent immediately without consolidating them into a
single large network packet, even though this would be more
efficient in terms of the number of network packets sent. The
simple networking model is simple to reason about, but not
difficult to overload with too many messages. Ethernet in
particular has a minimum message size, and tests indicate that
problems occur when we try to send more than a few hundred
messages per second using 10Mbps Ethernet.
Using off-the-shelf networks and software for distributed real-
time control is a relatively unexplored area, so further work is
needed to improve performance, especially throughput of small
messages. The obvious approach is to batch short messages into
network messages that depart on a periodic basis. This adds
latency and jitter but improves network throughput. When
different interconnects are available (Ethernet, Firewire, MIDI,
etc.), network routing and scheduling become more complex.

7. DEBUGGING
There are many issues related to debugging. What new
mechanisms are required? How do we observe or log real-time
behavior? How do we verify or even observe that desired
distributed run-time structures are created as intended? These are
some of the problems that cannot be solved easily by traditional
debuggers. Aura offers some interesting debugging features,

including the observability of message streams, built-in per-object
debugging state, and “real-time” print statements.

7.1 Observing Messages and Objects
Typical Aura objects exchange information via messages. Because
connections can be created at runtime, it is simple to connect any
object to a Trace object, which prints messages as they arrive.
This helps the programmer to insert probes into a running system
to verify that proper messages are being sent. Alternatively,
messages can be directed to a logging object that converts one or
more message streams into a text log file and writes the data to
disk. By placing the logging object in a low-priority zone, logging
can take place without affecting with low-latency computation.
Another debugging tool built upon Aura’s message system allows
users to dump a snapshot of an object’s state for inspection.
Objects respond to the AURA_MSG_REQUEST_SET_ALL message
by sending the object’s state in the form of set messages to a
designated receiver. This mechanism provides access even to
remote objects with minimal disruption to real-time execution
because formatting and display typically take place in a low-
priority zone.
By default, all objects implement an integer attribute called
debug_level, and standard macros help programmers add
debugging print statements that can be enabled or disabled at
runtime via Aura setmessages. In C++, the object cout normally
designates standard output to the console. In Aura, text directed to
cout is converted into set messages and delivered to the user
interface zone. This provides a low-overhead, real-time “print”
function that can be used even in time-critical computations.

7.2 Observing Configurations
As mentioned in Section 3, a key to debugging and simply
understanding programs is a representation where program flow is
easily to visualized. Unfortunately, a dynamically configured
network of objects distributed over multiple zones and machines
is not clearly specified by typical Aura code. I hope to experiment
with debugging tools that can construct and even manipulate
connections visually. Additional work is needed to develop better
ways to express and observe configurations.

8. SERPENT AND C++
Originally, Aura was designed and implemented in C++. Since
performance is often critical in real-time systems, this was a
logical choice because C++ offers both high performance and a
fairly high-level, expressive language. In addition, using C++ (or
some other existing language) allows us to build upon existing
compilers, debuggers, and programming environments.
We found that C++ worked well for most of Aura and for many
applications built with Aura. Problems arose, however, using C++
to define clusters of objects for audio processing. It seems that
DSP algorithms are best defined using a functional style of
programming and that functions should be polymorphic to allow a
mix of scalars and signals. For example, to multiply a and b, it is
awkward to write:

multiplier = new Multiply
multiplier.in1 = a
multiplier.in2 = b

It is much easier to write multiply(a, b). Now, a and b can
denote either streams of audio rate samples, streams of control
rate samples, or scalar (constant) values, so multiply should be



