
Published as: Roger B. Dannenberg (2002). “A Language for Interactive Audio Applications.” In
Proceedings of the International Computer Music Conference. San Francisco: International Computer
Music Association.

A Language for Interactive Audio Applications

Roger B. Dannenberg

School of Computer Science, Carnegie Mellon University
email: dannenberg@cs.cmu.edu

Abstract
Interactive systems are difficult to program, but high-level
languages can make the task much simpler. Interactive
audio and music systems are a particularly interesting case
because signal processing seems to favor a functional
language approach while the handling of interactive
parameter updates, sound events, and other real-time
computation favors a more imperative or object-oriented
approach. A new language, Serpent, and a new semantics
for interactive audio have been implemented and tested. The
result is an elegant way to express interactive audio
algorithms and an efficient implementation.

1 Introduction
Creating interactive audio programs is difficult and not

very well supported by traditional programming languages
such as Lisp, C++, or Java. Libraries built upon these
languages can help, but even with library support, creating a
dynamic, interactive, reliable system is very difficult. A
particularly difficult problem is creating networks of sound
generators and processors on the fly in response to input
events. A simple example is a synthesizer that creates a
computation in response to a key down event, updates
envelope generators in response to a key up event, and frees
all relevant resources when the sound decays to silence.

In the following sections, I describe some existing
approaches to interactive audio programming and derive
some properties that easy-to-program systems seem to
share. Then, I describe some concepts that are hard to
express in existing languages and systems. In particular, the
problems of updating parameters and creating abstractions
are described. Next, I explain some new ways of organizing
programs that solve these problems. This approach has been
implemented in the Aura framework using a new scripting
language, Serpent, that was developed specifically to
address the problem of interactive audio programming.

One of the difficulties of this type of research is
evaluation. How do we know when a language is good, and
what things should we avoid? These questions cannot be
answered objectively, but lessons learned from the
programming language community and from experience in
the computer music domain can be used to derive some
general guidelines. Languages should provide good

abstraction mechanisms and orthogonal features. They
should provide general building blocks rather than special-
case solutions, and languages should minimize the semantic
gap between language concepts and application concepts.

2 Existing Approaches
There are many systems available for digital audio

including music synthesis and processing. A standard
reference is csound (Boulanger, 2000), which has roots in
the Music N languages (Mathews, 1969). The csound
orchestra language illustrates both good and bad features for
an interactive audio programming language. The good
features include a somewhat functional style in which
sounds are created by instances of functions (instruments)
and where instances of function-like unit generators are
created simply by mentioning them in an expression. It
seems to be natural to express signal-processing algorithms
in terms of an acyclic graph (or patch), and the csound
orchestra programs tend to be semantically close to this
conceptual organization.

On the negative side, csound instruments cannot be
composed hierarchically. One cannot define a new unit
generator in terms of primitive ones. Because all
instruments output sound to global variables, flexibility is
curtailed. A classic problem in csound is how to add
reverberation to the mixed output of many instruments. The
standard solution relies on an inelegant arrangement of
global variables and programming conventions.

Arctic (Dannenberg, 1984) was intended to provide a
more elegant expression of the semantics that underlie
Music N languages. Arctic is a more pure functional
language where unit generators, instruments, and even
scores are all simply functions that return signals (real-
valued functions of time). Arctic allows better abstraction
than csound and allows a clean solution to the
“reverberation problem.” The functional nature of Arctic
makes it somewhat awkward at handling discrete events.
For example, after creating an instance of a function in
response to a key-down message, the instance must inspect
every key-up message for a matching key number in order
to know when to stop. Furthermore, to cause an envelope to
ramp to zero in response to a key-up event, the existing
envelope must be stopped and replaced. In an imperative

 - 2 -

language, it might be a simple matter to alter the state of an
envelope object.

In spite of its shortcomings, Arctic semantics are quite
powerful for audio processing. A less interactive version of
Arctic (called Nyquist) (Dannenberg, 1997) has been
implemented and used extensively for composition tasks.
The ease-of-use found in Nyquist confirms the importance
of a functional notation for audio processing algorithms.
This problem is how to combine a functional signal
processing language with an imperative or object-oriented
event-processing language.

