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Abstract 
Interactive systems are difficult to program, but high-level 
languages can make the task much simpler. Interactive 
audio and music systems are a particularly interesting case 
because signal processing seems to favor a functional 
language approach while the handling of interactive 
parameter updates, sound events, and other real-time 
computation favors a more imperative or object-oriented 
approach. A new language, Serpent, and a new semantics 
for interactive audio have been implemented and tested. The 
result is an elegant way to express interactive audio 
algorithms and an efficient implementation. 

1 Introduction 
Creating interactive audio programs is difficult and not 

very well supported by traditional programming languages 
such as Lisp, C++, or Java. Libraries built upon these 
languages can help, but even with library support, creating a 
dynamic, interactive, reliable system is very difficult. A 
particularly difficult problem is creating networks of sound 
generators and processors on the fly in response to input 
events. A simple example is a synthesizer that creates a 
computation in response to a key down event, updates 
envelope generators in response to a key up event, and frees 
all relevant resources when the sound decays to silence. 

In the following sections, I describe some existing 
approaches to interactive audio programming and derive 
some properties that easy-to-program systems seem to 
share. Then, I describe some concepts that are hard to 
express in existing languages and systems. In particular, the 
problems of updating parameters and creating abstractions 
are described. Next, I explain some new ways of organizing 
programs that solve these problems. This approach has been 
implemented in the Aura framework using a new scripting 
language, Serpent, that was developed specifically to 
address the problem of interactive audio programming. 

One of the difficulties of this type of research is 
evaluation. How do we know when a language is good, and 
what things should we avoid? These questions cannot be 
answered objectively, but lessons learned from the 
programming language community and from experience in 
the computer music domain can be used to derive some 
general guidelines. Languages should provide good 

abstraction mechanisms and orthogonal features. They 
should provide general building blocks rather than special-
case solutions, and languages should minimize the semantic 
gap between language concepts and application concepts. 

2 Existing Approaches 
There are many systems available for digital audio 

including music synthesis and processing. A standard 
reference is csound (Boulanger, 2000), which has roots in 
the Music N languages (Mathews, 1969). The csound 
orchestra language illustrates both good and bad features for 
an interactive audio programming language. The good 
features include a somewhat functional style in which 
sounds are created by instances of functions (instruments) 
and where instances of function-like unit generators are 
created simply by mentioning them in an expression. It 
seems to be natural to express signal-processing algorithms 
in terms of an acyclic graph (or patch), and the csound 
orchestra programs tend to be semantically close to this 
conceptual organization. 

On the negative side, csound instruments cannot be 
composed hierarchically. One cannot define a new unit 
generator in terms of primitive ones. Because all 
instruments output sound to global variables, flexibility is 
curtailed. A classic problem in csound is how to add 
reverberation to the mixed output of many instruments. The 
standard solution relies on an inelegant arrangement of 
global variables and programming conventions. 

Arctic (Dannenberg, 1984) was intended to provide a 
more elegant expression of the semantics that underlie 
Music N languages. Arctic is a more pure functional 
language where unit generators, instruments, and even 
scores are all simply functions that return signals (real-
valued functions of time). Arctic allows better abstraction 
than csound and allows a clean solution to the 
“reverberation problem.” The functional nature of Arctic 
makes it somewhat awkward at handling discrete events. 
For example, after creating an instance of a function in 
response to a key-down message, the instance must inspect 
every key-up message for a matching key number in order 
to know when to stop. Furthermore, to cause an envelope to 
ramp to zero in response to a key-up event, the existing 
envelope must be stopped and replaced. In an imperative 
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language, it might be a simple matter to alter the state of an 
envelope object. 

In spite of its shortcomings, Arctic semantics are quite 
powerful for audio processing. A less interactive version of  
Arctic (called Nyquist) (Dannenberg, 1997) has been 
implemented and used extensively for composition tasks. 
The ease-of-use found in Nyquist confirms the importance 
of a functional notation for audio processing algorithms. 
This problem is how to combine a functional signal 
processing language with an imperative or object-oriented 
event-processing language. 