polymorphic. This can probably be achieved in C++, but it is
awkward, and since these functions typically create structures to
process streams over time, there are difficult memory allocation
and garbage collection issues to solve. (Freed [6] discusses
advanced C++ programming techniques for DSP.)
To overcome these problems, I designed a new language, Serpent,
based on Python. [3] Serpent is portable and is written entirely in
C++. Serpent includes a real-time garbage collector that never
suspends computation more than one out of every two
milliseconds (these parameters are adjustable to even smaller
values). When used with Aura, an instance of the Serpent run-
time system runs in each Aura zone, and Aura is used for all
scheduling and communication among these instances. Python
and other scripting languages could not be used because they do
not allow multiple instances of the virtual machine to run
concurrently in a shared address space. This is necessary to allow
preemption, which is necessary in turn to achieve low-latency.
Although Serpent is a recent addition to Aura, it seems to work
very well and has greatly simplified the task of specifying audio
computations. Now, a functional description of “instruments” or
general networks of unit generators can be given in Serpent.
Serpent also allows functions to be invoked by sending a list of
parameters as a message, something that is awkward with C++’s
stronger typing and more restricted function call semantics.
Very high-level and/or application-specific languages are already
found in Music V [11], Nyquist [4], SuperColider [12], and
various SmallTalk [14, 17] and Lisp-based [18] music systems, so
it should be no surprise that Serpent offers advantages over C++.
A challenge is dealing with a dual-language system. C++ is still
used for low-level DSP, communications and scheduling. C++ is
more prominent in Aura than in the other systems mentioned
above, most of which also use C and C++ in their implementation.
The design could probably be simplified by making all Aura
objects a subclass of Serpent objects (or vice versa) and thereby
hiding C++, but this would mean all computation would have to
involve the Serpent interpreter, which is about 100 times slower
than C++ (this is typical for interpreted languages). On the other
hand, leaving a thin interface between Aura and Serpent exposes
the programmer to many C++ details that should be hidden. I plan
to make the Serpent layer in Aura a more complete programming
system so that at least beginning users can view the system
completely in terms of Serpent. Ideally, C++ should only be used
when performance is an issue.

9. AURA AND OSC
Although references to related work are offered throughout this
discussion of Aura, it seems appropriate to comment on OSC [7],
especially since OSC is mentioned elsewhere in these proceedings
and OSC is used in many similar applications.
OSC has a much more limited purpose than Aura. OSC provides
an open-ended mechanism for communicating with and
controlling a synthesizer. OSC can also represent the changing
values of multiple sensors conveniently. Thus, it makes sense to
compare OSC to the Aura message system, especially with regard
to naming.
OSC and Aura both use attributes and values to represent control
changes, commands, and changes in sensor values. OSC attributes
are strings, whereas Aura attributes are globally unique 32-bit
values. The use of relatively small, fixed-sized attributes is at least

a slight advantage for the low-level implementation, but it
complicates some things at higher levels. Aura uses preprocessors
to manage the translation from strings to 32-bit values at compile
time, and, while the preprocessor sometimes detects typos and
other errors, failure to declare attributes properly is a common
error. Designers of both OSC and Aura have discussed switching
to the opposite approach, so it seems there is no clearly winning
strategy here.
Another important difference is that OSC uses path names to
access attributes, whereas Aura messages must be sent directly to
the receiving object. We envisioned a programming model in
Aura where a controlling process would typically keep references
to objects and subobjects, and therefore send messages directly to
the receiver, as illustrated in Figure 2.

Controlling
Process

Controlled
Process

Figure 2. Controlling process in Aura maintains references to
a network of objects and sends messages directly to receivers.
If necessary, a path could be followed within the controlling
process to find the reference to the controlled object. This seems
especially appropriate if the “controlled process” is not a
hierarchically organized system or if there are many unrelated
lines of communication. In contrast, OSC messages are directed to
the root of a hierarchical space of controlled objects and routed by
decoding symbolic paths, as shown in Figure 3.

Controlling
Process

Controlled
Process

Figure 3. Controlling process in OSC sends messages to
controlled process where paths are decoded to locate receivers.
Naming and structure are very important for programmers. Aura
programs have contained many structures where the OSC model
would be constraining. On the other hand, there are many
examples where a hierarchical name space for attributes would be
convenient to access the corresponding hierarchical structure of a
sound or animation synthesis algorithm. Messages with OSC-like
path names would be an interesting addition to Aura.
Finally, both Aura and OSC started out without type
specifications for attributes. Experience has shown that typing is
critical, and both systems now use types. Since Aura deals with
attribute/value pairs, it is important that all values of a given



attribute have the same type. Thus, each Aura attribute has an
associated type, and types are globally enforced. Types are
indicated by a suffix in the attribute identifier, e.g. lengthi is an
integer length, and hzd is a double representing frequency in Hz.

10. SUMMARY AND CONCLUSIONS
In summary, Aura provides the foundations for distributed, real-
time, highly concurrent applications. Its multiple zone architecture
facilitates a mixture of tasks with varying latency requirements.
My goal in this paper is to present the many issues that arise in
these applications and how they are successfully (or
unsuccessfully) handled in Aura. Experience with Aura gives us
some insights into what works and what does not, and where
further experimentation or design changes might prove beneficial.
Some of the useful lessons include:
1. Objects can be extended to use “real” asynchronous messages,

and this provides an effective way to organize distributed real-
time programs.