A good example of an object-oriented event-processing
language is Aura (Dannenberg & Brandt, 1996), which is an
extension of C++. In Aura, an event corresponds to the
arrival of a message. This causes the execution of a method
(member function). In contrast to functional languages, this
object-oriented approach seems very natural for receiving
messages and responding to them. Aura and its predecessor,
the CMU Midi Toolkit, have been used for many interactive
music programs and compositions (Morales-Manzanares,
Morales, Dannenberg, & Berger, 2001). However, Aura, an
object-oriented language, has been much more difficult to
use than Nyquist, a functional language, for audio
computation.

Judging by its popularity, Max with added signal
processing primitives (Dechelle et al., 1998; Lindemann,
Dechelle, Sarkier, & Smith, 1991; Puckette, 2002; Zicarelli,
1998) is an interesting approach. Max uses a visual
programming language to describe audio computation. The
visual layout is a direct expression of the data flow graph. A
drawback of this approach is that it is hard to express graphs
whose structure depends upon real-time data or whose
structure changes dynamically. Various extensions, such as
specialized support for polyphony and the ability to activate
and deactivate sections of the graph have been developed to
work around the static nature of these graphs. Max was not
designed to be a general programming language and it is
generally considered to be problematic for many
programming tasks.

SuperCollider (McCartney, 2000) is the best known
system for interactive audio that provides a general-purpose
programming language. Although based on an object-
oriented programming language, SuperCollider adopts a
highly functional programming language approach to deal
with audio. SuperCollider encourages the dynamic
instantiation of audio generating objects, which are
described using a functional programming style. The
interface between discrete event processing and signal
processing is supported by a variety of classes and protocols
that many users find confusing and limiting. Thus, simple
tasks such as routing MIDI controller values to a particular
signal processing parameter can involve rather sophisticated
programming constructions.

CLM (Schottstaedt, 1994) and Jsyn (Burk, 1998) are
object-oriented frameworks that support sound synthesis.
The user creates unit generator objects and connects them to

form patches. This approach was the first one taken in Aura
(Dannenberg & Brandt, 1996), but it is not very satisfying
because it is too easy to make programming mistakes.
Typical errors include leaving inputs unconnected or trying
to patch a control-rate output to an audio-rate input. These
mistakes are not so easy to make with a more functional
style of patch language. The main problem with these
systems is that the user manipulates unit generators to build
desired patches rather than writing expressions that express
the desired sounds directly.

Open Sound Control (Matt Wright & Freed, 1997) is not
a language but a protocol for communicating with a sound
synthesis engine. OSC offers a model for connecting a real-
time interactive program dealing with discrete events,
especially parameter updates, to a synthesis program
computing continuous streams of audio. One characteristic
of OSC is that it uses a hierarchical naming scheme. Thus,
one can set parameters of objects deeply embedded within a
patch. In most implementations, this scheme works against
structural abstraction because it gives full view and access
to the inner workings of complex sounds. On the other hand,
translations between low-level device- or algorithm-specific
parameters and high-level OSC parameters provides a useful
abstraction mechanism, hiding peculiarities of input devices
and synthesis algorithms. (Madden, Smith, Wright, &
Wessel, 2001; Matthew Wright, Freed, Lee, Madden, &
Momeni, 2001) Since OSC only provides a synthesizer
interface, it remains for additional structure and language
design to provide a complete programmable system.

The M Orchestra Language (Puckette, 1984) is probably
the closest in concept to the present work. This language
allows nested expressions to describe patches in a functional
style and uses an object-oriented framework to describe
instrument methods that can be invoked to manipulate unit
generator parameters.

As can be seen from these examples, there are many
different approaches and many interesting features in
existing work. However, it would be hard to argue that any
approach is best or that “best” can even be defined. This is
an evolving area with many possibilities remaining to
explore. In this work, I introduce some new concepts for
organizing interactive programs and music compositions.
These are supported by a new (but mostly conventional)
language and a corresponding implementation. The work is
novel in its support for abstraction and the simplicity with
which object-oriented control schemes can be combined
with functional-programming-oriented signal processing
schemes, leading to a versatile and conceptually simple
programming environment.

