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ABSTRACT 

An interactive sound processor is an important tool for just 
about any modern composer. Performers and composers 
use interactive computer systems to process sound from 
live instruments. In many cases, audio processing could be 
handled using off-the-shelf signal processors. However, 
most composers favor a system that is more open-ended 
and extensible. Programmable systems are open-ended, but 
they leave many details to the composer, including 
graphical control interfaces, mixing and cross-fade 
automation, saving and restoring parameter settings, and 
sequencing through configurations of effects. Our work 
attempts to establish an architecture that provides these 
facilities without programming. It factors the problem into 
a framework, providing common elements for all 
compositions, and custom modules, extending the 
framework with unique effects and signal processing 
capabilities. Although we believe the architecture could be 
supported by many audio programming systems, we have 
created a particular instantiation (AuraFX) of the 
architecture using the Aura system. 

1. INTRODUCTION 

Interactive music compositions span a wide range of 
organizations, intentions, and implementations. Most 
music in this category can be labelled “experimental,” and 
as such calls for very open-ended and general software for 
development. One of the reasons for generality is to avoid 
falling into the trap of the “paint-by-number” approach, 
where only a fixed set of effects, timbres, or patches is 
available to choose from. In this case, the sounds become 
recognizable and unoriginal – what composer would want 
to write something that has been heard before? 

As computer music has matured and more systems have 
become available, the “paint-by-number” approach has 
become more acceptable for several reasons: (1) more 
effects and sound processing systems are available, so the 
composer is not limited to a small set of choices; (2) 
modern computing power has enabled more flexibility, 
parameter choices, and other ways to customize off-the-
shelf effects; (3) computer music systems are widely 

available and attractive to non-expert programmers. When 
computer music required considerable engineering skill, it 
was normal for musicians to do a considerable amount of 
programming, but today, many musicians find it 
acceptable to use relatively pre-packaged engineering 
solutions in order to instead focus their creativity on music 
composition and performance. 

Our implementation of the AuraFX system follows a 
tradition of trying to understand the general nature of some 
broad class of computer music systems and make it easy to 
create new systems in that class. Ideally, it should allow 
the composer or sound engineer to accomplish tasks with a 
minimum of effort and a maximum of flexibility. The 
architecture that underlies AuraFX is simple: a sequence 
of sets of effects with adjustable levels, fade-in and fade-
out times, and channel assignments. The effects have a 
well-defined interface with the system so that new effects 
can be constructed and “plugged in” to the architecture. 
Transitions from one set of effects to another can be 
sequential (e.g. advanced by a simple pedal interface or 
timer) or controlled by an external program. 

An important issue in our design is the user’s technical 
competence. Many composers say they use a visual 
programming system such as MAX MSP [1] or Pd [2] 
because they “don’t know how to program,” but even these 
visual programming systems require programming. 
Developing patches, controlling them, sequencing them, 
and mixing their outputs all requires programming, yet 
these languages have at best a limited way to organize and 
accomplish these programming tasks. AuraFX imposes 
much more structure and in return requires much less 
programming than even visual programming systems. In 
fact, the only programming available in AuraFX is the 
writing of effects using either a scripting language or a 
dataflow-like visual programming language. AuraFX has 
built-in mechanisms for allocating, mixing, and sequencing 
effects. On the other hand, AuraFX is more open-ended 
than an automated mixer because it is not restricted to 
sequential or time-based changes and it is particularly 
adept at dynamically scheduling and managing multiple 
effects which might overwhelm the processor(s) if all of 
the effects were set up at once on different effect-send 
busses. 
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AuraFX has several motivations. It was originally 
created for a performance by the Pittsburgh New Music 
Ensemble (PNME) at the Edinburgh Festival Fringe. The 
PNME planned to use extensive audio processing but 
needed a system that could be rapidly reconfigured after 
arriving at the performance space. Although the ensemble 
abandoned their plans for electronics as too ambitious, the 
discussion forced us to think about how to create a flexible 
audio processing system for use by non-programmers. The 
second motivation is the first author’s own work with 
Aura, an open-ended system for interactive multimedia. 
One of the things we noticed in using Aura is that much of 
the most difficult programming effort in actual 
compositions had to do with managing transitions: making 
sure effects are running and connected when needed, 
making soft switches rather than abrupt connections, and 
building interfaces not only for normal operation, but for 
rehearsals and debugging. Once AuraFX was started, we 
realized it could also be used in improvisational settings 
where effects can be called up at will (for example using 
foot pedals or algorithmic selection), and the system can be 
extended over time in a modular way. 

