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Abstract

Automated accompaniment systems are computer systems that "play along" with a solo musician or a
group of musicians when given the score for a piece of music. These systems must be able to "listen"
to the live musicians by tracking their progress through the score in real-time. Accurate tracking of
vocal performers (as opposed to instrumentalists) is a particularly challenging case. In this paper, we

present a tracking method based upon a statistical model of vocal performances.

This technique

incorporates both information obtained from real-time signal processing of a performance (such as
fundamental pitch) and information describing the performer's movement through the score (namely
tempo and elapsed time). We present a description of how this model is incorporated as part of a
system currently used to accompany vocal performers. We provide a preliminary evaluation of its

ability to estimate score position of a performer.

1 Introduction

Automated accompaniment systems are computer
systems designed to accept a musical score as input
and to provide real-time performance of the
accompaniment in synchrony with one or more live
soloists.  Automated accompaniment systems must
concurrently execute several tasks within the real-time
constraints of musical performance. First, these
systems must observe the soloists by detecting what
they have performed. If the soloists' performances do
not involve electronic instruments, this will likely
require some form of audio signal processing to extract
relevant features, such as fundamental pitch. Second,
accompaniment systems must track the soloists as they
perform the score. Tracking often involves both
identifying the soloist's current score position and
estimating the soloist's tempo. Third, the systems must
react to the soloists by tastefully performing the
accompaniment, generally attempting to synchronize
with the live performers. Finally, accompaniment
systems must generate the actual sound for the
accompaniment. Sound production is usually
accomplished either by controlling audio synthesizers
or by directly generating digital audio.

Several systems for accompanying a vocal
performer have been previously described [S] [3] [4]
[7]. The first three systems accompany amateur
vocalists performing pop music. The first two rely on
pitch detection for tracking the performer, while the
third applies speech processing techniques for vowel
recognition. These systems attempt to identify both the
score position and the tempo of the performer, and to

adjust the computer accompaniment in response. The
fourth system was used to accompany a contemporary
art piece written for computer and soprano. It relied
on pitch detection and did not attempt to determine
tempo of the performer. Rather, it was designed for
fast identification of soloist notes that were scored to
coincide with computer generated sounds.

The designers of these systems commonly report
certain problems that complicate tracking of a vocalist.
These include variation of detected features (such as
pitch) resulting from accidental as well as intentional
actions on the part of performers. In addition, methods
for pitch detection and vowel detection are generally
not themselves error-free. Consequently, all of these
systems incorporate heuristics or weighting schemes
intended to compensate for mistakes made when
features are directly matched against the score.

We present a technique for tracking a vocalist that
is based upon a stochastic description of a performer's
score position. It incorporates a variety of relevant
information including recent tempo estimates, features
extracted from the performance, and elapsed time.
Unlike previous systems, it does not require subjective
weighting schemes or heuristics. It can use either
formally derived or empirically estimated probabilities
describing the variation of the detected features and
other relevant data.

In addition, we describe how this score following
model can be efficiently implemented on even low-end
PC's, so as to satisfy the real-time constraints imposed
by musical accompaniment. We describe how this
technique is currently used as part of a system to
accompany vocal performances, providing some
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preliminary measurements of its position estimation
ability. We conclude with a discussion of some future
work to enhance the statistical model and possibly lead
to improved vocal tracking.

2 A Stochastic Model of Location

As previously mentioned, a musical score will often
consist of one or more solo parts and an
accompaniment. In the case of Western classical
music written for a single vocalist, the solo part will
consist of a sequence of notes, each note indicating at
least pitch, a syllable to be sung, and relative duration.
Other information, such as dynamic and articulation,
may also be specified. Also, the tempo for a given
piece will likely vary within a single performance, as
well as across performances. Tempo variations may be
explicitly written in the score by the composer, or may
be the result of conscious choices made by the
performer.

The model we use to track a vocalist represents the
vocalist's part as a sequence of events that have a fixed,
or at least a desired, ordering. Each event is specified
by:

1. A relative length which defines the size or

duration of the event, as indicated in the
score, relative to other events in the score.

2. An observation distribution which completely
specifies the probability of every possible
sensor output at any time during the event.

