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ABSTRACT. A set of techniques have been developed and refined to support
the demanding software requirements of combined interactive computer music
and computer animation. The techniques include a new programming
environment that supports an integration of procedural and declarative score-like
descriptions of interactive real-time behavior. Also discussed are issues of
asynchronous input, concurrency, memory management, scheduling, and testing.
Two examples are described.
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1. Introduction
My work for the past few years has focused on the use of real-time computer systems to carry

on compositional processes during a performance.  The rationale behind this work is that
composing during a performance allows a work of music to benefit from the ideas of a composer
as well as those of an improviser.  Of course, this could be said about many approaches ranging
from aleatoric music to jazz. Almost all music contains elements of composition and
improvisation. However, composition and improvisation almost always occur in just that order:
composition comes first, and improvisation completes the process. Computers, as we shall see,
offer an alternative.

Unfortunately, real-time computer systems are among the most difficult to develop due to
concurrency, the use of special purpose input/output devices, and the fact that time-dependent
errors are hard to reproduce.  Much has been written about real-time control, process control,
scheduling and synchronization.  So much has been written, in fact, that it is difficult to know
what techniques to apply to a given problem.  Often, in an effort to squeeze out every last drop of
performance, researchers (including this one) have designed complex strategies which are

1Published as: Dannenberg, ‘‘Software Design for Interactive Multimedia
Performance,’’ Interface - Journal of New Music Research, 22(3) (August 1993), pp.
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primarily of academic interest.  In this paper, I will present practical advice for building real-time
systems for computer music and animation.  This paper is a ‘‘report from the trenches’’ on
techniques that have proven to be effective. This advice is based on experience building real
systems and in many cases runs counter to common assumptions. I will also attempt to analyze
the techniques to explain why they work.

1.1. Overview
Section 2 describes the artistic context that motivates this work.  From this context, a number

of technical problems arise, and these are described in Sections 4 through 10 along with some
solutions and practical advice.  Section 11 describes two examples of performance systems I
have implemented, Section 12 describes future work, and Section 13 presents conclusions.

2. Interactive Composition
Composition by computer at the time of performance allows the composer to respond to live

improvisation and vice versa, creating a dialog between the composer and improviser.  One
could argue that composition at performance time is improvisation by definition, but my view is
that composition is different.  Composition is characterized by a careful working out of plans and
ideas using relatively formal structures and relationships. Improvisation is more spontaneous
and often focuses on expressiveness rather than carefully crafted structures.

Few if any humans can compose in real time, integrating new ideas from improvisers all the
while. However, humans can develop computer programs that embody fairly sophisticated
compositional strategies and which do run in real time.  One might call these programs
meta-compositions because the programs themselves are composers.  The end result is a
balanced mixture of composition and improvisation, where composer and improviser influence
one another in real time.

2.1. Music and Animation
Another idea I have been pursuing is that of mixed media performances of synchronized

computer animation and music.  Because composition is being carried out by computer, it is
possible, in real time, to generate graphics and music together.  Composing programs tend to
make compositional ideas and methods very explicit, making it possible to achieve a high degree
of consistency and synchrony between sound and image.

We could continue from this point with more justification and analysis of computer programs
that compose, but that is not the goal of this paper. Instead, I will take it as given that these
real-time interactive computer music and animation programs are interesting, and I will describe
a number of techniques that were developed to simplify their construction.  Making these
programs easier to create is important so that more composers and performers can apply their
talents to this interesting new art form.
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3. Implementation Issues
What are the problems of creating interactive multimedia composing programs?  The

following list is undoubtedly incomplete, but at least it describes important problems for which
we have useful solutions:

• Input. It is often necessary to handle multiple streams of input, but stopping to wait
for input is usually not possible.

• Concurrency. Music generation typically requires many independent threads of
control, but traditional approaches add program complexity.

• Synchronization. Concurrent tasks must communicate and share data.

• Memory Management. Data objects are often allocated in response to input and
must be carefully deallocated when no longer needed.