2. RELATED WORK 

Computer music systems and languages attempt to 
simplify the task of writing interactive music systems. The 
Music N languages [[3], [4]] introduced the concept of unit 
generators as powerful primitives for musical signal 
processing. Two important approaches for more interactive 
systems include MAX-like visual programming languages 
[[1], [2]] and text-based programming languages [[5][10]]. 
Jamoma [11] is an attempt to create higher-level 
abstractions in MAX MSP that provide audio signal 
processing modules with built-in user interfaces, all 
designed to have a common look and feel and 
sophisticated control such as the ability to smoothly 
interpolate input parameter values and respond to Open 
Sound Control messages. Audio Mulch [12] is another 
example of a programmable (through graphical patching) 
system based on sophisticated audio processing modules 
with user interfaces. 

AuraFX differs from this work because it aims to avoid 
programming (even most graphical patching), relying 
instead upon built-in methods that manage parameter 
changes, transitions between effects, and activa-
tion/deactivation of signal processing modules. AuraFX is 
extensible primarily through the addition of effects which 
can be created using graphical patching of unit generators. 

3. THE AURAFX ARCHITECTURE 

AuraFX is designed around a particular computational and 
signal processing model consisting of effects, states, and 
sequences. 

3.1. Effects 

First and foremost, processing is organized around effects, 
which are algorithms for processing live audio. Figure 1 
shows a signal flow diagram for an effect. Audio inputs (4 
are shown) are mixed and fed into the DSP Algorithm. 
Essentially any process can be inserted here. The output of 
the DSP Algorithm is faded in and out using an envelope, 
and the signal is then panned among output channels (2 are 
shown). All effect outputs are summed to form the overall 
program outputs (not shown). 

At present, effects are mono in and mono out for 
simplicity. Extending this to multi-channel effects would 
require a gain matrix to steer inputs to the effect and 
another matrix to route effect outputs to the outputs. This 
presents more of a user interface design problem than 
anything else. 

 

Figure 1. Signal diagram for an effect. 

3.2. States 

Effects are organized according to states. A state is a 
collection of effects that operate concurrently and 
independently. In operation, there is normally one active 
state that determines what effects are in use. However, 
when a new state is selected, there is a transition 
implemented by fading out the effects in the previous state 
and fading in the effects in the new state. 

3.3. Sequences 

A sequence is an ordered list of state references. A state 
may be referenced from multiple positions of the same 
sequence. References to states rather than copies of states 
are used so that when a state is edited in one sequence 
position, the changes take effect in each position where the 
state is used. To avoid this behavior, it is only necessary to 
copy the state and insert these copies into the sequence. 

In a composition organized as a linear score with 
changing audio effects, the sequence organizes the 
progression from one set of effects to the next. It is also 
possible to ignore the linear structure and jump to any 
location in the sequence. 
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In addition to a state reference, each element of a 
sequence contains a set of gain and pan controls for each 
audio input, a global reverb level, and fade-in and fade-out 
times. Thus, the sequence can be viewed as “scenes” in an 
automated mixer. 

3.4. Transitions 

There are many cases where it is desirable to change the 
value of an effect parameter rather than replace one effect 
by another. For example, there can be quite a difference 
between changing a delay amount and cross-fading from 
one delay effect to another. Our system tries to reuse active 
effects by changing parameter values. This allows for 
greater sonic continuity in transitions and also increases 
efficiency. It takes less processing to change an effect 
parameter than it does to run a second effect while cross-
fading. 

To understand how effects are reused, let E be the set of 
active effects, that is, effects with non-zero output levels, 
and let B be the effects contained in state B. In a transition 
from state A to state B, we search for a list of matches M 
between the effects in E and B. Effects match if they share 
the same DSP Algorithm. For effects in M, only the 
parameters of the DSP Algorithm and the audio mix 
settings for the effects are changed. Effects in E but not in 
M are faded out (or their ongoing fade-out is continued), 
and effects in B but not in M are instantiated, initialized, 
and faded in. When an effect in B has more than one match 
in E, preference can be given to effects using the following 
criteria: 

1. prefer to match an effect with a similar input mix (it 
is better to change effect parameters than to reapply 
the effect to a new sound source); 

2. prefer effects in the current state as opposed to 
effects from a previous state that are still fading out. 

