

A VIRTUAL PATCHBAY FOR ROBUST DISTRIBUTED
INTERACTIVE MUSIC SYSTEMS

 Roger B. Dannenberg
 School of Computer Science,

Carnegie Mellon University
dannenberg@cs.cmu.edu

ABSTRACT

Multiple computers and/or processors offer interactive
music systems more processing power, more inputs and
outputs, and more tolerance to failure. Systems based on
multiple computers require careful design paying par-
ticular attention to communication and configuration.
The virtual patchbay is a new structure in Aura that sim-
plifies the configuration and interconnection of objects in
a distributed computer music application. The virtual
patchbay also optimizes configurations to reduce the
number of duplicate messages sent over the network and
helps the system tolerate crashes and rebooting while
other components continue to function.

1. INTRODUCTION

As computer music systems become more complex,
interprocess communication offers one approach to
managing complexity. For example, the OSC protocol is
used to create client-server systems for music processing
[10], MAX [7] and Pd [8] run their graphical user inter-
face and audio processing in separate threads, and CSL is
intended for a network of processors communicating via
CORBA [6]. Communication facilitates the construction
of distributed systems, which have the advantages of
more power, more input and output devices, and fault-
tolerance.

This paper explores various ways to structure a com-
puter music application for distributed- or multi-proc-
essing systems. Designs are considered in terms of ease-
of-use, efficiency, and robustness in the face of program
failures (crashes). This work led to the design and im-
plementation of a “virtual patchbay” mechanism for
Aura. This virtual patchbay is described in detail.

1.1. Process-to-process Communication

Perhaps the simplest way for processes to communicate
is the standard client-server structure using sockets. In
this organization, the client requests a two-way connec-
tion to a server via sockets, which represent buffered
streams of bytes. The client can write messages or data
which are sent asynchronously to the server. The server
can read bytes as they arrive and optionally send replies
or new requests through another socket.

In simple systems, where there are one or more clients
and a single server, and clients are sending commands,
this organization works well. However, as requirements
change and control becomes richer, the pro-

grammer/composer must extend the protocol understood
by both the server and the clients, leading to problems of
version control, documentation updates, and program
maintenance.

1.2. Communication with OSC

OSC was designed to address this problem. In OSC, the
server, its operations, and its parameters are represented
by a hierarchical name space. To offer a new function in
the server, the server registers the new function with
OSC. Clients can then construct and send messages to
call the new function, but old client code can (ordinarily)
continue to work without change. Functions are named
with strings, and strings are mapped to functions at run-
time to minimize version control problems and to allow
even run time extensions to be created.

In spite of its popularity, OSC has some limitations.
OSC assumes a global address space, so in general, all
messages are sent to the same server port and must in-
clude a complete URL-style destination address. Of
course, the server name space can be divided into any
number of sub-spaces, but then the client must prepend
the subspace name to the destination. For example, ad-
dresses could be /subsys1/a, /subsys2/b, and /subsys3/c,
but then a client designed to interact with subsystem 1
must prepend “/subsys1” to names such as “/a”. OSC
could potentially use a port per object or use multiple
ports to reach multiple servers, but there is no built-in
management for these connections.

OSC names tend to be hard-wired. To connect midi
input to a synthesizer, a standard practice is to write
mapper programs to accept, say, midi data (/midi-
in/control-change), map the data to a destination, and
send a new message (/tone5/spectral-centroid). This
could be regarded as a feature [10], but writing mapping
programs may be a cumbersome approach for some.

1.3. Communication with CORBA

CORBA [9] is a general communications architecture
that addresses many of these issues. In particular,
CORBA has mechanisms for binding names or descrip-
tions of services to actual servers. CORBA is especially
useful in distributed systems with multiple servers that
may fail. After a failure, the clients can (potentially)
locate an alternative server and continue working.

Unfortunately, CORBA has a large specification, and
while there are real-time CORBA implementations,
“real-time” generally means “on-line transaction proc-
essing” where delays of 100ms or more are considered to

Roger Dannenberg
1

Roger Dannenberg
1

Roger Dannenberg
Published as: Roger B. Dannenberg. “A Virtual Patchbay for Robust Distributed Interactive Music Systems,” in Proceedings of the 2005 International Computer Music Conference, San Francisco: International Computer Music Association, (2005), pp. 571-574.

be “real time.” In practice, there are fast implementations
of CORBA suitable for real-time music processing [6],
and real-time extensions to CORBA are an active area of
research and development.1 However, CORBA is fairly
complex, and it is difficult to adopt only selected parts.
For example, one might want to have tight control over
scheduling and memory allocation, but a CORBA im-
plementation might create a thread, wait on a socket, and
allocate memory for sending and receiving messages.