• Sequencing. Programming is essential for interactive systems, but event sequences
such as musical scores are clumsy to express as programs.

• Parameter adjustment. Compiled programming languages contribute to execution
speed, but make it awkward to adjust and refine many parameters.

• Scheduling. Long computations can interfere with the real-time responsiveness of
interactive programs.

• Testing. Interactive systems, especially those with multiple performers, are difficult
to test because testing requires real-time input and because input may not be
reproducible for debugging purposes.

The following sections consider these issues in greater detail. These problems are all addressed
in the CMU MIDI Toolkit, which will be used to illustrate solutions. The CMU MIDI Toolkit is a
collection of software written in the C programming language and available from the author.

4. Handling Input
Traditionally, input has been handled in programming languages by calling procedures (or

executing special read statements) which return data when it becomes available. But stopping to
wait is not possible in a real-time system, where time dependent as well as data dependent
computation takes place. One solution is an inverted structure where instead of programs calling
‘‘in’’ for input, the runtime system calls ‘‘out’’ to the program whenever input arrives. In real-
time systems, programs typically then decode the input to determine an appropriate action to
take. A standard decoding procedure can be provided by the language or run-time system,
avoiding the need to reimplement input decoding in each application program.

As an example, the CMU MIDI Toolkit handles input from MIDI and the console (typewriter
keyboard). The MIDI input is parsed into a number of message types and a C routine is called
when a complete message is received.  The routines are keydown, keyup, pitchbend,
prgmchng, aftertouch, ctrlchng. In addition, asciievent is called when a character
is typed at the console.  The programmer can provide application-specific definitions for any or
all of these routines.
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5. Concurrency
Interactive music programs often require several musical lines or simultaneous notes. This

seems to call for a separate process to compute each sequence.  Processes, however, suffer from
a number of problems:  they require a fair amount of storage to avoid stack overflow, they
require careful synchronization, especially when processes are preemptable, and processes are
often computationally expensive to create, start, and stop.  Debugging multiple processes is also
known to be difficult and is often not supported by debuggers.

5.1. Event-Based Programming
While concurrent real-time programs are ordinarily implemented as multiple processes, each

with its own stack, I believe that this approach is more complex and troublesome than necessary.
An alternative, first described by Douglas Collinge [Collinge 85], is an event-based organization
that uses only one stack and supports interleaved execution of many tasks.

The principal idea is to think of the program as consisting of many execution events, each of
which consists of calling a short-lived procedure at a particular time with a particular set of
operands. Input data give rise to events (as described in Section 2), and events may also cause
other events, either immediately or some time in the future.

For example, in the CMU MIDI Toolkit, one can write: cause(100, echo, pitch,
loud). This says to call the routine named echo after a delay of 100 time units, passing the
values of pitch and loud as operands. This event is saved in a time-ordered queue until the
current event completes and the indicated time has elapsed.  Other events may execute in the
meantime. Extended computations that produce output, wait for some time, produce more
output, wait again, etc. can be implemented by using cause within events to generate future
events:

lots_o_notes()
{

play_a_note(60); /* make a sound */
cause(200, lots_o_notes); /* repeat every 2.00 seconds */

}

This simple organization is efficient because it is not necessary to save all of the processor’s
registers in order to create or execute an event.  Executing an event amounts to calling a
procedure, and this is normally faster than switching processes.  Storage management is very
simple and mostly automated by the system: the cause operation allocates an event record
from a free list and stores the procedure address, operands and event time in the record.  The
record is then inserted in a queue.  When the time arrives the event procedure is called with the
saved operands and the event record is returned to the free list.  Since this all happens
automatically, it is much less error-prone then explicitly allocating, initializing, and freeing
storage for processes.

Another advantage of this approach is that it is compatible with standard debuggers which
often do not work properly with multiple processes and stacks. Also, debugging is simplified by
having events called from the main program so that they can print to the console, be paused by a
debugger, or single-stepped. In interrupt-driven, multiple-process systems debuggers are
typically (but not inherently) of limited use.  My main point here is that a simple system that can
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use an off-the-shelf debugger and even simple ‘‘print’’ statements is generally easier to program
than a complex system requiring special debugging tools.