The relative length may be specified in beats for a
fixed tempo, or in some unit of time resulting from the
conversion of beats to "idealized time" using a fixed,
idealized tempo. The length is assumed to be
real-valued and not necessarily a positive integer.

The vocalist's part in the score is thus viewed as a
sequence of events, each event spanning a region of a
number line. The score position of a singer is
represented as a real number assuming a value between
0 and the sum of the lengths of all events in the score.

Density

Score position is thus specified in either idealized beats
or idealized time, and can indicate the performer's
location at a granularity finer than an event.

At any point while tracking an actual
performance, the position of the vocalist is represented
stochastically as a continuous density function over
score position. This is referred to as the score position
density. The area under this function between two
score positions indicates the probability that the
performer is within that region of the score. This is
depicted in Figure 1. The area over the entire length of
the score is always 1, indicating it is 100% likely that
the performer is in the score. As the performance
progresses and subsequent observations (detected
features) are reported, the score position density is
updated to yield a probability distribution describing
the performer's new location.

The observation distribution for each event
specifies the probability of observing any possible value
of a detected feature when the vocalist is performing
that event.  This distribution will generally be
conditioned on information provided in the score. For
example, if pitch detection is applied to the
performance, then the observation distribution for a
given event might specify for each pitch the likelihood
that the detector will report that pitch, conditioned on
the pitch written in the score for that event. As
another example, distributions might also describe the
likelihood of detectable spectral features that are
correlated with sung phonemes.

Our approach to tracking the performer is
conceptually simple. For each new observation, we use
the current score position density and the observation
distributions to estimate a new score position density.
This updated density indicates the current location of
the performer in the score. In practice, calculating a
new “score position density requires a number of
simplifications, assumptions, and approximations. In
order to describe our system, we will first present a
mathematical model for updating the score position
density. Then we will describe an implementation of
this model.
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Figure 1: Example of a density function characterizing the score position of a performer. The area of the
shaded region gives the probability that the performer is singing the second note.
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The model for updating the score position density
incorporates three pieces of information that are
relevant to determining the new position of the
performer, referred to as the performer's destination
position.  First, since a performer's rendering of a
musical score is highly sequential, it is important to
consider the performer's location at the time of the
previous observation. This location will be referred to
as the performer's source position. Second, the
observation most recently extracted from the
performance will obviously provide information about
the performer's current location. Finally, performers
often attempt to maintain a consistent tempo, subject to
relatively minor and gradual variations. An estimate
of the performer's tempo in the recent past, along with
the elapsed time since the score position density was
last updated, can give a useful prediction of how much
score was performed during that elapsed time. Thig
prediction will be referred to as the estimated distance
traversed, or simply the estimated distance.

Given these three variables—previous position,
most recent observation, and estimated score distance
traversed by the performer—the current location of the
performer can "be specified stochastically by the
following conditional probability density:

friovs Gl dv,))

i = the performer's destination position
the estimated distance

v = the observation

J = the performer's source position

QU
Il

Unfortunately, directly defining this multidimensional
function for each and every score would be very
challenging. Also, the previous score position of the
performer is never known with certainty, so the value
of at least one conditioning variable, j, should also be
described stochastically. This can be accommodated
by performing the following integration:
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where IIScorell represents the length of the score. Note
that additional integration would be required if the
values of the estimated distance, d, and observation, v,
were also specified stochastically.

While this formulation is a good starting point and
very comprehensive, it is impractical for direct
implementation. Since some of the functions in the
integral are likely to be specified numerically, a
closed-form solution is not possible. Also, the density
functions are conditioned on so many parameters that

estimating them from real data would require a large
number of observations. In the subsequent discussion,
we introduce a number of approximations and
simplifications that transform the original model into
one that is both practical and effective. The following
simplifying assumptions are made:

1. The estimated distance, d, and the
observation, v, are not specified stochastically
as distributions, but are reported as scalar
values produced by tempo estimation and
signal processing algorithms, respectively.
This reduces the dimensionality of the model,
thus simplifying each update of the score
position density.

