Patterns: A Graphical Language for Live Coding Music Performance

Roger B. Dannenberg
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA
rbd@cs.cmu.edu

Abstract

Patterns is a live-coding performance piece using an
experimental visual language. The key idea is that ob-
jects generate streams of data and notes according to
parameters that can be adjusted on-the-fly. Many ob-
jects take other objects or even lists of objects as inputs
allowing complex patterns to be composed from sim-
pler ones. The interconnections of objects are indicated
by nested circles in an animated graphical display. The
composition is created by manipulating graphical struc-
tures in real-time to create a program that in turn gener-
ates the music. The audience sees the program while
listening to the music it generates.

Introduction

Live coding refers to music performance in which sound
generation software is created during the performance
(Dannenberg 2011). Typically, the software development
process is revealed by projecting the developer’s computer
screen. This gives a new dimension to the listener experi-
ence because the audience can see the generative structure
of the music as well as hear the resulting sounds.

An obvious drawback to live coding is that software
development is usually a slow process. Live coders use a
variety of techniques to overcome the problem, including
extensive libraries, very high-level languages, memoriza-
tion, and “tricks” that produce interesting sounds with
minimal specification. Patterns is an experimental system
intended to provide a very high-level language, a graphical
interface that might be appealing to a non-programming
audience, and visual language syntax that minimizes pro-
gramming errors while maximizing expressive power.

The Pattern Language

Figure 1 illustrates the interface. The circles represent
objects that generate or process streams of notes and num-
bers. A typical generator is called Cycle. It generates num-
bers in a cyclical fashion from a list. A typical processor is
named “+”. It reads the next numbers from two input
streams and outputs their sum. Most generators have sev-
eral parameters. For example, the Cycle generator has a list
of numbers and a “mode” that determines whether to trav-
erse the list forwards, backwards, or back-and-forth. Pa-

rameters for the selected generator (shown at the right)
appear on the left panel for manipulation. More interest-
ingly, parameters can be determined by new generators. By
combining manual manipulation of parameters with auto-
matically generated parameters (and even parameters of
parameter generators), deeply nested and interesting musi-
cal structures can be specified and manipulated quickly.

0,00 wxWindows/Serpent

(" RandTime)(NumChoice){ Repeat)

(" Uniform)(NumCycle) Merge)
(" NoteGen) Diatonic)

|60 J(set) |
Mode O=' P “.

Inputs.
@) Input
(O Mode

Figure 1. Graphical interface for the Patterns system.

Conclusions

Patterns is an interesting and viable approach to live cod-
ing. It offers the sort of low-level generality one associates
with real “coding,” yet the graphical interface and high-
level stream operators give the performer a fighting chance
to make some interesting sounds quickly. On the other
hand, the interface is not transparent even to programmers
seeing it for the first time, and the flashy visuals lead oth-
ers to believe this cannot be “real programming.” Still,
performances have been well received, and there is room to
extend both the language and its use in performance to
address these concerns.

This work is supported in part by the National Science
Foundation under Grant No. 0855958.

Reference

Dannenberg, R. 2011. Live Coding Using a Visual Pattern
Composition Language. Proc. of the 12™ Biennial Sympo-
sium on Arts and Technology, Connecticut College: 47-52.

Proceedings of the Second International Conference on Computational Creativity 160