As an aside, it is worth mentioning that this event-based strategy is compatible with the polling
of input devices as opposed to interrupt-driven input. Since interrupts are almost always more
difficult to implement and debug than polling-based systems, interrupts should only be used
when necessary for performance.

5.2. Preemption
Preemption occurs when one process is stopped at an arbitrary instruction in order to run

another process.  Preemptive systems are useful when it is important to run a high-priority
process as soon as data arrives or when one wants to implement a ‘‘fair’’ scheduler that prevents
a single long-running process from taking all of the processor time.

While these sound like nice properties, preemptive systems also have disadvantages.  The main
disadvantage is that a process may leave a data-structure in an intermediate state at the time of
preemption. For example, suppose processes A and B each read a shared variable V, add 1, and
store the result back into V. Now, suppose V is 0 and A reads V but is preempted before it stores
the result (1).  Process B might then increment V to 1.  When A resumes, it also stores 1. This is
one example of a classic operating systems problem:  V was incremented twice, but due to
preemption, the final value is 1!  The standard solutions to this problem [Andrews 83] all involve
making updates to shared data structures mutually exclusive.  In this case, process B would be
denied access to V until process A finished its operations.  This requires extra processing to take
place before and after updating the data structure. Notice, however, that this problem only arises
if process A can be preempted.  If we disallow preemption, data structure accesses will run
without interruption, and no extra precautions need to be taken.

There are at least three advantages of non-preemptive systems.  First, non-preemptive systems
are usually the simplest and most efficient to implement. Second, non-preemptive systems do
not incur as much overhead to lock and unlock data structures to achieve mutual exclusion.
Finally and most importantly, non-preemptive systems obtain mutual exclusion by default,
avoiding timing-dependent programming errors which are difficult to debug.

On the other hand, non-preemptive systems can only switch tasks when a process explicitly
blocks waiting for input, delays, or requests that the system run another process. Therefore, a
long-running computation can seriously degrade real-time performance by delaying other
processes. Since we are interested in interactive, low latency systems, there are rarely any long-
running computations.  If there were, then the assumption of low latency would be false with or
without preemption.  In short, the problems solved by preemption do not normally exist in
interactive real-time music and animation software.  (I will discuss some exceptions later.)
Another problem with non-preemptive systems is that special care must be taken so that other
processes can run when a process waits for input. This situation does not occur when input is
handled as described in Section 4.
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6. Memory Management
Memory management is often a problem in multi-tasking systems or object-oriented systems.

The problem is that tasks or objects must be created dynamically to handle input events or to
launch new activities.  The creation and initialization of objects can be expensive, and it is
usually the programmer’s task to free storage when it is no longer needed.  Freeing storage to
which there are still outstanding references is a common error.

Using the event-based programming scheme outlined in Section 5.1, notice that no storage is
explicitly allocated or deallocated in the lots-o-notes example. The cause function
automatically allocates space to save parameters until the function is called.  After the call, the
space is automatically reclaimed. This is important in making CMU MIDI Toolkit programs
reliable and easy to write.  Of course, no formalism is perfect for all applications.  Since no state
is explicitly allocated, there is no name or reference to the future action generated by cause.

2This makes it difficult to cancel an action.

Another drawback of this system is that a ‘‘process’’ does not retain any state information
from one action to the next.  Usually, state information can be passed in the parameter list to
cause. In the example above, the per-process state information consists of a single integer
channel. Note how channel is passed as a parameter from each activation of melody to the next
through the parameter list of cause. If the amount of state is large, a reference to a large
structure can be passed, but then it is up to the programmer to allocate and deallocate the
structure explicitly.

Another approach to memory management is to use garbage collection to free storage.
Unfortunately, real-time garbage collection requires language and compiler support and is
difficult to implement, so it is rarely used.  Another option is reference counting, which can also
benefit from language and compiler support.  Explicitly coded reference counting is error prone,
but quite useful as a last resort in real-time systems.