2. Object communication based on attributes and values is a
viable alternative to method invocation, especially for music
and animation where there are many control parameters.

3. Visual continuity in the representation of program flow is
important for readability.

4. Systems should avoid shared memory and associated
synchronization problems.

5. Use threads so that low-latency computations preempt long-
running computations. Do not separate tasks into separate
threads when they could share a single thread.

6. Network communication can be the result of basic message
passing, eliminating special network code and API’s from the
concern of the application programmer.

7. Debugging support is important, especially the ability to
monitor real-time activity. (Otherwise, use conventional
debuggers.)

8. Large portions of applications can (and should) often use a
high-level scripting language like Serpent.

9. Message data should be strongly typed.
I hope that this paper will serve as a checklist for others who
might be designing related platforms, architectures, or
applications. I also hope that the remaining problems and
weaknesses of Aura might inspire solutions in future designs,
either in new versions of Aura or in other systems.
Aura source code is available from the author, and collaboration
is welcome, although Aura should be viewed as research in
progress rather than a finished product. Aura has run under
Windows, Irix, and Linux, and Aura should be relatively easy to
port to Mac OS X. Current development is under Linux.

11. REFERENCES
[1] Anderson, D.P. and Kuivila, R. A System for Computer

Music Performance. ACM Transactions on Computer
Systems, 8 (1). 56-82.

[2] Brandt, E. and Dannenberg, R.B., Time in Distributed Real-
Time Systems. in Proceedings of the 1999 ICMC, (1999),
International Computer Music Conference, 523-526.

[3] Dannenberg, R. A Language for Interactive Audio
Applications, (submitted for publication), 2002.

[4] Dannenberg, R.B. Machine Tongues XIX: Nyquist, a
Language for Composition and Sound Synthesis. Computer
Music Journal, 21 (3). 50-60.

[5] Dannenberg, R.B. Software Design for Interactive
Multimedia Performance. Interface - Journal of New Music
Research, 22 (3). 213-228.

[6] Freed, A. and Chaudhary, A., Music Programming wtih the
new Features of Standard C++. in ICMC, (1998),
International Computer Music Association.

[7] Freed, A. and Wright, M., Open SoundControl: A New
Protocol for Communicating with Sound Synthesizers. in
Proceedings of the 1997 ICMC, (1997), International
Computer Music Association.

[8] Hoare, C.A.R. Monitors: An Operating System Structuring
Concept. Communications of the ACM, 17 (10). 549-557.

[9] Ingalls, D.H., The Smalltalk-76 Programming System
Design and Implementation. in POPL, (1978), ACM, 9-16.

[10] LAD. Low Latency, http://www.linuxdj.com/audio/lad/
resourceslatency.php3, 2002.

[11] Mathews, M. The Technology of Computer Music. MIT
Press, 1969.

[12] McCartney, J., SuperCollider: A New Real Time Synthesis
Language. in Proceedings of the 1996 International
Computer Music Conference, (1996), International
Computer Music Association.

[13] Myers, B., Giuse, D., Dannenberg, R., Zanden, B.V.,
Kosbie, D., Pervin, E., Mickish, A. and Marchal, P. Garnet:
Comprehensive Support for Graphical, Highly Interactive
User Interfaces. IEEE Computer, 23 (11). 71-85.

[14] Pope, S.T., Siren: Software for Music Composition and
Performance in Squeak. in Proceedings of the 1997
International Computer Music Conference, (1997),
International Computer Music Association.

[15] Puckette, M. Combining Event and Signal Processing in the
MAX Graphical Programming Environment. Computer
Music Journal, 15 (3). 68-77.

[16] Puckette, M. and Zicarelli, D. MAX Development Package.
Opcode Systems, Inc., 1991.

[17] Scaletti, C. and Johnson, R.E., An Interactive Graphic
Environment for Object-oriented Music Composition and
Sound Synthesis. in Proceedings of the Conference on
Object-Oriented Programming Languages and Systems,
(1988), ACM.

[18] Schottstaedt, W. Machine Tongues XVII. CLM: Music V
Meets Common Lisp. Computer Music Journal, 18 (2). 30-
38.

[19] Sha, L., Rajkumar, R. and Lehoczky, J.P. Priority
Inheritance Protocols: An Approach to Real-Time
Synchronization. IEEE Transactions on Computers, 39 (9).
1175-1184.

[20] Zicarelli, D. M and Jam Factory. Computer Music Journal,
11 (4). 13-23.