3 Conceptual Framework
To make progress toward better languages, it helps to

have a conceptual model for the organization of audio
computation. There is no single “true” model, but the
following model is based on an understanding of existing

 - 3 -

systems and experience writing audio and non-audio
interactive music systems.
• Audio computation is performed by a patch, an

interconnected set of unit generators (UGs).
• A UG has state and can be updated, for example by

setting the frequency of an oscillator or triggering an
envelope to begin or end.

• A patch is described using an expression language, e.g.
multiply(oscil(…), envelope(…)).

• A patch is an abstraction mechanism: patches can be
used as if they are primitive UGs.

• Patches can be passed as parameters to other patch
expressions.

• Just as UGs can be updated, patches can be updated.

The notion of “update” needs some discussion. A patch
represents a synchronous computation on streams of
samples. There may be streams as input and the patch may
produce one or more streams of output. In addition, the
patch may have parameters or state variables that are used in
the stream computations. These parameters may be
modified asynchronously with respect to the stream
computation. Again, setting an oscillator’s frequency is a
good example. It is important to note that updates are not
streams and they are not computed synchronously. The
patch never waits or polls for an update. In our
implementation, updates can only occur between the
computation of a block of samples.

It is the concept of update that breaks the pure functional
programming model. Previous work has tried to reformulate
update sequences into stream-like values (Dannenberg,
Desain, & Honing, 1997; Letz, Fober, & Orlarey, 2000),
and recent work by Brandt (Brandt, 2000, 2001) has
explored the use of type constructors to model updates
within a functional framework. However, we believe that
programming interactive systems can be more
straightforward using updates than functional dependencies,
and we want to explore how updates and functional models
can coexist.

Thus, the model attempts to combine elements of
functional programming with elements of object-oriented
programming. From the functional programming
perspective, a patch or UG is a function that returns a signal
value that can be passed as a parameter to other functions.
From the object-oriented perspective, a patch or UG is an
object that can retain state and receive messages that alter
the state. The critical language design problem is to support
both of these views in a form that makes it easy to reason
about program behavior.

4 The Dual Nature of a Patch
To embrace both object-oriented and functional

perspectives, a patch must have a dual nature. On the one
hand, it is an object. One can reference the object, examine
the state of the object, and change the state. On the other

hand, the patch must look like a value. The value is the
audio stream computed by the patch. In more operational
terms, if a and b represent patches, then as objects, we can
say:

a.set_hz(440.0)
and as values, we can write an expression such as:

sum(a, b)
Described in this way, this seems almost too simple and
obvious, but if so, this is a strong argument that we are on
the right track. The challenge is to extend this simple
beginning with the abilities to define patches, pass
parameters, and support updates, all without sacrificing
simplicity and ease of use.

4.1 Defining a Patch
A patch is a computation performed by a collection of

UGs, which are primitives built into the system. Since a
patch has the dual nature of object and value, we define it
using an expression within an object-oriented class
definition. (Further syntactical simplifications are possible.)
The following example defines a note as the product of an
oscillator and an envelope:

class Note(Instr):
 def patch(hz):
 mult(osc(hz), env(a,b,c))

Note that the last line is a functional-style description of a
graph of UGs: mult , osc , and env . As with functional
systems, evaluating this expression creates new instances of
these UGs. Here is how this definition works: an instance of
class Note is created by evaluating an expression such as
Note(440.0) . This creates an instance of class Note ,
which inherits from class Instr . Instr defines an
initialization method that, in turn, calls patch , passing it
the hz parameter. The result of patch (a reference to the
new instance of mult) is stored in an instance variable.

At the lowest levels, we want graphs of UGs where each
UG has a direct pointer to the UGs it depends on so that
samples can be read directly from one UG by the next. What
happens when an Instr like Note is passed to a UG such
as mult ? In fact, UG functions like mult check their
parameters and replace Instr ’s with the stored value (a
reference to a UG) returned from the patch method. Thus,
at the lowest level where performance is critical, much of
the abstraction falls away, and we are left with the desired
computation graph of UG primitives. Retained and still
visible at the higher level are objects that are used to update
and manage the UGs.