2. The observation, v, depends only on the
destination position, #, and is independent of
both the performer's previous score position, j,
and the estimate of the score distance, d. This
assumption is certainly not completely
accurate. However, to the extent that the
performer renders the score in a highly
sequential fashion and the model updates
occur frequently enough so that d always
assumes a value within a small range, this
simplification is likely to be reasonable.

3. Under assumption 2, f, ., =f, ,. We further
assume that the score position density
resulting from the previous model update is a
reasonable approximation to f,, , for the given
value of d. Thus we substitute the previous
estimate of the performer's location, f,,,..(j),
for f,,,,(j | d,v) in the previous integral.

4. A distribution describing the actual amount of
score performed by the vocalist between
updates of the score position density is
independent of the performer's source
location. It only depends on the estimated
score distance, d. This allows the performer's
motion through the score to be modeled as a
convolution integral. :

While none of these assumptions is completely
accurate, in combination they yield a reasonable
approximation to the general score following model.
This simplified model can be more easily specified and
permits for a more efficient computer implementation.
Under the four stated assumptions, the model for
score following can be decomposed into two parts.
First, an estimate of current location based on prior
location and estimated distance can be calculated:

[IScore|
Fito G = [~ fi 10 =l D Fsouneli 3
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Next, this estimate can be modified to account for the
most recent observation:

vaI(VI i) 'fllD(ild)
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The result is a score position density conditioned on
both the estimated distance and the most recent
observation. Note that if d and v represent fixed values
(as previously assumed), the result is a
one-dimensional function over score position.

The following density functions are assumed to be
pre-defined prior to each application of the model:

1. fowe The stochastic estimate of the
performer's  source  position. Under
assumption 3 above, this is the score position
density calculated at the time of the previous
observation.

2. fi.p - The probability that the performer has
actually performed an amount of score I-J
given D, a prediction of the amount of score
performed.

3. fw - The probability of making observation
V when the performer is at position /. This
function is specified by the observation
distributions of the events that form the score.

The second and third functions can each be defined
using one of three alternative methods. First, one can
simply rely on intuition and experience regarding vocal
performances, and estimate a density function that
seems reasonable.  Alternatively, one can conduct
empirical investigations of actual vocal performances
to obtain numerical estimates of these densities.
Pursuing this further, one might actually attempt to
model such data as continuous density functions whose
parameters vary according to the conditioning
variables.  Theoretical descriptions of performance
might be applicable in this case.

3 Efficient Model Implementation

Direct execution of the simplified score following
model requires the evaluation of two integrals. To
permit for the widest range of possible density
functions, we implement the model numerically. The
density functions are sampled (i.e., represented in
point-value form) and the integrals approximated
numerically. Since the first integral in the simplified
model contains at least one function with two free
variables, direct calculation of this integral would
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require time quadratic in the number of samples
spanning the length of the score.

Fortunately, the first integral is a convolution
integral. Numerical evaluation of this integral can be
expedited through application of the discrete- Fourier
transform (DFT). It is a property of this transform that
discrete convolution, as results from numerical
representation of the functions, can be calculated by
first computing the discrete transforms of each
function in the integral, calculating the product of
these transforms, and then applying the inverse of the
discrete transform to that product. For a transform of
size N, this sequence of operations can be
accomplished in time #(N log N). For calculating
convolutions of even moderately large numbers of
samples (certainly N > 100), this technique is
noticeably faster than the direct approach.

Figure 2 provides a flowchart showing the various
steps in a single application of the score following
model. Also shown is each step's complexity relative
to the number of samples, S, along the score position
dimension. Note that allowance is made for real-time
generation (sampling) of both the distance density
function, f,, | , and the observation density, f, |, ,.
Computation of the Fourier transforms is the most
cumbersome part of the process. Also, convolution via
the DFT may require calculating transforms with as
many as twice the number of points as the number of
samples in the individual functions. This fact is
reflected in the complexities shown in Figure 2.

To achieve a tractable implementation, the score
position density function is not calculated over the
entire length of the score. Instead, the function is
calculated over only a portion of the score, referred to
as a window. Windowing of a score is a technique
commonly used to implement  automated
accompaniment systems, and was first presented by
Dannenberg [1]. For purposes of the stochastic model
presented here, the score position density is either
assumed to be zero outside of the window, or to be

~ sufficiently close to zero as to be of no significance.