1.4. Communication with Aura

In contrast to CORBA’s wide scope, generality, and
diversity of implementations, Aura [1] supports only a
narrow model of system organization but achieves high
performance with modest code size. Aura is carefully
written to support very efficient communication and real-
time control. For example, Aura avoids locks altogether
to eliminate the possibility of priority inversion, a known
weakness in many operating systems, and Aura uses its
own real-time memory allocator rather than the default
allocators provided in the C and C++ runtime systems.

Aura is first and foremost a general object system.
Music objects and functions are built on top of this
model, so it is important to explain the basics of the Aura
system. Aura objects are written in C++ or Serpent, a
real-time scripting language. All Aura objects inherit
some behavior from the Aobject class, including
globally-unique 64-bit identifiers and the ability to send
asynchronous messages to invoke a method (called “re-
mote method invocation” or RMI). To call the set_hz
method of some object, one can write:

 send_set_hz_to(osc, 440.0)
This automatically-generated macro builds a message
and sends it to osc, which must be a 64-bit object ID.

Aura objects are partitioned according to a two-level
hierarchy. At the top level are “machines” which repre-
sent processes. At the next level are “zones” which rep-
resent threads within processes. An object exists in the
memory pool of, and its methods are executed by, one
and only one thread (or Aura zone).2

Getting back to messages, Aura messages are deliv-
ered using three possible mechanisms (see Figure 1).
When a message is destined for an object in the same
zone, the message is delivered synchronously using the
C++ call stack. If the message is sent to another zone in
the same process, the message is copied to a circular
buffer for the target zone. That zone’s thread then reads
the message and performs a local send to call the
method. If the message is bound for another process, a
network proxy object sends the message over a socket to
the destination process, which then forwards the message
locally. [3]

While it is normal for one object to address a message
to a specific target object, Aura objects also have output

1 C.f. http://www.cs.wustl.edu/~schmidt/TAO.html.
2 Aura’s model of computation and message passing is
quite similar to the “Single-Threaded Apartment” model
of DCOM (http://msdn.microsoft.com/library/default.asp
?url=/library/en-us/dndcom/html/msdn_dcomarch.asp).

ports and input ports. By connecting an output port to
another object, messages can be directed from senders to
receivers. In Figure 2, Obj1 is connected to Obj2, Obj3,
and Obj4. If Obj1 performs

 send_set_hz(440.0)
it will send out copies of a set_hz message to Obj2, Obj3,
and Obj4. If a receiver does not recognize a message, it
is ignored. This style of connecting objects is intended to
mimic MIDI connections, streams of text messages,
control streams from graphical objects such as sliders,
and other forms of control. The interesting thing here is
that connections can be created and destroyed externally
to the connected objects. In designing Aura, we
envisioned that a user might interconnect objects at run
time the way one patches audio and midi components to
build and troubleshoot complex systems. [4]

Zone 1

Zone 2

Machine 1

Obj1Obj2

Obj3

Zone 1

Zone 2

Machine 2

Obj4

Obj5

A

B
C

Figure 1. An object (Obj1) can send messages (A) lo-
cally, (B) to another zone in the same process, and (C)
across the network to a different process.

Obj1

Obj2

Obj3

Obj4
Figure 2. Obj1 has an output port that can be con-
nected to any number of other objects. Messages can
be “broadcast,” that is, a copy of the message is deliv-
ered to each connected receiver. Connections can be
created and destroyed at runtime by any object.

An advantage of this approach is that any two objects
can be connected, even if they are on different machines.
E.g. a sensor that runs on machine 1 can be connected to
a local message logging object, a graphical display ob-
ject on machine 2, and a synthesis object on machine 3.
In contrast to OSC or some other client/server scheme,
the location of Aura objects is transparent. Local sends
use the same syntax as remote sends, so the network to-
pology is isolated from and independent of the program
logic.

1.5. Problems to be Solved

Transparency, however, comes at a price. Because ob-
jects communicate directly with one another, objects
must hold the unique identifiers of other objects. If a
process fails (crashes or terminates), objects in other

processes may be left holding invalid object identifiers.
If the failed process is restarted, newly created objects
may not have the same unique identifiers, so communi-
cation paths will not be restored automatically.