4.2 Updates
Recall that updates are the point where objects and

functional programming meet. How do we effect a change
in a computation that is functionally specified? Somehow,
after a patch has started, we need to go back to the patch,
locate a specific UG, and alter some of its state. A direct

 - 4 -

way to do this is to save references to UGs as they are
instantiated. For example, we could write:

the_osc = osc(hz)
return mult(the_osc, env(a,b,c))

If the_osc is an instance variable of an Instr , then we
can use it later to access the oscillator UG. This approach
can work, but leads to an awkward programming style
where expressions are broken up by assignments. Even if
assignments are in-line within the expression, they are still
bothersome, and more code must be added manually in
order to perform updates.

Another possibility is to mark certain parameters as
“updatable” and to automate the rest. In this approach, the
patch expression might look like:

mult(osc(_hz:hz), env(a,b,c))
and the interpretation is as follows: “this instrument has a
settable attribute named _hz whose initial value is hz (a
parameter to patch). Updates will be specified in terms of
attribute/value pairs. When the _hz attribute is updated,
pass the value on to the instance of osc .” Note that in this
scheme, the instance of osc remains anonymous, and all the
apparatus to manage updates can be automatically generated
from this expression.

We will describe a simple implementation for
clarification. Each primitive UG function such as osc and
mult is implemented as a method in class Instr . The
expression _hz:440.0 is compiled as update(_hz,
440.0) , which simply creates a new object to hold the two
values _hz and 440.0 . The osc method tests the
parameter type: if it is float, the value is used for the initial
frequency; if it is an update structure, the initial frequency is
pulled from the structure, and in addition, an update map is
extended to include “map updates to the _hz attribute to the
frequency attribute of osc,” where osc is a reference to the
actual instance of the osc unit generator created by this
osc method. Now, the program can call another method of
Instr as follows:

someinstr.set(_hz, 600.0)
and the update will be passed to the oscillator’s frequency
(phase increment) parameter.

4.3 Abstraction Issues
With the techniques described above, one can create and

assemble patches hierarchically. For example, the Note
class can be combined with a filter to form a new class:

class Note2 (Instr):
 def patch(hz, cutoff):
 lowpass(Note(_hz:hz), _co:cutoff)

and instances will have two updateable parameters: _hz ,
and _co . There is a question here of whether all parameters
should be updateable. Why not simply allow something like

a_note2.note.osc.hz = 600 ?
The whole reason for abstraction is to hide some details
while bringing to focus other features. Unconstrained access
to synthesis parameters may offer great flexibility, but it
may also hinder the management of complexity and

ultimately become limiting. A good analogy is
programming with parameterized procedures. One always
defines a procedure in terms of parameters, and it is never
possible to say “call p(5), but when p calls q(x), pass 3 as
the actual parameter value.” Just as we cannot reach inside a
procedure declaration to modify the code, by analogy, we
should not reach inside a patch to manipulate it.

Our experience with Nyquist is that, rather than make all
parameters visible, it is sufficient to modify code to expose
the parameters of interest. Rather than violate the
abstraction, simply redefine it to be more suitable. In our
language proposal, making a parameter updateable requires
only the addition of an attribute name (and a colon), e.g.
_co: in front of the initial value expression. If the
parameter of interest is several abstraction layers down, new
parameters must also be added to the intermediate patches.

Figures 1 and 2 illustrate the analogy between
conventional parameter passing and update parameters.
Figure 1 shows how values are renamed according to formal
parameter names as nested procedures are called. Figure 2
illustrates how an update message, setting an attribute to a
value, propagates to nested patches, also with renaming
according to a static definition.

def f(x,y):
…g(x)…h(y)…

def g(a):
…u(a)…

def h(b):
….

Static Code Dynamic Execution
f(3,4)

g(3)
h(4)

x=3,y=4

a=3
b=4

u(3)

s=3

Figure 1. An illustration of conventional parameter
passing. Parameters are passed from f to g and h and from
g to u. Variable bindings are shown in boxes at right. u is a
primitive with formal parameter s.

class F
def patch(x,y):

…G(_x:x)…H(_x:y)…

class G
def patch(_a:a):

…u(_a:a)…

class H
def patch(b):

…

Static Code Dynamic Execution

F(3,4)

G(3)
H(4)

set _x to 5

u(3)

set _a to 5

set _s to 5

Figure 2. An analogous patch created by F(3,4) , which
instantiates subpatches G and H. G includes unit generator
u. When an update is sent to an instance of F, the update
attribute _x is mapped to _a and passed to G, and then to
_s and passed to u. u is a unit generator with attribute _s .

