

Published as: Dannenberg and Kotcher, “AuraFX: A Simple and Flexible Approach to Interactive Audio Effect-Based
Composition and Performance,” in Proceedings of the 2010 International Computer Music Conference, San Francisco: The
International Computer Music Association, (August 2010), pp. 147-152.

AURAFX: A SIMPLE AND FLEXIBLE APPROACH TO INTERACTIVE
AUDIO EFFECT-BASED COMPOSITION AND PERFORMANCE

Roger B. Dannenberg

Carnegie Mellon University
School of Computer Science

 Robert Kotcher

Carnegie Mellon University
School of Music

ABSTRACT

An interactive sound processor is an important tool for just
about any modern composer. Performers and composers
use interactive computer systems to process sound from
live instruments. In many cases, audio processing could be
handled using off-the-shelf signal processors. However,
most composers favor a system that is more open-ended
and extensible. Programmable systems are open-ended, but
they leave many details to the composer, including
graphical control interfaces, mixing and cross-fade
automation, saving and restoring parameter settings, and
sequencing through configurations of effects. Our work
attempts to establish an architecture that provides these
facilities without programming. It factors the problem into
a framework, providing common elements for all
compositions, and custom modules, extending the
framework with unique effects and signal processing
capabilities. Although we believe the architecture could be
supported by many audio programming systems, we have
created a particular instantiation (AuraFX) of the
architecture using the Aura system.

1. INTRODUCTION

Interactive music compositions span a wide range of
organizations, intentions, and implementations. Most
music in this category can be labelled “experimental,” and
as such calls for very open-ended and general software for
development. One of the reasons for generality is to avoid
falling into the trap of the “paint-by-number” approach,
where only a fixed set of effects, timbres, or patches is
available to choose from. In this case, the sounds become
recognizable and unoriginal – what composer would want
to write something that has been heard before?

As computer music has matured and more systems have
become available, the “paint-by-number” approach has
become more acceptable for several reasons: (1) more
effects and sound processing systems are available, so the
composer is not limited to a small set of choices; (2)
modern computing power has enabled more flexibility,
parameter choices, and other ways to customize off-the-
shelf effects; (3) computer music systems are widely

available and attractive to non-expert programmers. When
computer music required considerable engineering skill, it
was normal for musicians to do a considerable amount of
programming, but today, many musicians find it
acceptable to use relatively pre-packaged engineering
solutions in order to instead focus their creativity on music
composition and performance.

Our implementation of the AuraFX system follows a
tradition of trying to understand the general nature of some
broad class of computer music systems and make it easy to
create new systems in that class. Ideally, it should allow
the composer or sound engineer to accomplish tasks with a
minimum of effort and a maximum of flexibility. The
architecture that underlies AuraFX is simple: a sequence
of sets of effects with adjustable levels, fade-in and fade-
out times, and channel assignments. The effects have a
well-defined interface with the system so that new effects
can be constructed and “plugged in” to the architecture.
Transitions from one set of effects to another can be
sequential (e.g. advanced by a simple pedal interface or
timer) or controlled by an external program.

An important issue in our design is the user’s technical
competence. Many composers say they use a visual
programming system such as MAX MSP [1] or Pd [2]
because they “don’t know how to program,” but even these
visual programming systems require programming.
Developing patches, controlling them, sequencing them,
and mixing their outputs all requires programming, yet
these languages have at best a limited way to organize and
accomplish these programming tasks. AuraFX imposes
much more structure and in return requires much less
programming than even visual programming systems. In
fact, the only programming available in AuraFX is the
writing of effects using either a scripting language or a
dataflow-like visual programming language. AuraFX has
built-in mechanisms for allocating, mixing, and sequencing
effects. On the other hand, AuraFX is more open-ended
than an automated mixer because it is not restricted to
sequential or time-based changes and it is particularly
adept at dynamically scheduling and managing multiple
effects which might overwhelm the processor(s) if all of
the effects were set up at once on different effect-send
busses.