A few more practical issues are worth mentioning:  When possible, preallocate memory before
starting to run.  When memory must be allocated dynamically, preallocate large chunks and then
allocate from the chunks.  This avoids time-critical calls to the language run-time system, which
may not provide fast memory allocation.  Often, system calls to free memory are also slow, so it
is safer to place freed memory on linked lists (one list per object size) and have future allocations
reuse these freed objects.

7. Sequencing
Programming languages make it awkward to express arbitrary sequences of notes and other

events. Facilities such as cause are excellent when sequences are to be computed according to
some algorithm, but few programming languages are convenient for predetermined (composed)
sequences, especially polyphonic ones.  On the other hand, specialized score languages do not
normally have adequate flexibility to represent the desired decision-making logic that will
control sequences in real time.

2The usual solution is to have the action check a flag before doing anything else.  To cancel the action, you
simply set the flag.
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The solution I have adopted is to incorporate both a programming language (C) and a score
language (Adagio) into a single system.  Multiple Adagio sequences can be loaded, started, and
stopped under program control.  The real-time interactive portions of the program are still
written using cause and the C programming language, but conventional music sequences are
written in Adagio and ‘‘conducted’’ from within the programming environment.  Furthermore,
Adagio has been extended to enable C functions to be called from within the score. This allows
computed event sequences to be ‘‘launched’’ from within a sequence.

To support timing and sequencing even further, scores operate according to virtual time
systems that allow the timing of scores and programs to vary with respect to real time.  This
facility makes it possible to select starting and stopping points in a score and to synchronize
scores with external events.  For example, a score can be stopped temporarily by making its
virtual clock run infinitely slow. In addition, we have developed MIDI synchronization,
conducting, and computer accompaniment systems, all of which maintain synchronization by
manipulating the virtual time of the score with respect to real time.

The important observation here is that neither C nor Adagio is an adequate language for the
tasks at hand.  C is best for defining processes, and Adagio is best for defining temporal
sequences. We can simplify programming by making it possible to invoke Adagio scores from
C and C routines from Adagio. Another advantage of the use of Adagio is that sequences can be
captured from live performances and then incorporated into the interactive composition.  (This
would not be the case if all sequences had to be expressed as programs.)

8. Parameter Adjustment
Unlike most real-time systems, interactive music and animation systems require extensive

adjustments and ‘‘tuning’’ of many parameters for artistic results, something that is not
supported well by the traditional edit/compile/test cycle of program development.

Getting the right values for a large number of effects parameters is a matter of successive
refinement, and each change requires careful listening and evaluation.  Similar procedures are
necessary to adjust MIDI volume controls to achieve a good balance among the synthesized
voices.

One solution to this problem is to use the Adagio score language to enter most parameter
changes. This can be done directly when the parameters are MIDI control changes.  To allow
changes in parameters that control computations, Adagio has been extended to allow the setting
of C variables and array elements.  In effect, this provides a very limited form of C interpreter.
Since Adagio scores are interpreted, they can be loaded very quickly, avoiding the delays
associated with recompilation.

In the following example, the first line sets the C variable section to the value 1.  The next
three lines set velocity offsets for channels 4, 6, and 8 to 20:

!seti section 1
!setv vel_offset 4 20
!setv vel_offset 6 20
!setv vel_offset 8 20

Velocity offsets are not a standard feature of the CMU MIDI Toolkit, but they are easy to
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program, e.g.

midi_note(ch,pitch,100+vel_offset[ch]);

Another approach to this problem is to use an interpreted language or one that provides
incremental compilation.  Lisp, Smalltalk, and Forth fall into this category and have been used
for effective music systems. [Loy 85, Pope 91, Anderson 90].  Our choice of C is based on the
desire for greater execution speed on small portable computer music systems. Higher level
systems such as Play [Chadabe 78], Mabel [Bartlett 85], and Max [Puckette 88] achieve
efficiency through pre-compiled modules that are interactively connected, but do not provide the
generality of ordinary programming languages.