A good example of an object-oriented event-processing 
language is Aura (Dannenberg & Brandt, 1996), which is an 
extension of C++. In Aura, an event corresponds to the 
arrival of a message. This causes the execution of a method 
(member function). In contrast to functional languages, this 
object-oriented approach seems very natural for receiving 
messages and responding to them. Aura and its predecessor, 
the CMU Midi Toolkit, have been used for many interactive 
music programs and compositions (Morales-Manzanares, 
Morales, Dannenberg, & Berger, 2001). However, Aura, an 
object-oriented language, has been much more difficult to 
use than Nyquist, a functional language, for audio 
computation.  

Judging by its popularity, Max with added signal 
processing primitives (Dechelle et al., 1998; Lindemann, 
Dechelle, Sarkier, & Smith, 1991; Puckette, 2002; Zicarelli, 
1998) is an interesting approach. Max uses a visual 
programming language to describe audio computation. The 
visual layout is a direct expression of the data flow graph. A 
drawback of this approach is that it is hard to express graphs 
whose structure depends upon real-time data or whose 
structure changes dynamically. Various extensions, such as 
specialized support for polyphony and the ability to activate 
and deactivate sections of the graph have been developed to 
work around the static nature of these graphs. Max was not 
designed to be a general programming language and it is 
generally considered to be problematic for many 
programming tasks. 

SuperCollider (McCartney, 2000) is the best known 
system for interactive audio that provides a general-purpose 
programming language. Although based on an object-
oriented programming language, SuperCollider adopts a 
highly functional programming language approach to deal 
with audio. SuperCollider encourages the dynamic 
instantiation of audio generating objects, which are 
described using a functional programming style. The 
interface between discrete event processing and signal 
processing is supported by a variety of classes and protocols 
that many users find confusing and limiting. Thus, simple 
tasks such as routing MIDI controller values to a particular 
signal processing parameter can involve rather sophisticated 
programming constructions. 

CLM (Schottstaedt, 1994) and Jsyn (Burk, 1998) are 
object-oriented frameworks that support sound synthesis. 
The user creates unit generator objects and connects them to 

form patches. This approach was the first one taken in Aura 
(Dannenberg & Brandt, 1996), but it is not very satisfying 
because it is too easy to make programming mistakes. 
Typical errors include leaving inputs unconnected or trying 
to patch a control-rate output to an audio-rate input. These 
mistakes are not so easy to make with a more functional 
style of patch language.  The main problem with these 
systems is that the user manipulates unit generators to build 
desired patches rather than writing expressions that express 
the desired sounds directly. 

Open Sound Control (Matt Wright & Freed, 1997) is not 
a language but a protocol for communicating with a sound 
synthesis engine. OSC offers a model for connecting a real-
time interactive program dealing with discrete events, 
especially parameter updates, to a synthesis program 
computing continuous streams of audio. One characteristic 
of OSC is that it uses a hierarchical naming scheme. Thus, 
one can set parameters of objects deeply embedded within a 
patch. In most implementations, this scheme works against 
structural abstraction because it gives full view and access 
to the inner workings of complex sounds. On the other hand, 
translations between low-level device- or algorithm-specific 
parameters and high-level OSC parameters provides a useful 
abstraction mechanism, hiding peculiarities of input devices 
and synthesis algorithms. (Madden, Smith, Wright, & 
Wessel, 2001; Matthew Wright, Freed, Lee, Madden, & 
Momeni, 2001) Since OSC only provides a synthesizer 
interface, it remains for additional structure and language 
design to provide a complete programmable system. 

The M Orchestra Language (Puckette, 1984) is probably 
the closest in concept to the present work. This language 
allows nested expressions to describe patches in a functional 
style and uses an object-oriented framework to describe 
instrument methods that can be invoked to manipulate unit 
generator parameters. 

As can be seen from these examples, there are many 
different approaches and many interesting features in 
existing work. However, it would be hard to argue that any 
approach is best or that “best” can even be defined. This is 
an evolving area with many possibilities remaining to 
explore. In this work, I introduce some new concepts for 
organizing interactive programs and music compositions. 
These are supported by a new (but mostly conventional) 
language and a corresponding implementation. The work is 
novel in its support for abstraction and the simplicity with 
which object-oriented control schemes can be combined 
with functional-programming-oriented signal processing 
schemes, leading to a versatile and conceptually simple 
programming environment. 