 148

AuraFX has several motivations. It was originally
created for a performance by the Pittsburgh New Music
Ensemble (PNME) at the Edinburgh Festival Fringe. The
PNME planned to use extensive audio processing but
needed a system that could be rapidly reconfigured after
arriving at the performance space. Although the ensemble
abandoned their plans for electronics as too ambitious, the
discussion forced us to think about how to create a flexible
audio processing system for use by non-programmers. The
second motivation is the first author’s own work with
Aura, an open-ended system for interactive multimedia.
One of the things we noticed in using Aura is that much of
the most difficult programming effort in actual
compositions had to do with managing transitions: making
sure effects are running and connected when needed,
making soft switches rather than abrupt connections, and
building interfaces not only for normal operation, but for
rehearsals and debugging. Once AuraFX was started, we
realized it could also be used in improvisational settings
where effects can be called up at will (for example using
foot pedals or algorithmic selection), and the system can be
extended over time in a modular way.

2. RELATED WORK

Computer music systems and languages attempt to
simplify the task of writing interactive music systems. The
Music N languages [[3], [4]] introduced the concept of unit
generators as powerful primitives for musical signal
processing. Two important approaches for more interactive
systems include MAX-like visual programming languages
[[1], [2]] and text-based programming languages [[5][10]].
Jamoma [11] is an attempt to create higher-level
abstractions in MAX MSP that provide audio signal
processing modules with built-in user interfaces, all
designed to have a common look and feel and
sophisticated control such as the ability to smoothly
interpolate input parameter values and respond to Open
Sound Control messages. Audio Mulch [12] is another
example of a programmable (through graphical patching)
system based on sophisticated audio processing modules
with user interfaces.

AuraFX differs from this work because it aims to avoid
programming (even most graphical patching), relying
instead upon built-in methods that manage parameter
changes, transitions between effects, and activa-
tion/deactivation of signal processing modules. AuraFX is
extensible primarily through the addition of effects which
can be created using graphical patching of unit generators.

3. THE AURAFX ARCHITECTURE

AuraFX is designed around a particular computational and
signal processing model consisting of effects, states, and
sequences.

3.1. Effects

First and foremost, processing is organized around effects,
which are algorithms for processing live audio. Figure 1
shows a signal flow diagram for an effect. Audio inputs (4
are shown) are mixed and fed into the DSP Algorithm.
Essentially any process can be inserted here. The output of
the DSP Algorithm is faded in and out using an envelope,
and the signal is then panned among output channels (2 are
shown). All effect outputs are summed to form the overall
program outputs (not shown).

At present, effects are mono in and mono out for
simplicity. Extending this to multi-channel effects would
require a gain matrix to steer inputs to the effect and
another matrix to route effect outputs to the outputs. This
presents more of a user interface design problem than
anything else.

Figure 1. Signal diagram for an effect.

3.2. States

Effects are organized according to states. A state is a
collection of effects that operate concurrently and
independently. In operation, there is normally one active
state that determines what effects are in use. However,
when a new state is selected, there is a transition
implemented by fading out the effects in the previous state
and fading in the effects in the new state.

3.3. Sequences

A sequence is an ordered list of state references. A state
may be referenced from multiple positions of the same
sequence. References to states rather than copies of states
are used so that when a state is edited in one sequence
position, the changes take effect in each position where the
state is used. To avoid this behavior, it is only necessary to
copy the state and insert these copies into the sequence.

In a composition organized as a linear score with
changing audio effects, the sequence organizes the
progression from one set of effects to the next. It is also
possible to ignore the linear structure and jump to any
location in the sequence.

 149

In addition to a state reference, each element of a
sequence contains a set of gain and pan controls for each
audio input, a global reverb level, and fade-in and fade-out
times. Thus, the sequence can be viewed as “scenes” in an
automated mixer.

3.4. Transitions

There are many cases where it is desirable to change the
value of an effect parameter rather than replace one effect
by another. For example, there can be quite a difference
between changing a delay amount and cross-fading from
one delay effect to another. Our system tries to reuse active
effects by changing parameter values. This allows for
greater sonic continuity in transitions and also increases
efficiency. It takes less processing to change an effect
parameter than it does to run a second effect while cross-
fading.