As an example (see Figure 2), suppose there is a state 
change from A to B. State A contains 2 delays and a filter 
effect, and state B contains a delay, a filter, and a ring 
modulator. The first delay and the filter in A would be 
reused as the delay and filter in B. The second filter in A 
would be faded out, and a new ring modulator would be 
created and faded in. 

 

Figure 2. Active effects with matching DSP Algorithms 
are reused across state transitions. 

Continuing the example, imagine that after the 
transition from A to B, there is an immediate transition 
back to A. The delay and filter, now part of state B, would 
be reassigned back to state A with their control parameters 
reset to values specified by state A. The second delay in A 
would be fading out after the transition to B. This delay 
would already have the correct parameter settings 
according to A, and it would be faded back in. The ring 
modulator does not match any of the effects in A, so its 
fade-in (in progress) is halted and replaced with a fade-out 
from the present level to zero. 

4. USER INTERFACE 

Once the architectural model is understood, the user 
interface is simple to understand and operate. It consists of 
several windows. The input window (see Figure 3) allows 
the user to type names (e.g. “violin”) for input channels. 

 

Figure 3. Input window names input channels. 

The state window (see Figure 4) is used to create and 
edit states. The window has a drop-down menu to select a 
state for editing. When a state is selected, the controls in 
the state window are updated according to that particular 
state. (Provisions are also included to create new states, 
rename, and copy states.) The state window has multiple 
buttons or tabs to access effects within the current state. 
Each effect has a drop-down menu to select a DSP 
Algorithm, and when the algorithm is selected, the effect 
panel is populated with sliders and other controls to change 
parameters for that particular effect. 

If an effect is active when parameters are adjusted, the 
parameters are immediately sent from the user interface to 
the corresponding audio object so that changes can be 
heard. It is also possible to edit states that are not active, in 
which case the new parameter values only take effect when 
the state (and its effects) become active. 

The Sequence window (see Figure 5) is used to create 
sequences of states and mixer settings. Each element of the 
sequence is called a scene. Each scene denotes a state 
name to indicate what state should become active in the 
scene. Each scene also has mixer settings for mixing “dry” 
audio inputs to outputs. Finally, for convenience, there are 
settings for a global reverb effect that is always on but has 
adjustable levels and reverb time. 

One of the problems of managing a sequence of scenes, 
each with many parameters, is that it becomes difficult to 
make global changes. One approach is to have global as 
well as local adjustments. For example, the gain applied to 
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input channel 1 could be the product of a “global” gain 
control and a “local” gain associated with the current 
scene. In AuraFX, we have taken a different approach 
where each control in a scene can be marked to “share” its 
value with the previous scene. By default, all values are 
shared among all scenes. Thus, changing the gain on input 
channel 1 in any scene changes the value in all scenes. To 
change the level at a particular scene, one first marks the 
control as “not shared” using the check box labelled 
“CHANGE,” then adjusts the control. The change will 
affect only the current and future scenes, but not the 
previous ones. By setting all controls to “not shared,” all 
controls are local and have no effect on other scenes. 

 

Figure 4. State window is used to edit states, each with 
a set of parameterized effects. 

 

Figure 5. Sequencer window is used to create and 
arrange sequences of states, each with direct (dry) mix 
of inputs, fade-in and fade-out times, and global reverb. 

It should be noted that each effect contains a “local” 
mix of inputs. These effect mixes will be reused each time 
the state appears in the sequence. 

5. INTERACTION 

In one mode of operation, the program advances linearly 
through scenes, applying the effects, and using specified 
fade-in and -out times at transitions. The system advances 
to the next state when a button is pushed on the graphical 
interface or in response to a MIDI or OSC [13] command. 

For more interactive settings or rehearsals, the user can 
select a sequence position by name (names can be assigned 
corresponding to rehearsal markings in a score), by 
number, or through a MIDI program change command, or 
similar OSC command. 

One limitation of this approach is all other performer 
interaction is only possible within the confines of an effect. 
An effect can analyze the audio input and respond to it in 
an interactive manner. Higher levels of interaction in 
which the actions of the performer select effects or change 
effect parameters are not supported. It is easy to imagine a 
more elaborate interface that maps MIDI control changes 
or OSC messages to effect parameters, and these could be 
controlled directly or indirectly by the performer. 