9. Scheduling
As discussed above, event-based programming provides a simple approach to computing

multiple independent streams of events.  Routines (function calls) are scheduled for execution at
a particular time, and all routines run to completion before any other routine can be run.  As long
as routines take very little time to run, the overall timing accuracy is high.  Unfortunately,
graphics operations can be relatively slow, and some other technique is needed to insure that all
events are computed at the proper time.

In my experience, it is better to separate long-running computations into another process and
use preemption to minimize the latency of computations.  This brings us back to the problems of
synchronization and mutual exclusion discussed in Section 5.  An effective way to avoid these
problems is to use a message-based client/server interface between processes. The idea is that a
client wanting some service (for example, a graphics operation) sends a request message to a
server process.  The server reads one request at a time and uses a reply message to return results
to the client.  The message queue(s) are the only shared data structures and otherwise, both the
client and server can be programmed as if they are never preempted. This organization is easy to
manage and leads to reliable programs.

Circular buffers are especially good data structures to implement client/server message
interfaces. Circular buffers have the advantages that they require no dynamic storage allocation
and in cases where there is only one reader and one writer, no locking of the data structure is
necessary to prevent interference, even with preemption.  Interrupt-driven device handlers should
also use circular buffers to communicate with processes that use the devices.

This organization retains most of the simplicity of the single-process non-preemptive model
presented in Section 5.  The only interprocess synchronization (a common source of complexity)
is in the message queue.  Furthermore, the interface to allocate and send messages can be an
easy-to-master set of procedure calls which hide most of the details.

10. Testing
All of these techniques encourage well-structured and reliable programs, but programming is

inherently error prone, so careful testing is essential.  Interactive systems present some
interesting testing problems because live input is required.  Simulation of performances using a
sequencer can be invaluable for composing and adjusting parameters as well as debugging
software.
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In my work, simulation is supported by multitasking and by a special MIDI driver designed and
implemented in my lab. The MIDI driver allows a process to designate one of many ports as the
destination for MIDI messages. The default port corresponds to the hardware MIDI Out port, but
others are available.  Similarly, processes accept input from any subset of the ports. The default
is to receive input from the MIDI In port, but any other port or set of ports can be selected.  The
CMU MIDI Toolkit allows ports to be specified on the command line, making it easy to start and
interconnect several processes in an arbitrary fashion.  A similar facility is provided in the Apple
MIDI Manager [Apple 90] and the MIDI Share software system [Orlarey 89], but the Macintosh
lacks a true multitasking capability.

11. Examples
In this section, I will give two examples of interactive music systems that illustrate some of the

recommendations given above.  The first is a relatively simple system for customizing a special
controller, the VideoHarp, for a specific performance.  The second is a composition for 3
performers, computer music, and computer animation.

11.1. The VideoHarp in The Night of Power
The Night of Power, by Reza Vali, is scored for strings, brass, percussion, and VideoHarp.

The VideoHarp [Rubine 88] is a MIDI controller, shaped roughly like a harp (see Figure 11-1),
whose sensors detect the positions of fingers on two playing surfaces.  The VideoHarp supports a
number of playing gestures, including strumming, bowing, and keyboard emulation.  In spite of
this flexibility, the features implemented by the VideoHarp developers were not a perfect match
to the demands of The Night of Power, making it very difficult to perform the piece. (In defense
of the manufacturer, most of the difficulties were to be addressed in the next software release,
but a shorter-term solution was required.)

The first problem was velocity control:  the VideoHarp, when emulating a keyboard, is not
velocity sensitive.  Although a pedal can be used, I found it difficult to control with precision.
Another problem was that ‘‘keys’’ on the VideoHarp, although marked with an etched pattern,
are difficult to hit precisely, and touching between two keys can lead to double attacks.  This
might not be a problem with an experienced VideoHarp performer, but I wanted some computer
assistance.

The approach I took was to write a CMU MIDI Toolkit (CMT) program that would be inserted
between the VideoHarp and the synthesizers it was to control.  The desired action of the CMT
program is different in different sections of the piece, so the computer’s RETURN key is used to
step through 14 sections.  Stepping to the next section automatically sends a program change to
the synthesizers.  For rehearsal purposes, the SPACE bar backs up one section.