To understand how effects are reused, let E be the set of
active effects, that is, effects with non-zero output levels,
and let B be the effects contained in state B. In a transition
from state A to state B, we search for a list of matches M
between the effects in E and B. Effects match if they share
the same DSP Algorithm. For effects in M, only the
parameters of the DSP Algorithm and the audio mix
settings for the effects are changed. Effects in E but not in
M are faded out (or their ongoing fade-out is continued),
and effects in B but not in M are instantiated, initialized,
and faded in. When an effect in B has more than one match
in E, preference can be given to effects using the following
criteria:

1. prefer to match an effect with a similar input mix (it
is better to change effect parameters than to reapply
the effect to a new sound source);

2. prefer effects in the current state as opposed to
effects from a previous state that are still fading out.

As an example (see Figure 2), suppose there is a state
change from A to B. State A contains 2 delays and a filter
effect, and state B contains a delay, a filter, and a ring
modulator. The first delay and the filter in A would be
reused as the delay and filter in B. The second filter in A
would be faded out, and a new ring modulator would be
created and faded in.

Figure 2. Active effects with matching DSP Algorithms
are reused across state transitions.

Continuing the example, imagine that after the
transition from A to B, there is an immediate transition
back to A. The delay and filter, now part of state B, would
be reassigned back to state A with their control parameters
reset to values specified by state A. The second delay in A
would be fading out after the transition to B. This delay
would already have the correct parameter settings
according to A, and it would be faded back in. The ring
modulator does not match any of the effects in A, so its
fade-in (in progress) is halted and replaced with a fade-out
from the present level to zero.

4. USER INTERFACE

Once the architectural model is understood, the user
interface is simple to understand and operate. It consists of
several windows. The input window (see Figure 3) allows
the user to type names (e.g. “violin”) for input channels.

Figure 3. Input window names input channels.

The state window (see Figure 4) is used to create and
edit states. The window has a drop-down menu to select a
state for editing. When a state is selected, the controls in
the state window are updated according to that particular
state. (Provisions are also included to create new states,
rename, and copy states.) The state window has multiple
buttons or tabs to access effects within the current state.
Each effect has a drop-down menu to select a DSP
Algorithm, and when the algorithm is selected, the effect
panel is populated with sliders and other controls to change
parameters for that particular effect.

If an effect is active when parameters are adjusted, the
parameters are immediately sent from the user interface to
the corresponding audio object so that changes can be
heard. It is also possible to edit states that are not active, in
which case the new parameter values only take effect when
the state (and its effects) become active.

The Sequence window (see Figure 5) is used to create
sequences of states and mixer settings. Each element of the
sequence is called a scene. Each scene denotes a state
name to indicate what state should become active in the
scene. Each scene also has mixer settings for mixing “dry”
audio inputs to outputs. Finally, for convenience, there are
settings for a global reverb effect that is always on but has
adjustable levels and reverb time.

One of the problems of managing a sequence of scenes,
each with many parameters, is that it becomes difficult to
make global changes. One approach is to have global as
well as local adjustments. For example, the gain applied to

 150

input channel 1 could be the product of a “global” gain
control and a “local” gain associated with the current
scene. In AuraFX, we have taken a different approach
where each control in a scene can be marked to “share” its
value with the previous scene. By default, all values are
shared among all scenes. Thus, changing the gain on input
channel 1 in any scene changes the value in all scenes. To
change the level at a particular scene, one first marks the
control as “not shared” using the check box labelled
“CHANGE,” then adjusts the control. The change will
affect only the current and future scenes, but not the
previous ones. By setting all controls to “not shared,” all
controls are local and have no effect on other scenes.

Figure 4. State window is used to edit states, each with
a set of parameterized effects.

Figure 5. Sequencer window is used to create and
arrange sequences of states, each with direct (dry) mix
of inputs, fade-in and fade-out times, and global reverb.

It should be noted that each effect contains a “local”
mix of inputs. These effect mixes will be reused each time
the state appears in the sequence.

5. INTERACTION

In one mode of operation, the program advances linearly
through scenes, applying the effects, and using specified
fade-in and -out times at transitions. The system advances
to the next state when a button is pushed on the graphical
interface or in response to a MIDI or OSC [13] command.

