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ABSTRACT 

Multiple computers and/or processors offer interactive 
music systems more processing power, more inputs and 
outputs, and more tolerance to failure. Systems based on 
multiple computers require careful design paying par-
ticular attention to communication and configuration. 
The virtual patchbay is a new structure in Aura that sim-
plifies the configuration and interconnection of objects in 
a distributed computer music application. The virtual 
patchbay also optimizes configurations to reduce the 
number of duplicate messages sent over the network and 
helps the system tolerate crashes and rebooting while 
other components continue to function. 

1. INTRODUCTION 

As computer music systems become more complex, 
interprocess communication offers one approach to 
managing complexity. For example, the OSC protocol is 
used to create client-server systems for music processing 
[10], MAX [7] and Pd [8] run their graphical user inter-
face and audio processing in separate threads, and CSL is 
intended for a network of processors communicating via 
CORBA [6]. Communication facilitates the construction 
of distributed systems, which have the advantages of 
more power, more input and output devices, and fault-
tolerance. 

This paper explores various ways to structure a com-
puter music application for distributed- or multi-proc-
essing systems. Designs are considered in terms of ease-
of-use, efficiency, and robustness in the face of program 
failures (crashes). This work led to the design and im-
plementation of a “virtual patchbay” mechanism for 
Aura. This virtual patchbay is described in detail. 

1.1. Process-to-process Communication 

Perhaps the simplest way for processes to communicate 
is the standard client-server structure using sockets. In 
this organization, the client requests a two-way connec-
tion to a server via sockets, which represent buffered 
streams of bytes. The client can write messages or data 
which are sent asynchronously to the server. The server 
can read bytes as they arrive and optionally send replies 
or new requests through another socket. 

In simple systems, where there are one or more clients 
and a single server, and clients are sending commands, 
this organization works well. However, as requirements 
change and control becomes richer, the pro-

grammer/composer must extend the protocol understood 
by both the server and the clients, leading to problems of 
version control, documentation updates, and program 
maintenance. 

1.2. Communication with OSC 

OSC was designed to address this problem. In OSC, the 
server, its operations, and its parameters are represented 
by a hierarchical name space. To offer a new function in 
the server, the server registers the new function with 
OSC. Clients can then construct and send messages to 
call the new function, but old client code can (ordinarily) 
continue to work without change. Functions are named 
with strings, and strings are mapped to functions at run-
time to minimize version control problems and to allow 
even run time extensions to be created. 

In spite of its popularity, OSC has some limitations. 
OSC assumes a global address space, so in general, all 
messages are sent to the same server port and must in-
clude a complete URL-style destination address. Of 
course, the server name space can be divided into any 
number of sub-spaces, but then the client must prepend 
the subspace name to the destination. For example, ad-
dresses could be /subsys1/a, /subsys2/b, and /subsys3/c, 
but then a client designed to interact with subsystem 1 
must prepend “/subsys1” to names such as “/a”. OSC 
could potentially use a port per object or use multiple 
ports to reach multiple servers, but there is no built-in 
management for these connections. 

OSC names tend to be hard-wired. To connect midi 
input to a synthesizer, a standard practice is to write 
mapper programs to accept, say, midi data (/midi-
in/control-change), map the data to a destination, and 
send a new message (/tone5/spectral-centroid). This 
could be regarded as a feature [10], but writing mapping 
programs may be a cumbersome approach for some. 

1.3. Communication with CORBA 

CORBA [9] is a general communications architecture 
that addresses many of these issues. In particular, 
CORBA has mechanisms for binding names or descrip-
tions of services to actual servers. CORBA is especially 
useful in distributed systems with multiple servers that 
may fail. After a failure, the clients can (potentially) 
locate an alternative server and continue working. 

Unfortunately, CORBA has a large specification, and 
while there are real-time CORBA implementations, 
“real-time” generally means “on-line transaction proc-
essing” where delays of 100ms or more are considered to 
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be “real time.” In practice, there are fast implementations 
of CORBA suitable for real-time music processing [6], 
and real-time extensions to CORBA are an active area of 
research and development.1 However, CORBA is fairly 
complex, and it is difficult to adopt only selected parts. 
For example, one might want to have tight control over 
scheduling and memory allocation, but a CORBA im-
plementation might create a thread, wait on a socket, and 
allocate memory for sending and receiving messages.  