In contrast, a scheme like MIDI or OSC allows a
synthesizer or controller to be rebooted because the
MIDI namespace (channels, key numbers, controller
numbers) or OSC namespace (a hierarchical space of
identifiers) is fixed and exists externally to the commu-
nicating objects.

Another, related problem with the Aura scheme is that
objects must exist before they can be connected. In
practice, this means that configuring a distributed Aura
system can require several phases to make sure that
processes are created first, then objects, and then con-
nections between objects. To some extent, these prob-
lems exist in all distributed systems, but work in Aura
can at least be simplified, as we shall see.

2. THE VIRTUAL PATCHBAY

It is these problems that the virtual patchbay is designed
to solve. The idea is simple: a patchbay object maintains
a set of logical patchpoints. Any number of objects may
be designated as sources for a patchpoint, and any num-
ber of objects may be designated as sinks for a patch-
point. Whenever a patchpoint source object sends a
message, the message is delivered to all of the patchpoint
sinks. This can be viewed as a simple instance of the
publish/subscribe communication paradigm [5]. The
interesting aspect of this work is how the virtual
patchbay can be implemented to support (1) machine
failures and restarts, (2) efficient local communication,
and (3) efficient non-local communication.

2.1. The Virtual Patchbay Interface

The virtual patchbay interface consists of only a few
methods whose semantics should be obvious:

create_patchpoint(string)
add_source(string, objectID)
remove_source(string, objectID)
add_sink(string, objectID)
remove_sink(string, objectID)

For example, to create a connection from Obj1 to
Obj2 through a patchpoint named “env_sensor”, one
could write:

create_patchpoint(“env_sensor”)
add_source(“env_sensor”, Obj1)
add_sink(“env_sensor”, Obj2)

Now, messages sent from Obj1 will arrive at Obj2.

2.2. Basic Implementation

Aura systems must include a designated “master” process
that gives unique names to “slave” processes, establishes
a time reference, performs distributed clock syn-
chronization, and optionally establishes a global sample
clock. [3] The virtual patchbay runs on the master as an
ordinary Aura object. It maintains a simple database that
associates patchpoints with sinks and sources. When a
new sink is added to a patchpoint, the patchbay makes a

connection from each of the patchpoint’s sources to the
new sink. When a new source is added to the patchpoint,
the patchbay makes a connection between the new source
and each of the patchpoint’s sinks. Connections are
deleted when a sink or source is removed from the
patchpoint.

Notice that messages are not delivered to or through
the patchbay. The patchbay merely makes and breaks
direct connections so that, for example, local connections
require only local processing with no indirection or
forwarding.

2.3. Robustness to Crashes and Rebooting

To deal with crashes and rebooting, the patchbay must:
(1) detect when a slave has crashed, (2) delete connec-
tions to and from “dead” objects, (3) reestablish con-
nections when slaves are rebooted. Notice that the master
is a single point of failure; the entire distributed ap-
plication must be restarted if the master fails.

To detect that a slave has terminated (for any reason),
the patchbay relies upon a network proxy object. This
proxy maintains bidirectional TCP/IP sockets to each
slave. These sockets are used to forward Aura messages
between processes. When a process terminates, the net-
work proxy object gets a notification from the operating
system that the corresponding socket has closed. The
network proxy object informs the virtual patchbay object
of any change in status via an Aura message.

When the patchbay object gets a notice that a slave
has terminated, it scans its database of connections for
objects that were allocated in the slave (and are now
presumed dead). Each such object is removed, prompting
the appropriate messages to delete connections that are
no longer valid. (There are various race conditions that
may cause messages to be sent to non-existent objects.
Aura simply drops these messages so they do not cause
further problems.)

When a slave is rebooted, it contacts the master and
reestablishes network connections with the master and
other slaves. If the slave makes add_source() and
add_sink() calls to connect new objects to patchpoints,
then connections between objects will be reestablished.

For example, suppose a slave captures data from a
MIDI-based controller and sends the data to a software
synthesizer running on another machine. The data is sent
via the logical patchpoint named “controller1.” The
synthesizer object is the sink for “controller1.” When the
slave attached to the MIDI controller is (re)booted, it
establishes the MIDI input object as a source for
“controller1.” The virtual patchbay then makes a
connection from the MIDI input object (the source) to
the software synthesizer object (the sink). Notice that the
MIDI input object and the synthesizer object do not need
to know about one another since their connection is
managed by the virtual patchbay. Neither source nor sink
depends upon the other, so no special sequencing is
required when the system is initialized.