For velocity control, no universal approach was found to be adequate, so different techniques
were used in different parts of the piece. In some sections, a constant velocity is appropriate for
an entire section.  Advancing to one of these sections sets the velocity to be used.  In another
section, there are diminuendi, but the notes can all be played with the right hand on the right
surface of the VideoHarp.  There, the left hand moves up and down to control volume, as if
moving a large fader.  Of course, the VideoHarp generates notes when the left hand moves, so
the CMT program captures these notes and computes a velocity based on the pitches it receives.
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Figure 11-1: The VideoHarp MIDI controller. Light strip at right provides edge
lighting along two transparent  trapezoidal playing surfaces supported by a metal
frame. Optical sensors  and a computer in the enclosed base track fingers and
output MIDI data to synthesizers.

In the final case, a crescendo is required while the right hand plays chords and the left hand plays
arpeggios. Since the arpeggio rises throughout the crescendo, the velocity is tied to the pitches
of the left hand and scaled to achieve the desired effect.  This effect was implemented in a few
minutes during a rehearsal by adding just a few lines of code.

Another problem encountered was to map areas of the VideoHarp into single notes to make it
easier to strike certain pitches.  The VideoHarp normally plays scales, but it was a simple matter
to map pitch ranges into single pitches.  Unfortunately, with just pitch mapping, it is still possible
to accidentally hit two pitches, producing a double attack, or to hit in between two pitches,
producing nothing at all!  The solution was to use a strumming or wiping gesture within a
mapped region to insure that at least one note was played by the VideoHarp.  Software then
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filters out the multiple attacks, using a timeout mechanism.

The software for Night of Power is straightforward, but it would be difficult or impossible to
achieve the same effects without programming. CMT made the task easy and the result is
reliable. A facility like CMT for customizing controllers is very important.

11.2. Interactive Composition:  Ritual of the Science Makers
Ritual of the Science Makers is an interactive composition for flute, violin, and cello.  All three

instruments are connected via pitch-to-MIDI converters to a computer, which generates music in
response to incoming MIDI notes. In addition to MIDI, the computer also generates graphical
animations that respond to the live performers.  The CMU MIDI Toolkit was used to implement
the piece, which relies on many of the features discussed above.

Throughout the work, incoming notes from the instruments serve to initiate various processes
that typically generate long sequences of synthesized pitches lasting anywhere from a second to
a minute or so.  The process can be influenced by the pitch and timing of the note as well as by
which instrument played the note.  In addition to generating sounds, the program also generates
graphical images. These images usually evolve over time in a way that is analogous (in some
fashion) to the way the sounds evolve.  In the opening, for example, there are crashing sounds
that die away, and each crash is accompanied by a graphical plot of the amplitude of the crash.
The images look something like trumpet bells, as if they are heralding the opening of the work.

Ritual uses preemptive scheduling so that relatively slow graphics operations can be called
without affecting the critical timing of musical actions.  The interface to the graphics process is
via messages to eliminate the complexity of concurrent access to shared variables.  If the music
task is not run at a higher priority than the graphics task, the degradation in performance is quite
noticeable.

There are about ten sections in Ritual, and each sets up a different set of responses to the
instrumental parts.  Many of the transitions between sections are subtle and are played without
pause, so the listener will perceive more evolutionary than abrupt changes.

Sequences are used extensively in the piece, not so much for sequencing notes as for
scheduling parameter changes.  For example, in one section, incoming notes are transposed to
form chords.  To avoid monotony, the transpositions applied to each of the three instruments are
changed over time by a sequence.  In transitions between sections, parameters of a digital signal
processor are slowly changed according to a stored sequence.  In some sections, parameters that
control the interactive composition are changed at designated times according to a score.  The
use of scores to store pre-planned sequences of actions makes it easy to adjust parameters and to
edit the exact timing of various actions.