1.4. Communication with Aura 

In contrast to CORBA’s wide scope, generality, and 
diversity of implementations, Aura [1] supports only a 
narrow model of system organization but achieves high 
performance with modest code size. Aura is carefully 
written to support very efficient communication and real-
time control. For example, Aura avoids locks altogether 
to eliminate the possibility of priority inversion, a known 
weakness in many operating systems, and Aura uses its 
own real-time memory allocator rather than the default 
allocators provided in the C and C++ runtime systems. 

Aura is first and foremost a general object system. 
Music objects and functions are built on top of this 
model, so it is important to explain the basics of the Aura 
system. Aura objects are written in C++ or Serpent, a 
real-time scripting language. All Aura objects inherit 
some behavior from the Aobject class, including 
globally-unique 64-bit identifiers and the ability to send 
asynchronous messages to invoke a method (called “re-
mote method invocation” or RMI). To call the set_hz 
method of some object, one can write: 

 send_set_hz_to(osc, 440.0) 
This automatically-generated macro builds a message 
and sends it to osc, which must be a 64-bit object ID.  

Aura objects are partitioned according to a two-level 
hierarchy. At the top level are “machines” which repre-
sent processes. At the next level are “zones” which rep-
resent threads within processes. An object exists in the 
memory pool of, and its methods are executed by, one 
and only one thread (or Aura zone).2  

Getting back to messages, Aura messages are deliv-
ered using three possible mechanisms (see Figure 1). 
When a message is destined for an object in the same 
zone, the message is delivered synchronously using the 
C++ call stack. If the message is sent to another zone in 
the same process, the message is copied to a circular 
buffer for the target zone. That zone’s thread then reads 
the message and performs a local send to call the 
method. If the message is bound for another process, a 
network proxy object sends the message over a socket to 
the destination process, which then forwards the message 
locally. [3] 

While it is normal for one object to address a message 
to a specific target object, Aura objects also have output 

                                                           
1 C.f. http://www.cs.wustl.edu/~schmidt/TAO.html. 
2 Aura’s model of computation and message passing is 
quite similar to the “Single-Threaded Apartment” model 
of DCOM (http://msdn.microsoft.com/library/default.asp 
?url=/library/en-us/dndcom/html/msdn_dcomarch.asp). 

ports and input ports. By connecting an output port to 
another object, messages can be directed from senders to 
receivers. In Figure 2, Obj1 is connected to Obj2, Obj3, 
and Obj4. If Obj1 performs 

 send_set_hz(440.0) 
it will send out copies of a set_hz message to Obj2, Obj3, 
and Obj4. If a receiver does not recognize a message, it 
is ignored. This style of connecting objects is intended to 
mimic MIDI connections, streams of text messages, 
control streams from graphical objects such as sliders, 
and other forms of control. The interesting thing here is 
that connections can be created and destroyed externally 
to the connected objects. In designing Aura, we 
envisioned that a user might interconnect objects at run 
time the way one patches audio and midi components to 
build and troubleshoot complex systems. [4] 
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Figure 1. An object (Obj1) can send messages (A) lo-
cally, (B) to another zone in the same process, and (C) 
across the network to a different process. 

Obj1

Obj2

Obj3

Obj4  
Figure 2. Obj1 has an output port that can be con-
nected to any number of other objects. Messages can 
be “broadcast,” that is, a copy of the message is deliv-
ered to each connected receiver. Connections can be 
created and destroyed at runtime by any object. 

An advantage of this approach is that any two objects 
can be connected, even if they are on different machines. 
E.g. a sensor that runs on machine 1 can be connected to 
a local message logging object, a graphical display ob-
ject on machine 2, and a synthesis object on machine 3. 
In contrast to OSC or some other client/server scheme, 
the location of Aura objects is transparent. Local sends 
use the same syntax as remote sends, so the network to-
pology is isolated from and independent of the program 
logic. 