Each application of the model can produce an
estimate of the score position density for a shifted
window, encompassing a region slightly to the left or
right of the previous window. Each update uses only
those points of the score position density function that
are contained within the window from the previous
application of the model. The size and direction of the
shift can be based upon changes, from window to
window, in the region or regions of highest density.
Thus the window will essentially move through the
score over time, following the performer.
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As a low-end test of this implementation, we have
executed the model on a PC using an 80486 processor
at a clock speed of 66 MHz. Using double-precision
floating point and DFT's with 512 points, one
application of the model requires 35 ms of CPU time.
Since the complexity of calculating the model is nearly
linear in the size of the transform, a computing
platform which is twice as fast permits a window
encompassing twice as many points to be calculated in
nearly the same time. Modern processors have enough
power to extract features from an audio signal in
addition to applying the model. The accompaniment
can be generated using a sound card or external
synthesizer for a complete accompaniment system.

4 Modeling Vocal Performances

Both the distance and observation density functions
must be explicitly defined. To accomplish this, we
recorded performances given by live vocalists singing
with live accompanists. The vocal performances were
recorded in isolation, using a highly directional

[ Generate f,,,, I & (N),

S<N<2§

l Fourier Transform of f, —I 8 (N log N)
N

l Fourier Transform of fg,,,.. ] 6 (N log N)

L Multiply Transforms —| & (N)
Y

l Inverse Fourier Transform —I 8 (N log N)
v

L Generate f,,, I 8(S)
y/

I Calculate f;,,, ’ 8 (S)

Figure 2: Flowchart for implementing the
simplified score following model by using the
discrete Fourier transform.  Computational
complexity is also given, where S represents the
number of samples along the score position
dimension.
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microphone placed in close proximity to the singer.
The recordings can thus be analyzed for both pitch
content and tempo. The vocalists had at least 1 full
year of university level training. They performed
pieces of Western classical music that either were
familiar to them or were part of their current program
of study.

While many relevant features can be generated
from a digitized waveform of a vocal performance, our
initial ~implementation has focused only on
fundamental pitch. The events for each musical score
have an observation density that is conditioned on the
pitch that is notated in the score. Thus at present, all
events that correspond to A-440 are associated with the
same observation distribution. The relative length of
the events is based upon an idealized tempo. Tempo
changes that are explicitly marked in the score are used
to calculate changes in the idealized tempo for
different sections of score.

Definition of the density function f, ,, , will depend
on how the estimated distance, d, is generated. Our
approach is to compute the product of the most recent
estimate of the performer's tempo (as used to control
the accompaniment) and the elapsed time since the
previous update of the score position density. The
distance density is conditioned on tempo and elapsed
time. It changes for successive calculations of the
score following model. Thus to some degree, the score
position density reflects changes in both the
performer's tempo and the elapsed time between
successive observations.

A subset of 20 performances was used to
determine empirical density functions. Only 18 of
these were used for the distribution of actual pitch
conditioned on the pitch in the score, since 2 of the
selected recordings contained a low-level background
hum that interfered with pitch detection. These
recordings contained 2 performances by each of 9
singers encompassing all primary voice types and
performing a total of 16 different compositions. All 20
performances were used to estimate the distribution of

the actual amount of score performed conditioned on

the estimated distance. These recordings contained 2
performances by each of 10 singers, again
encompassing all primary voice types and performing a
total of 16 different compositions. We believe the
resulting empirical density functions to be fair
approximations to the respective distributions in the
limit for a target population of performances of
classical music given by trained singers.

The pitch detection algorithm is based on one
described by Kuhn [6]. It uses a bank of lowpass filters
spaced at half-octave intervals along the range of the
vocalist's part. Bass boost is applied to an analog
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audio signal via an external mixer. The audio is
digitized at 15KHz by a PC sound card and analyzed in
33 ms blocks. Level control is applied to the blocks
prior to filtering. The output of each filter is sent
through a zero-crossing detector to determine average
pitch period. Maximum amplitude is also determined.
Average fundamental pitch for a block is taken from
the filter with lowest cutoff frequency whose maximum
amplitude exceeds 25% of the maximum amplitude
over all filters.