For more interactive settings or rehearsals, the user can
select a sequence position by name (names can be assigned
corresponding to rehearsal markings in a score), by
number, or through a MIDI program change command, or
similar OSC command.

One limitation of this approach is all other performer
interaction is only possible within the confines of an effect.
An effect can analyze the audio input and respond to it in
an interactive manner. Higher levels of interaction in
which the actions of the performer select effects or change
effect parameters are not supported. It is easy to imagine a
more elaborate interface that maps MIDI control changes
or OSC messages to effect parameters, and these could be
controlled directly or indirectly by the performer.

6. EFFECT CREATION

One advantage of AuraFX over a dedicated multi-effects
processor is that new DSP algorithms can be created and
added to the system with minimal programming effort. A
DSP algorithm can be implemented in several ways. First,
the Serpent scripting language [14] can be used in a
procedural manner to allocate and patch together unit
generators. Second, the same approach can be taken more-
or-less using C++, allowing efficient manipulation of
samples, spectra, and other audio data in ways that might
be difficult to implement using existing unit generators.
Finally, a graphical patch editor [15] (see Figure 6) can be
used to combine unit generators into an Aura “instrument”
and output code in C++. Whether the C++ is generated by
hand or by our patch editor, it must be compiled and a new
AuraFX must be linked to incorporate the new code.

In addition to the DSP code itself, AuraFX needs a
description of the DSP algorithm interface, including a
name for display on the user interface, a list of parameter
names, default values and ranges, and the name of a
function that returns a new instance of the DSP algorithm
as an Aura object. AuraFX uses a configuration file written
in Serpent to build the necessary DSP algorithm
descriptors. One could easily imagine an alternative
approach using LADSPA or VST effects, which also have
an API to obtain descriptions of their parameters.

 151

Figure 6. A graphical patch editor allows users to
create new DSP algorithms for AuraFX effects.

7. DISCUSSION

AuraFX is a new open-source system that sits somewhere
between a dedicated multi-effects processor and a
programmable audio processing language system such as
MAX MSP, Pd, SuperCollider, or Aura. Unlike
conventional multi-effects processors, AuraFX includes
important components for handling multiple input
channels, simultaneous effects, controlled fade-in and
fade-out times, mixer automation, and sequences of audio
processing “scenes.” In addition, AuraFX is extensible
through the addition of new signal processing algorithms.
Thus, AuraFX seems to be a more complete and flexible
system for creating interactive audio compositions than a
mere effects processor.

In contrast, programming-based music systems provide
a more general and flexible environment for building
interactive music systems. Unfortunately, this flexibility is
usually obtained at the cost of building custom interfaces,
mixers, and control strategies along with careful coding of
transitions when effects change. While not as flexible as
fully programmable systems, AuraFX does offer
sophisticated effects-processing management that is

difficult and therefore unlikely to be implemented for any
single interactive composition.

The AuraFX architecture suggests some interesting
directions for future computer music systems. Handling
smooth transitions between states has been a long-standing
and difficult programming problem. Another common
problem is “backing up” in a linear structure during a
rehearsal. These unplanned transitions are often untested
and reveal bugs where variables are not reinitialized to
proper values. The AuraFX architecture puts a layer of
management between the control system (selecting states,
adjusting parameters of effects) and DSP algorithms
(actually processing sound). One benefit of this approach
is that processing can be optimized, for example by turning
off effects when their outputs fade to silence and by
eliminating mixer channels when input gains are zero.
These sorts of optimization are of course possible in
general programmable systems, but they require careful
programming and testing.

The down side of AuraFX is its limited control strategy.
However, if one does need elaborate control schemes, it is
likely that one will also need to enable/disable audio
processing effects and manage smooth transitions between
different configurations. Rather than throwing out this
architecture and resorting to low-level code for smooth
transitions and resource management, it might be much
more productive to retain the AuraFX architecture and put
the interactive controls at a higher level. The advantages
would include (1) having a single, reusable implementation
of some of the most difficult audio processing algorithms
which manage unit generators, updating parameters, and
making smooth fade-ins and fade-outs, and (2) having a
higher-level control interface that operates in terms of
states, effects, and parameters rather than direct
communication with unit generators. From this
perspective, AuraFX becomes a high-level audio
processing runtime system. We hope to explore these
possibilities in the future.