1.5. Problems to be Solved 

Transparency, however, comes at a price. Because ob-
jects communicate directly with one another, objects 
must hold the unique identifiers of other objects. If a 
process fails (crashes or terminates), objects in other 



  
 
processes may be left holding invalid object identifiers. 
If the failed process is restarted, newly created objects 
may not have the same unique identifiers, so communi-
cation paths will not be restored automatically. 

In contrast, a scheme like MIDI or OSC allows a 
synthesizer or controller to be rebooted because the 
MIDI namespace (channels, key numbers, controller 
numbers) or OSC namespace (a hierarchical space of 
identifiers) is fixed and exists externally to the commu-
nicating objects. 

Another, related problem with the Aura scheme is that 
objects must exist before they can be connected. In 
practice, this means that configuring a distributed Aura 
system can require several phases to make sure that 
processes are created first, then objects, and then con-
nections between objects. To some extent, these prob-
lems exist in all distributed systems, but work in Aura 
can at least be simplified, as we shall see. 

2. THE VIRTUAL PATCHBAY 

It is these problems that the virtual patchbay is designed 
to solve. The idea is simple: a patchbay object maintains 
a set of logical patchpoints. Any number of objects may 
be designated as sources for a patchpoint, and any num-
ber of objects may be designated as sinks for a patch-
point. Whenever a patchpoint source object sends a 
message, the message is delivered to all of the patchpoint 
sinks. This can be viewed as a simple instance of the 
publish/subscribe communication paradigm [5]. The 
interesting aspect of this work is how the virtual 
patchbay can be implemented to support (1) machine 
failures and restarts, (2) efficient local communication, 
and (3) efficient non-local communication. 

2.1. The Virtual Patchbay Interface 

The virtual patchbay interface consists of only a few 
methods whose semantics should be obvious: 

create_patchpoint(string) 
add_source(string, objectID) 
remove_source(string, objectID) 
add_sink(string, objectID) 
remove_sink(string, objectID) 

For example, to create a connection from Obj1 to 
Obj2 through a patchpoint named “env_sensor”, one 
could write: 

create_patchpoint(“env_sensor”) 
add_source(“env_sensor”, Obj1) 
add_sink(“env_sensor”, Obj2) 

Now, messages sent from Obj1 will arrive at Obj2. 

2.2. Basic Implementation 

Aura systems must include a designated “master” process 
that gives unique names to “slave” processes, establishes 
a time reference, performs distributed clock syn-
chronization, and optionally establishes a global sample 
clock. [3] The virtual patchbay runs on the master as an 
ordinary Aura object. It maintains a simple database that 
associates patchpoints with sinks and sources. When a 
new sink is added to a patchpoint, the patchbay makes a 

connection from each of the patchpoint’s sources to the 
new sink. When a new source is added to the patchpoint, 
the patchbay makes a connection between the new source 
and each of the patchpoint’s sinks. Connections are 
deleted when a sink or source is removed from the 
patchpoint. 

Notice that messages are not delivered to or through 
the patchbay. The patchbay merely makes and breaks 
direct connections so that, for example, local connections 
require only local processing with no indirection or 
forwarding. 

2.3. Robustness to Crashes and Rebooting 

To deal with crashes and rebooting, the patchbay must: 
(1) detect when a slave has crashed, (2) delete connec-
tions to and from “dead” objects, (3) reestablish con-
nections when slaves are rebooted. Notice that the master 
is a single point of failure; the entire distributed ap-
plication must be restarted if the master fails. 

To detect that a slave has terminated (for any reason), 
the patchbay relies upon a network proxy object. This 
proxy maintains bidirectional TCP/IP sockets to each 
slave. These sockets are used to forward Aura messages 
between processes. When a process terminates, the net-
work proxy object gets a notification from the operating 
system that the corresponding socket has closed. The 
network proxy object informs the virtual patchbay object 
of any change in status via an Aura message. 

When the patchbay object gets a notice that a slave 
has terminated, it scans its database of connections for 
objects that were allocated in the slave (and are now 
presumed dead). Each such object is removed, prompting 
the appropriate messages to delete connections that are 
no longer valid. (There are various race conditions that 
may cause messages to be sent to non-existent objects. 
Aura simply drops these messages so they do not cause 
further problems.) 