A preset amplitude threshold is used to distinguish
pitched signal of interest from blocks containing
silence, breathing, consonants in the singing, and
low-level background noise. The detector reports the
median pitch over every 3 consecutive blocks of
pitched signal. Thus during a sustained tone, the
detector reports pitch at a rate of 10 Hz.

The 20 recorded performances were played from a
DAT tape and processed by the pitch detector. The
output was parsed by hand in order to time align the
reported pitches with the notes in the scores. This
parsing process relied on information about silences
and pitch in the detector output, as well as occasional
graphical examination of digitized waveforms of the
recordings. Next, the distance (in semitones) between
the detected pitch and the scored pitch was calculated
for the 18 performances. This provided an observation
distribution for actual pitch given a scored pitch.

Similarly, the distance density was modeled using
all 20 performances. Using the time aligned parses of
the pitch output, the performer's tempo was calculated
over short, consecutive regions of score. This data
was used to model the distribution of the subsequent
score distance performed given a previous short-term
tempo and a known elapsed time. In contrast to the
model for pitch, the distance density is continuous and
based upon convolution of lognormal density functions.
Further details of this process are beyond the scope of
this paper.

5 Accompanying Singers

Several issues must be addressed in order to use the
score following model within an actual automated
accompaniment system. First, there is a need for a
precise interpretation of probability as computed by the
model. For purposes of a general accompaniment
system, we view the probability specified by the score
- position density as a frequency count. More
specifically, the probability over a region of score
indicates the relative number of performances from a
target population of performances which, having
produced the sequence of observations and tempo
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estimates so far generated, will find the performer
within that region. Thus the purpose of statistical
modeling, in both the theoretical and empirical
aspects, is to identify a tractable model which closely
approximates the actual position distribution among
the target population of performances.

Next, since an accompaniment system must
control the performance of the accompaniment, we
need a method of using the stochastic description of the
vacalist's score position to select an accompaniment
control action. One possibility is to apply a
decision-theoretic approach. This requires the
definition of a loss function. For every possible
position of the performer, this function would quantify
the relative, negative impact of taking a particular
accompaniment control action. The probabilistic
description of a vocalist's position could be used in
combination with the loss function to determine an
action that would probabilistically minimize the
expected loss (negative impact) over repeated selection
of control actions over multiple performances.

However, specification of such a loss function is
non-trivial. Currently, we use a simplified approach.
The score following system finds the 100 ms region of
the score that is most likely to encompass the
performer’s current position. This region is the 100 ms
portion of the score position density function
containing the most probability. The accompaniment
system takes the center of this region as a best estimate
of the current position of the vocalist. It synchronizes
to this position using a set of performance rules almost
identical to those described by Grubb and Dannenberg
{2]. Thus the system will synchronize to the position
most likely to be within 50 ms of the performer's
location. The accompaniment system retains several
successive position estimates for use in calculating a
recent average tempo. The system adjusts its tempo
and score position depending upon how closely the
estimates of the performer's location and tempo
correspond with its own current position and tempo.

We have incorporated the stochastic score
following model as part of an automated
accompaniment system. It uses a sample interval of 12
ms to represent the score position density function and
responds to output from the pitch detection system
previously described. This completed accompaniment
system has been used to accompany both recordings of
vocal performances and live singers. Recordings are
the "acid" test of computer accompaniment because the
recording never adjusts to compensate for the
accompanist's errors as does a live performer.
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6 Results

In an attempt to quantitatively assess the tracking
system, we are currently examining the difference
between the time at which the system estimates a
particular position and the time that the vocalist was
actually at that position. To do this, all position
estimates made by the tracking system for a single
performance are recorded with a time stamp roughly
indicating the point in the audio signal last processed
by the pitch detector. Also, a DAT recording of a
vocal performance is played into the PC and digitized.
This recording is parsed by hand to locate, as best as is
possible, the onset time of each note in the score. The
start of the vowel in a syllable is taken to indicate the
onset. When a vowel is sustained over multiple notes,
the point where pitch changes is used instead.