The patchbay is most useful for streams of data (e.g..
audio, MIDI, sensor data, and text messages) where the
loss of a message is not a disaster. Ideally, each message

is independent of previous messages and carries enough
information to bring the receiver up-to-date. Messages
that contain the complete state of the sender are ideal in
this respect, while messages that contain incremental
updates create a problem if the sender is restarted. If the
loss of a message can cause an unrecoverable error, then
crash recovery is much more complicated than simply
restarting a process and restoring a connection. This is a
tricky problem even in non-real-time systems, and Aura
does not try to solve it automatically. However, well-
known techniques are available to the application
builder, including “active sense” or “heartbeat” messages
to monitor process behavior, resetting objects to a known
state, and query messages to retrieve lost state
information.

2.4. Message-Passing Optimization

One shortcoming of the Aura message-passing architec-
ture is that when messages are broadcast from a sender to
multiple receivers, messages are copied and duplicates
may be sent over the network to the same machine (but
to different final destinations). If the sender is connected
to a dozen objects on a remote machine, then a dozen
copies of the message are sent over the network. It would
be much more efficient to send one message and make
copies at the receiving end, but this would greatly
complicate the message passing protocol, which is
optimized for fast, local sending.

The virtual patchbay offers a solution. Since the vir-
tual patchbay has a global view of the connections, it can
detect when a source is sending to multiple sinks in a
remote zone. When this happens, the virtual patchbay
creates a “message forwarder” object that simply for-
wards any incoming message to its output port. The vir-
tual patchbay uses the forwarder object to make local
copies of a message after it reaches the remote zone.
Figure 3 illustrates the configuration without (left) and
with (right) the use of forwarder objects.

Obj1

Obj2

Obj3

Obj4

Obj1

Obj2

Obj4

Fwd

Obj3

Figure 3. Ordinarily, Obj1 must send three copies of
each message to reach remote objects Obj2, Obj3, and
Obj4, as shown at left. The virtual patchbay creates a
forwarding object, Fwd, so that copies are only made
locally in the receiving zone, which is more efficient,
as shown at right.

2.5. Performance

Because the virtual patchbay merely establishes and de-
letes connections, it introduces no overhead to ordinary
message passing and actually reduces overhead when
connections can be optimized with a forwarding object.
The additional overhead to create a connection is just

one message per patchpoint, one message per source or
sink, and two messages per forwarding object. Assuming
that connections are long-lived, the overhead is negligi-
ble. The patchbay is implemented in Serpent, the Aura
scripting language. [2]

3. CONCLUSIONS

Distributed systems will become increasingly common in
interactive music. At present, few distributed music
processing systems have been constructed, and most use
very simple client/server architectures, often connecting
just a pair of machines. Aura offers an interesting archi-
tecture based on communicating objects that extends
quite readily to a multiple-processor or multiple-com-
puter configuration. Communication in Aura offers the
advantage of location transparency. The virtual patchbay
gives Aura a simple means for coni

figuration and crash recovery as well as the ability to
optimize message distribution.

4. REFERENCES

[1] Dannenberg, R.B. "Aura II: Making Real-Time Systems
Safe for Music", Proceedings of the 2004 Conference on
New Interfaces for Musical Expression (NIME04),
Hamamatsu, Japan, 2004, 132-137.

[2] Dannenberg, R.B. "Combining Visual and Textual
Representations for Flexible Interactive Audio Signal
Processing", Proceedings of ICMC 2004: The 30th
Annual International Computer Music Conference, Coral
Gables, Florida, 2004, 240-247.

[3] Dannenberg, R.B. and Lageweg, P.v.d. "A System
Supporting Flexible Distributed Real-Time Music
Processing", Proceedings of the 2001 International
Computer Music Conference, Havana, 2001, 267-270.

[4] Dannenberg, R.B. and Rubine, D. "Toward Modular,
Portable, Real-Time Software", Proceedings of the 1995
International Computer Music Conference, Banff,
Canada, 1995, 65-72.

[5] Eugster, P.T., Felber, P.A., Guerraoui, R. and Kermarrec,
A.-M. "The Many Faces of Publish/Subscribe", ACM
Computing Surveys, 35, 2 (June), 2003, 114-131.