8. CONCLUSIONS

We have described an architecture for open-ended
interactive computer music systems. While not as general
as a programming language, we believe this architecture
offers an interesting and useful compromise between ease
of use and generality. The architecture also suggests that a
high-level interface between control and signal processing
aspects of programmable systems can simplify some
difficult programming and resource management
problems. In essence, if unit generators are the “assembly
language” of computer music, we offer a higher-level
language based on states and effects. Our implementation,
AuraFX, has been used successfully in several
performances. We hope this work will inspire others to
think about new ways to build computer music systems
that simplify the creation of new compositions.

 152

9. REFERENCES

[1] Zicarelli, D. “An Extensible Real-Time Signal
Processing Environment for Max,” Proceedings of
the 1998 International Computer Music Conference.
San Francisco: International Computer Music
Association (1998), pp. 463-466.

[2] Puckette, M. Pd. http://crca.ucsd.edu/~msp.
[3] Mathews, M. The Technology of Computer Music:

MIT Press, 1969.
[4] Vercoe, B., “The Canonical CSound Reference

Manual Version 5.07.” Edited by J. ffitch, J. Piché, P.
Nix, R. Boulanger, R. Ekman, D. Boothe, K. Conder,
S. Yi, M. Gogins, A. Cabrera, F. Pinot, and A. Kozar.
URL (accessed 26 Dec 2009): http://www.csounds.
com/manual/html/index.html.

[5] McCartney, J. “SuperCollider: A New Real Time
Synthesis Language,” Proceedings of the 1996
International Computer Music Conference, San
Francisco: International Computer Music Association
(1996), pp. 257-258.

[6] Burk, P. “JSyn - A Real-Time Synthesis API for
Java,” Proceedings of the 1998 International
Computer Music Conference, San Francisco:
International Computer Music Association (1998),
pp. 252-255.

[7] Brad Garton, et. al. “RTcmix.” http://music.colum-
bia.edu/cmc/RTcmix/.

[8] Pope, S. T. and Ramakrishnan, C. “The Create Signal
Library (‘Sizzle’): Design, Issues and Applications.”
Proceedings of the 2003 International Computer
Music Conference, San Francisco: International
Computer Music Association (2003), pp. 415-422.

[9] Dannenberg and van de Lageweg, “A System
Supporting Flexible Distributed Real-Time Music
Processing,” Proceedings of the 2001 International
Computer Music Conference, San Francisco:
International Computer Music Association (2001),
pp. 267-270.

[10] Cook, P. and Scavone, G., “The Synthesis ToolKit
(STK),” Proceedings of the International Computer
Music Conference, International Computer Music
Association, (1999), pp. 164-166.

[11] Place, T. & T. Lossius, “Jamoma: A modular
standard for structuring patches in Max,”
Proceedings of the 2006 International Computer
Music Conference. New Orleans, USA: International
Computer Music Association (2006), pp. 143-146.

[12] Bencina, R. “Oasis Rose the Composition - Real-
Time DSP with AudioMulch,” Proceedings of the
Australasian Computer Music Conference, ANU
Canberra (1998), pp. 85-92.

[13] Wright, M., & Freed, A., “Open Sound Control: A
New Protocol for Communicating with Sound

Synthesizers,” Proceedings of the 1997 International
Computer Music Conference. San Francisco:
International Computer Music Association (1997),
pp. 101-104.

[14] Dannenberg, R. “A Language for Interactive Audio
Applications,” Proceedings of the 2002 International
Computer Music Conference. San Francisco:
International Computer Music Association (2002), pp
509-515.

[15] Dannenberg, R. “Aura II: Making Real-Time
Systems Safe for Music,” in Proceedings of the 2004
Conference on New interfaces For Musical
Expression. M. J. Lyons, Ed. National University of
Singapore, Singapore (2004), pp 132-137