 - 5 -

For user-defined instruments to work like unit generator
primitives, it is necessary to declare formal attributes.
Notice that the patch in G includes _a:a in its formal
parameter list. This tells F, for example, to map a set _x
message to a set _a message before sending it on to G, just
as local variable x is mapped to formal parameter a in
Figure 1 when f calls g.

4.4 Non-Identity Updates
Not all updates are simply passed through to a lower-

level patch or UG. It must be possible to filter, select, and
transform updates when desired. For this, the object-
oriented framework is ideal for adding update “handlers” in
the form of methods. A special syntax is defined as
illustrated here:

on _hz(hz):
 set_to(id, _actual_hz, f(hz))

so that when an update to the _hz attribute arrives, the
value is bound to the parameter hz , and the following code
body is evaluated. This code applies function f (for
example, f might quantize hz to the nearest semitone) and
updates _actual_hz . If the patch is written to “listen” to
_actual_hz , the patch updates will be quantized.

More elaborate schemes, including constraint systems,
could easily be envisioned, but this one seems to be easy to
understand and effective.

5 Implementation
To explain the implementation, we need to discuss

attributes in greater detail. Our system is an extension of
Aura (Dannenberg & Rubine, 1995), where objects are
named by globally unique identifiers (Aura IDs) and where
objects respond to messages of the form “set attribute to
value at time.” A new real-time object-oriented language,
based on Python (Python, 2002), runs within Aura. The new
language is named Serpent, and its objects are independent
of Aura objects, mainly because of multithreading and
garbage collection issues that we will ignore here. UG
primitives are Aura objects, and are thus only accessed by
sending updates via Aura messages. To maintain
consistency and the advantages of globally unique names,
Instr objects have “shadow” Aura objects that call
Serpent methods when Aura messages are received. Thus, it
is possible to send Aura messages to an Instr , and thus an
Instr can masquerade as a first-class Aura object.

The examples in this article are “real,” that is, executable
Serpent code, and run with minor alterations under Aura to
produce real-time interactive audio. A few compiler
extensions have not been implemented, so the _hz:440.0
notation must be entered as update(_hz, 440.0) , and
the on _hz(hz): notation must be entered as def
set_hz(hz): and a call to add_handler(_hz,
‘set_hz’) .

Memory and object management is an important
problem. While Serpent employs per-process real-time

garbage collection, Aura objects are not garbage collected
(GC in Aura would require a distributed real-time garbage
collector, a formidable design problem left for future work.)
Thus, if an Instr is instantiated at run time, it needs to be
freed along with all the objects it created to avoid running
out of memory. Since UG functions are member functions,
they can build a hidden list of patch elements, so that when
the Instr is freed, the UGs can also be freed. Aura uses
backpointers so that when a UG is freed, any references to it
are automatically redirected to a source of zeros, at least
limiting the damage of “dangling pointers.” An Instr
should often be freed when it stops making sound.
Mechanisms exist for envelop generators and other UGs to
report completion via an update, which can then be used to
free the Instr , but at present, this is an explicit
programming task.

5.1 Serpent Details
Although Aura is implemented in C++, this language is

not conducive to rapid prototyping of interactive audio
programs. A scripting language seemed to be necessary, but
existing languages exhibit long latencies due to garbage
collection and thread context switching. Serpent was
designed with a real-time garbage collector that can be
tuned to have less than 1ms pauses. Also, Serpent is
designed to allow multiple instances in one address space.
Each instance can run on a separate, preemptable thread,
allowing Serpent programs to run with very low latency.
Although latency is tightly controlled, Serpent is much
slower than C++, so it is not suitable for DSP at the sample
level. However, it is sufficiently fast to configure patches of
unit generators which are written in C++.