The start of the recorded position estimates is time
aligned with the handmade transcript. Differences
between the time at which the system first estimated a
position within each score note and the time at which
the performer was actually at that position are
calculated. Graphs and statistics of this data can then
be examined to assess the tracking system's accuracy,
subject to the errors introduced by handmade
transcripts and time alignment.

Table 1 presents summary statistics for two
recorded vocal performances. These recordings are of
different performers each singing a different piece.
The first performance contained only one explicit
tempo change, a slowing at the end of the piece, and
was performed in a fairly steady manner. It contained
relatively few successive note pairs with the same
pitch—only 14. The system follows this recording
quite well.

The second performance had two explicit tempo
changes, a slowing followed by a return to tempo and a
slowing at the end. It was performed in a more
expressive manner with noticeable slowing at the ends
of phrases. It contained 39 instances of successive note

pairs having the same pitch—roughly 45% of the
melodic intervals in the piece. This performance is a
fairly bad case for a tracking system that relies heavily
on tempo and pitch. As might be expected, the system
tracks this piece less well, since several tempo
alterations are unexpected and cannot be detected
using pitch.

While the generated accompaniment is often -

reasonable, there are situations where the computer
and singer are temporarily but noticeably not
synchronized. These problems commonly occur in the
presence of sudden, significant tempo changes that are
not explicitly notated in the score. Such changes are
especially troublesome if they occur while the
performer is singing a sequence of notes on the same
pitch.  Intentional pitch changes for expressive
purposes (like ornaments) are also problematic, since
the actual observed pitches are given low likelihood by
the observation distributions based on the score.

In instances where the vocalist intentionally and
consistently modifies the performance in these ways,
adjusting the event durations and the observation
distributions by hand can often improve the computer's
ability to track the performer. Also, since pitch and
estimated tempo are not always sufficient to
distinguish score position, we are currently examining
extensions to the tracking model that include other
relevant features from the performance. Examples
include changes in amplitude indicative of note onsets
and spectral features useful for speech recognition.

7 Summary and Future Work

We have presented a stochastic method of tracking a
vocal performer that can be efficiently implemented as
part of an automated accompaniment system. When
calculating a stochastic description of the performer's
current score position, this method incorporates a
variety of relevant information: estimated tempo of the
performer, elapsed time, and features extracted from a

Table 1: Statistics for differences between the earliest time of an estimated position within each note and the
time the performer was actually at that position. Outliers were based on absolute value.

Performance | 5% Outliers No. of Onsets ~ Minimum Maximum Mean Time Standard Dev.
Removed Time Diff. Time Diff. Diff. of Time Diff.
1 No 106 -330 ms 213 ms -29 ms 83 ms
Yes 100 -163 ms 135 ms -21 ms 66 ms
2 No 88 -1067 ms 337 ms -104 ms 269 ms
Yes 83 -433 ms 337 ms -58 ms 192 ms
PROCEEDINGS ICMC97
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digitized waveform of the musical performance. The
chief advantages of this method are the ability to
characterize uncertainty of position estimates and the
use of empirical or formal probability instead of
heuristics when integrating diverse information
relevant to tracking a vocalist.

While use of this tracking technique as part of a
vocal accompaniment system appears promising,
additional investigation is needed to improve
performance. Analysis of digitized sound signals can
yield multiple features that are relevant to tracking
musical performances. It would be helpful to extend
the score following model to include features other
than fundamental pitch. We are also interested in
comparing possible features, since a certain feature or
combination of features may prove superior to others.

The density functions currently used in the model
are very general. They are based upon only a few
conditioning variables and a large target population of
performances. It may be helpful to define more
specific density functions for both the observations and
the performer's motion through the score.  For
instance, certain tempo markings and patterns in the
score will indicate specific kinds of tempo changes.
Statistical descriptions of these cases would likely
improve the system's tracking ability.

Finally, it could be useful to find ways of adapting
the model's density functions to specific pieces and
vocalists. This might involve techniques for
identifying variations between the model's distribution
functions and the distributions that actually result
when particular vocalists perform particular pieces.
Such techniques would enable localized modification
of observation distributions.  These modifications
might gradually improve the accuracy of the tracking
system when it repeatedly tracks the same performer
singing the same piece.
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