[6] Pope, S. and Engberg, A. "Distributed Control and
Computation in the HPDM and DSCP Projects",
Proceedings of the Symposium on Sensing and Input for
Media-Centric Systems, Santa Barbara, 2002, 38-43.

[7] Puckette, M. "Max at Seventeen", Computer Music
Journal, 26, 4, 2002, 31-43.

[8] Puckette, M. "Pure Data", 1997 International Computer
Music Conference, Thessaloniki, Greece, 1997, 224-227.

[9] Vinoski, S. "CORBA: Integrating Diverse Applications
Within Distributed Heterogeneous Environments", IEEE
Communications Magazine, 35, 2, 1997.

[10] Wright, M., Freed, A., Lee, A., Madden, T. and
Momeni, A. "Managing Complexity with Explicit
Mapping of Gestures to Sound Control with OSC",
Proceedings of the 2001 International Computer
Music Conference, Havana, 2001, 314-317.

	Index
	ICMC 2005

	Conference Info
	Welcome Messages
	Sponsors
	Committees
	Program Guide

	Sessions
	Monday 5, September 2005
	MonAmOR1-Paper Session 1: Frameworks
	MonAmPO1-Demo Session 1
	MonAmOR2-Paper Session 2: History of Electroacoustic Mu ...
	MonAmPO2-Poster Introduction Session
	MonAmPO3-Demo Session 2
	MonPmOR1-Paper Session 3: Automatic Performance Renderi ...
	MonPmOR2-Studio reports
	MonPmPO1-Demo Session 3
	MonPmOR3-Paper Session 4: Sound Synthesis and Analysis
	MonPmPO2-Demo Session 4

	Tuesday 6, September 2005
	TueAmOR1-Paper Session 1: Sound Synthesis and Analysis
	TueAmPO1-Demo Session 1
	TueAmOR2-Paper Session 2: Music Analysis and Representa ...
	TueAmPO2-Poster Introduction Session
	TueAmPO3-Demo Session 2
	TuePmOR1-Paper Session 3: Mathematical Music Theory
	TuePmPO1-Demo Session 3

	Wednesday 7, September 2005
	WedAmOR1-Paper Session 1: Sound Synthesis and Analysis
	WedAmPO1-Demo Session 1
	WedAmOR2-Paper Session 2: Psychoacoustics
	WedAmPO2-Poster Introduction Session
	WedAmPO3-Demo Session 2
	WedPmOR1-Paper Session 3: Systems for Composition and M ...
	WedPmOR2-Studio reports
	WedPmPO1-Demo Session 3
	WedPmOR3-Paper Session 4: Sound Processing and Synthesi ...
	WedPmPO2-Demo Session 4

	Thursday 8, September 2005
	ThuAmOR1-Paper Session 1: Music Information Retrieval a ...
	ThuAmOR2-Paper Session 2: Performance
	ThuAmPO1-Poster Introduction Session
	ThuAmPO2-Demo Session 2
	ThuPmOR1-Paper Session 3: Interactive Music
	ThuPmOR2-Studio reports
	ThuPmPO1-Demo Session 3
	ThuPmOR3-Paper Session 4: General Computer Music Topics
	ThuPmPO2-Demo Session 4

	Friday 9, September 2005
	FriAmOR1-Paper Session 1: Composition Systems
	FriAmOR2-Paper Session 2: Composition Systems
	FriAmPO1-Poster Introduction Session
	FriAmPO2-Demo Session 2
	FriPmOR1-Paper Session 3: Sound Synthesis and Analysis
	FriPmPO1-Demo Session 3
	FriPmOR2-Paper Session 4: Performance
	FriPmPO2-Demo Session 4

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Papers
	Papers by Session
	All papers
	Papers by Topic

	Topics
	Digital Audio Signal Processing
	Sound Synthesis and Analysis
	Music Analysis
	Music Information Retrieval
	Representation and Models for Computer Music
	Artificial Intelligence and Music
	Languages for Computer Music
	Mathematical Music Theory
	Psychoacoustics, Music Perception and Cognition
	Acoustics of Music
	Aesthetics, Philosophy and Criticism of Music
	History of Electroacoustic Music
	Computer Systems in Music Education
	Composition Systems and Techniques
	Interactive Performance Systems
	Software and Hardware Systems
	General and Miscellaneous Issues in Computer Music
	Studio Reports

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Roger Dannenberg