Serpent is open source, cross-platform, and available
from the author. As a real-time scripting language, it has
many potential uses in computer music systems. All access
to MIDI, audio, and Aura are made through external
function calls and a few bits of conditional compilation, so
Serpent can be configured in many ways. Serpent also has
an interface to wxWindows (Smart & Roebling, 2001),
bringing easy-to-program, platform-independent graphical
interfaces to Aura or stand-along programs. Aura is also
open source, but continues to evolve, and is not well
documented. The author is happy to work with
collaborators, of which there are now a few.

6 Summary
One of the interesting things about interactive audio

programming systems is that they are so unlike most other
programming systems. Subroutine and class libraries have
not worked as well as entirely new languages and language
models. Some existing languages and systems are widely
used, but this seems as much a reflection of the need for
support as an indication that problems are solved. Every
system has well-known and widely discussed drawbacks
and pitfalls. With this in mind, it is important to consider

 - 6 -

alternatives and to explore different principles, concepts,
and assumptions.

The Serpent/Aura system described here is one such new
approach. It begins with the premise that functional
programming is essential to express signal computation. The
main advantage of functional programming is that nested
expressions are so readable: it is obvious that
filter(sum(osc(…), osc(…))) is the filtered sum of two
oscillators. The object-oriented style of building a patch is
much less readable:

Filter filter;
Adder sum;
Osc osc1(...), osc2(...);
filter.input = sum;
sum.input1 = osc1;
sum.input2 = osc2;

The Serpent/Aura organization provides “unit generator”
abstraction in that user-defined patches behave just like unit
generators. They return signals as values, they can be used
to define new patches, and they can be updated by setting
attributes to new values. It is important to note that
instruments do not mix their outputs to some predetermined
output channel, which would make it impossible to compose
instruments into higher-level structures.

While the functional programming style is natural for
patches, imperative programming seems more natural for
building interactive, reactive systems. The design assumes
that it is easier, in general, to say “make the following state
changes when the key goes down” than to say (for each
changeable thing) “here are my functional dependencies
upon the times at which the key goes down (along with all
other dependencies).”

Given these premises, we develop a model where
computations exhibit a dual nature as both objects and
(signal) values. The crossover between these two aspects is
so transparent that code is quite readable, with intuitive
semantics. References to patches, viewed as signals, can be
assigned to variables, passed as parameters, and stored in
data structures. Viewed as objects, patches can be updated
(i.e. their internal state can be changed) in real time in
response to real-time data and sensors.

One of the key innovations in this work is the concept of
update: an attribute/value pair directed to a patch. This is
where object-oriented or procedural reactive programs
“connect” to functional patch programs. The key problem is
that in functional programs, there is no state and no “object”
to update. In this solution, updates become a form of
parameter passing, where the parameter value is not
available after the expression is instantiated. The update
concept supports information hiding and a mapping, from
“formal” or “external” attributes to which a patch responds,
to “actual” or “internal” attributes of component unit
generators and nested patches.

Although a particular syntax and implementation was
chosen in this work, the ideas are quite general. One could
imagine other ways to specify update attributes and their
mapping from patches to patch components.

5 Conclusions
There is much to learn about programming interactive

audio systems effectively. I have offered a novel approach
and described its implementation. This approach is a direct
attack on the split between functional programming, which
seems perfect for most synchronous signal processing tasks,
and object-oriented programming, which seems ideal for
interactive, event-driven programs. The result offers great
promise as a very high-level programming language system
for interactive audio. An implementation is available now
for sympathetic users, and a demonstration of much larger
and interesting examples than could be explained within the
pages of this paper will be included in the conference
presentation.

6 Acknowledgements
I am very grateful to IBM Research and their Computer

Music Center for financial and technical support in 2000
and 2001. Ron Kuivila offered useful insights and
comments about related work and the problems addressed in
this paper. This work is supported in part by NSF Award
#0085945 and an IBM Faculty Partnership Award.

References
Boulanger, R. (Ed.). (2000). The Csound Book: MIT Press.
Brandt, E. (2000). "Temporal Type Constructors for

Computer Music Programming." Proceedings of the
2000 International Computer Music Conference. San
Francisco: International Computer Music Association,
pp. 328-331.

Brandt, E. (2001). "Implementing Temporal Type
Constructors for Music Programming." Proceedings of
the 2001 International Computer Music Conference. San
Francisco: International Computer Music Association,
pp. 99-102.