When a slave is rebooted, it contacts the master and 
reestablishes network connections with the master and 
other slaves. If the slave makes add_source() and 
add_sink() calls to connect new objects to patchpoints, 
then connections between objects will be reestablished.  

For example, suppose a slave captures data from a 
MIDI-based controller and sends the data to a software 
synthesizer running on another machine. The data is sent 
via the logical patchpoint named “controller1.” The 
synthesizer object is the sink for “controller1.” When the 
slave attached to the MIDI controller is (re)booted, it 
establishes the MIDI input object as a source for 
“controller1.” The virtual patchbay then makes a 
connection from the MIDI input object (the source) to 
the software synthesizer object (the sink). Notice that the 
MIDI input object and the synthesizer object do not need 
to know about one another since their connection is 
managed by the virtual patchbay. Neither source nor sink 
depends upon the other, so no special sequencing is 
required when the system is initialized. 

The patchbay is most useful for streams of data (e.g.. 
audio, MIDI, sensor data, and text messages) where the 
loss of a message is not a disaster. Ideally, each message 



  
 
is independent of previous messages and carries enough 
information to bring the receiver up-to-date. Messages 
that contain the complete state of the sender are ideal in 
this respect, while messages that contain incremental 
updates create a problem if the sender is restarted. If the 
loss of a message can cause an unrecoverable error, then 
crash recovery is much more complicated than simply 
restarting a process and restoring a connection. This is a 
tricky problem even in non-real-time systems, and Aura 
does not try to solve it automatically. However, well-
known techniques are available to the application 
builder, including “active sense” or “heartbeat” messages 
to monitor process behavior, resetting objects to a known 
state, and query messages to retrieve lost state 
information. 

2.4. Message-Passing Optimization 

One shortcoming of the Aura message-passing architec-
ture is that when messages are broadcast from a sender to 
multiple receivers, messages are copied and duplicates 
may be sent over the network to the same machine (but 
to different final destinations). If the sender is connected 
to a dozen objects on a remote machine, then a dozen 
copies of the message are sent over the network. It would 
be much more efficient to send one message and make 
copies at the receiving end, but this would greatly 
complicate the message passing protocol, which is 
optimized for fast, local sending. 

The virtual patchbay offers a solution. Since the vir-
tual patchbay has a global view of the connections, it can 
detect when a source is sending to multiple sinks in a 
remote zone. When this happens, the virtual patchbay 
creates a “message forwarder” object that simply for-
wards any incoming message to its output port. The vir-
tual patchbay uses the forwarder object to make local 
copies of a message after it reaches the remote zone. 
Figure 3 illustrates the configuration without (left) and 
with (right) the use of forwarder objects. 
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Figure 3. Ordinarily, Obj1 must send three copies of 
each message to reach remote objects Obj2, Obj3, and 
Obj4, as shown at left. The virtual patchbay creates a 
forwarding object, Fwd, so that copies are only made 
locally in the receiving zone, which is more efficient, 
as shown at right. 

2.5. Performance 

Because the virtual patchbay merely establishes and de-
letes connections, it introduces no overhead to ordinary 
message passing and actually reduces overhead when 
connections can be optimized with a forwarding object. 
The additional overhead to create a connection is just 

one message per patchpoint, one message per source or 
sink, and two messages per forwarding object. Assuming 
that connections are long-lived, the overhead is negligi-
ble. The patchbay is implemented in Serpent, the Aura 
scripting language. [2] 

3. CONCLUSIONS 

Distributed systems will become increasingly common in 
interactive music. At present, few distributed music 
processing systems have been constructed, and most use 
very simple client/server architectures, often connecting 
just a pair of machines. Aura offers an interesting archi-
tecture based on communicating objects that extends 
quite readily to a multiple-processor or multiple-com-
puter configuration. Communication in Aura offers the 
advantage of location transparency. The virtual patchbay 
gives Aura a simple means for coni 

figuration and crash recovery as well as the ability to 
optimize message distribution. 
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