6. EFFECT CREATION 

One advantage of AuraFX over a dedicated multi-effects 
processor is that new DSP algorithms can be created and 
added to the system with minimal programming effort. A 
DSP algorithm can be implemented in several ways. First, 
the Serpent scripting language [14] can be used in a 
procedural manner to allocate and patch together unit 
generators. Second, the same approach can be taken more-
or-less using C++, allowing efficient manipulation of 
samples, spectra, and other audio data in ways that might 
be difficult to implement using existing unit generators. 
Finally, a graphical patch editor [15] (see Figure 6) can be 
used to combine unit generators into an Aura “instrument” 
and output code in C++. Whether the C++ is generated by 
hand or by our patch editor, it must be compiled and a new 
AuraFX must be linked to incorporate the new code. 

In addition to the DSP code itself, AuraFX needs a 
description of the DSP algorithm interface, including a 
name for display on the user interface, a list of parameter 
names, default values and ranges, and the name of a 
function that returns a new instance of the DSP algorithm 
as an Aura object. AuraFX uses a configuration file written 
in Serpent to build the necessary DSP algorithm 
descriptors. One could easily imagine an alternative 
approach using LADSPA or VST effects, which also have 
an API to obtain descriptions of their parameters. 
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Figure 6. A graphical patch editor allows users to 
create new DSP algorithms for AuraFX effects. 

7. DISCUSSION 

AuraFX is a new open-source system that sits somewhere 
between a dedicated multi-effects processor and a 
programmable audio processing language system such as 
MAX MSP, Pd, SuperCollider, or Aura. Unlike 
conventional multi-effects processors, AuraFX includes 
important components for handling multiple input 
channels, simultaneous effects, controlled fade-in and 
fade-out times, mixer automation, and sequences of audio 
processing “scenes.” In addition, AuraFX is extensible 
through the addition of new signal processing algorithms. 
Thus, AuraFX seems to be a more complete and flexible 
system for creating interactive audio compositions than a 
mere effects processor. 

In contrast, programming-based music systems provide 
a more general and flexible environment for building 
interactive music systems. Unfortunately, this flexibility is 
usually obtained at the cost of building custom interfaces, 
mixers, and control strategies along with careful coding of 
transitions when effects change. While not as flexible as 
fully programmable systems, AuraFX does offer 
sophisticated effects-processing management that is 

difficult and therefore unlikely to be implemented for any 
single interactive composition. 

The AuraFX architecture suggests some interesting 
directions for future computer music systems. Handling 
smooth transitions between states has been a long-standing 
and difficult programming problem. Another common 
problem is “backing up” in a linear structure during a 
rehearsal. These unplanned transitions are often untested 
and reveal bugs where variables are not reinitialized to 
proper values. The AuraFX architecture puts a layer of 
management between the control system (selecting states, 
adjusting parameters of effects) and DSP algorithms 
(actually processing sound). One benefit of this approach 
is that processing can be optimized, for example by turning 
off effects when their outputs fade to silence and by 
eliminating mixer channels when input gains are zero. 
These sorts of optimization are of course possible in 
general programmable systems, but they require careful 
programming and testing. 

The down side of AuraFX is its limited control strategy. 
However, if one does need elaborate control schemes, it is 
likely that one will also need to enable/disable audio 
processing effects and manage smooth transitions between 
different configurations. Rather than throwing out this 
architecture and resorting to low-level code for smooth 
transitions and resource management, it might be much 
more productive to retain the AuraFX architecture and put 
the interactive controls at a higher level. The advantages 
would include (1) having a single, reusable implementation 
of some of the most difficult audio processing algorithms 
which manage unit generators, updating parameters, and 
making smooth fade-ins and fade-outs, and (2) having a 
higher-level control interface that operates in terms of 
states, effects, and parameters rather than direct 
communication with unit generators. From this 
perspective, AuraFX becomes a high-level audio 
processing runtime system. We hope to explore these 
possibilities in the future. 

8. CONCLUSIONS 

We have described an architecture for open-ended 
interactive computer music systems. While not as general 
as a programming language, we believe this architecture 
offers an interesting and useful compromise between ease 
of use and generality. The architecture also suggests that a 
high-level interface between control and signal processing 
aspects of programmable systems can simplify some 
difficult programming and resource management 
problems. In essence, if unit generators are the “assembly 
language” of computer music, we offer a higher-level 
language based on states and effects. Our implementation, 
AuraFX, has been used successfully in several 
performances. We hope this work will inspire others to 
think about new ways to build computer music systems 
that simplify the creation of new compositions. 
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