Parts of Ritual were composed by improvising one of the instrumental parts while running a
simulation. The Adagio sequencer was set up to record (from MIDI In) and play at the same
time. The merged MIDI In and sequenced data were passed on to the Ritual process so that I
could hear immediately how the system would respond in a performance to the same input.  (See
Figure 11-2).  Parts could be built up in layers this way.  After I was satisfied with the
simulation, I transcribed the sequencer data to music notation by hand.  Later, the Adagio
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versions of the instrumental parts were used to drive simulated performances for testing as
described in Section 10.

Keyboard:
    Improvised
    Cello part.

Adagio
Sequencer

Ritual
Interactive
Composition

Synthesizers

Recording of
Cello Part

   Stored Flute
and Violin Parts

Figure 11-2: The Adagio sequencer simulates live performers by generating
real-time input to the Ritual program, which runs concurrently.  Live  input from
a keyboard or other MIDI source can be merged with  pre-recorded sequences and
forwarded to Ritual. Live input is also  captured and saved to an editable score
file.

12. Future Work
So far, my focus has been on areas where the CMU MIDI Toolkit offers valuable support for

real-time interactive performance systems.  However, no system is perfect, and there are areas
where more support is needed.  One area where CMT is not particularly helpful is in graphical
user interfaces for real-time systems. An attempt was made to build some tools in Lisp:  a
message interface to CMT allows the user to set parameters and invoke functions in response to
adjusting sliders, clicking on buttons, or typing in values.  Although this system did become
operational, there were several problems.

• While it is possible to set values from the graphical interface, the interface has no
facilities for monitoring values of variables as they are changed under program
control (monitoring requires care to maintain the low-latency characteristics of the
music process);

• The system is unwieldy, requiring many processes and windows to be started and
configured;
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• There is no automatic way to save and restore parameter settings.

We hope to rectify these limitations in a future system.

The Adagio sequencer is flexible, but has no graphical interface, and Adagio is also inadequate
to support non-MIDI software synthesis (where notes have an arbitrary number of parameters)
although to some extent this is supported by calls to arbitrary C routines. The Explode system
[Puckette 90] is an example of a graphical sequencer designed for interactive compositions.

CMT offers little support for continuous functions of time, even though it is quite common to
use MIDI continuous controller commands to smoothly change some synthesis parameter.  For
example, pitch bend can be used to produce a vibrato, and digital signal processor parameters
like reverberation time can be controlled with a time-varying function.  The language Arctic
[Dannenberg 86a] provides a good semantic model, and it would be nice to have an efficient
implementation of Arctic integrated with the CMT.  With faster processors, even signal
processing is possible in software [Dannenberg 91a, Dannenberg 92].  Another problem is
keeping consistent state, especially with MIDI.

The areas of interactive composition and mixed media compositions have raised many artistic
questions as well as technical ones.  There are many possibilities waiting to be explored.

13. Conclusions
Interactive computer music software demands much more support than a conventional

programming language.  Various programming abstractions that support multiple tasks,
sequencing, and graphics, all with easy-to-use interfaces, are necessary.  A good programming
environment enables the composer to explore ideas rapidly and to produce reliable software for
use in live performance.

I have attempted to de-mystify the art of writing reliable and efficient interactive real-time
music and animation software.  I have argued for simple organizations that are amenable to
traditional debugging techniques and which avoid error-prone synchronization and storage
management. The resulting approach has been successfully used to implement a number of
music and animation programs.

There is much to be explored in musical applications of this technology.  We have barely
begun to explore ways in which improvisers and composers can interact.  The role of animation
in music performances is an open-ended question.  It is hoped that this paper will encourage
others to explore this new territory.

For further reading, the original CMU MIDI Toolkit manual is available [Dannenberg 93], and
this system is also described in a short paper [Dannenberg 86b].  The issues of preemption and
high-latency graphics operations are discussed in [Dannenberg 89], and a longer discussion of
CMT and Ritual of the Science Makers appears in [Dannenberg 91b].  A more detailed list of
recent additions to CMT appears in [Dannenberg 90].
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