Burk, P. (1998). "JSyn - A Real-Time Synthesis API for
Java." Proceedings of the 1998 International Computer
Music Conference. San Francisco: International
Computer Music Conference, pp. 252-255.

Dannenberg, R. B. (1984). "Arctic: A Functional Language
for Real-Time Control." Conference Record of the 1984
ACM Symposium on LISP and Functional
Programming. San Francisco: ACM, pp. 96-103.

Dannenberg, R. B. (1997). "Machine Tongues XIX:
Nyquist, a Language for Composition and Sound
Synthesis." Computer Music Journal, 21(3), 50-60.

Dannenberg, R. B., & Brandt, E. (1996). "A Flexible Real-
Time Software Synthesis System." Proceedings of the
1996 International Computer Music Conference. San
Francisco: International Computer Music Association,
pp. 270-273.

Dannenberg, R. B., Desain, P., & Honing, H. (1997).
Programming Language Design for Music. In C. Roads
& S. T. Pope & A. Piccialli & G. d. Poli (Eds.), Musical

 - 7 -

Signal Processing (pp. 271-316): Swets & Zeitlinger
Publishers.

Dannenberg, R. B., & Rubine, D. (1995). "Toward Modular,
Portable, Real-Time Software." Proceedings of the 1995
International Computer Music Conference. San
Francisco: International Computer Music Association,
pp. 65-72.

Dechelle, F., Borghesi, R., Ceccco, M. D., Maggi, E.,
Rovan, B., & Schnell, N. (1998). "jMax: a new JAVA-
based editing and control system for real-time musical
applications." Computer Music Journal, 23(3), 50-58.

Letz, S., Fober, D., & Orlarey, Y. (2000). "Real-Time
Composition in Elody." Proceedings of the 2000
International Computer Music Conference. San
Francisco: International Computer Music Association,
pp. 336-339.

Lindemann, E., Dechelle, F., Sarkier, M., & Smith, B.
(1991). "The Architecture of the IRCAM Musical
Workstation." Computer Music Journal, 15(3), 41-50.

Madden, T., Smith, R. B., Wright, M., & Wessel, D. (2001).
"Preparation for Interactive Live Computer Performance
in Collaboration with a Symphony Orchestra."
Proceedings of the 2001 International Computer Music
Conference. San Francisco: International Computer
Music Association, pp. 310-313.

Mathews, M. (1969). The Technology of Computer Music:
MIT Press.

McCartney, J. (2000). "A New, Flexible Framework for
Audio and Image Synthesis." Proceedings of the 2000
International Computer Music Conference. San
Francisco: International Computer Music Conference,
pp. 258-261.

Morales-Manzanares, R., Morales, E., Dannenberg, R. B., &
Berger, J. (2001). "SICIB: An Interactive Music
Composition System Using Body Movements."
Computer Music Journal, 25(2), 25-36.

Puckette, M. (1984, 1985). "The M Orchestra Language."
Proceedings of the 1984 International Computer Music
Conference. San Francisco: International Computer
Music Association, pp. 17-19.

Puckette, M. (2002). Pd. http://crca.ucsd.edu/msp.
Python. (2002). Python Home Page. http://www.python.org.
Schottstaedt, B. (1994). "Machine Tongues XVII: CLM:

Music V Meets Common Liso." Computer Music
Journal, 18(2), 30-37.

Smart, J., & Roebling, R. (2001). wxWindows.
http://www.wxwindows.org.

Wright, M., & Freed, A. (1997). "Open Sound Control: A
New Protocol for Communicating with Sound
Synthesizers." Proceedings of the 1997 International
Computer Music Conference. San Francisco:
International Computer Music Association, pp. 101-104.

Wright, M., Freed, A., Lee, A., Madden, T., & Momeni, A.
(2001). "Managing Complexity with Explicit Mapping
of Gestures to Sound Control with OSC." Proceedings
of the 2001 International Computer Music Conference.

San Francisco: International Computer Music
Association, pp. 314-317.

Zicarelli, D. (1998). "An Extensible Real-Time Signal
Processing Environment for Max." Proceedings of the
1998 International Computer Music Conference.
International Computer Music Association, pp. 463-466.