3 Conceptual Framework 
To make progress toward better languages, it helps to 

have a conceptual model for the organization of audio 
computation. There is no single “true” model, but the 
following model is based on an understanding of existing 
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systems and experience writing audio and non-audio 
interactive music systems. 
• Audio computation is performed by a patch, an 

interconnected set of unit generators (UGs). 
• A UG has state and can be updated, for example by 

setting the frequency of an oscillator or triggering an 
envelope to begin or end. 

• A patch is described using an expression language, e.g. 
multiply(oscil(…), envelope(…)). 

• A patch is an abstraction mechanism: patches can be 
used as if they are primitive UGs. 

• Patches can be passed as parameters to other patch 
expressions. 

• Just as UGs can be updated, patches can be updated. 

The notion of “update” needs some discussion. A patch 
represents a synchronous computation on streams of 
samples. There may be streams as input and the patch may 
produce one or more streams of output. In addition, the 
patch may have parameters or state variables that are used in 
the stream computations. These parameters may be 
modified asynchronously with respect to the stream 
computation. Again, setting an oscillator’s frequency is a 
good example. It is important to note that updates are not 
streams and they are not computed synchronously. The 
patch never waits or polls for an update. In our 
implementation, updates can only occur between the 
computation of a block of samples. 

It is the concept of update that breaks the pure functional 
programming model. Previous work has tried to reformulate 
update sequences into stream-like values (Dannenberg, 
Desain, & Honing, 1997; Letz, Fober, & Orlarey, 2000), 
and recent work by Brandt (Brandt, 2000, 2001) has 
explored the use of type constructors to model updates 
within a functional framework. However, we believe that 
programming interactive systems can be more 
straightforward using updates than functional dependencies, 
and we want to explore how updates and functional models 
can coexist. 

Thus, the model attempts to combine elements of 
functional programming with elements of object-oriented 
programming. From the functional programming 
perspective, a patch or UG is a function that returns a signal 
value that can be passed as a parameter to other functions. 
From the object-oriented perspective, a patch or UG is an 
object that can retain state and receive messages that alter 
the state. The critical language design problem is to support 
both of these views in a form that makes it easy to reason 
about program behavior. 

4 The Dual Nature of a Patch 
To embrace both object-oriented and functional 

perspectives, a patch must have a dual nature. On the one 
hand, it is an object. One can reference the object, examine 
the state of the object, and change the state. On the other 

hand, the patch must look like a value. The value is the 
audio stream computed by the patch. In more operational 
terms, if a and b represent patches, then as objects, we can 
say: 

a.set_hz(440.0) 
and as values, we can write an expression such as: 

sum(a, b) 
Described in this way, this seems almost too simple and 
obvious, but if so, this is a strong argument that we are on 
the right track. The challenge is to extend this simple 
beginning with the abilities to define patches, pass 
parameters, and support updates, all without sacrificing 
simplicity and ease of use. 

4.1 Defining a Patch 
A patch is a computation performed by a collection of 

UGs, which are primitives built into the system. Since a 
patch has the dual nature of object and value, we define it 
using an expression within an object-oriented class 
definition. (Further syntactical simplifications are possible.) 
The following example defines a note as the product of an 
oscillator and an envelope: 

class Note(Instr): 
   def patch(hz): 
      mult(osc(hz), env(a,b,c)) 

Note that the last line is a functional-style description of a 
graph of UGs: mult , osc , and env . As with functional 
systems, evaluating this expression creates new instances of 
these UGs. Here is how this definition works: an instance of 
class Note  is created by evaluating an expression such as 
Note(440.0) . This creates an instance of class Note , 
which inherits from class Instr . Instr  defines an 
initialization method that, in turn, calls patch , passing it 
the hz  parameter. The result of patch (a reference to the 
new instance of mult ) is stored in an instance variable. 

At the lowest levels, we want graphs of UGs where each  
UG has a direct pointer to the UGs it depends on so that 
samples can be read directly from one UG by the next. What 
happens when an Instr  like Note  is passed to a UG such 
as mult ? In fact, UG functions like mult  check their 
parameters and replace Instr ’s with  the stored value (a 
reference to a UG) returned from the patch  method. Thus, 
at the lowest level where performance is critical, much of 
the abstraction falls away, and we are left with the desired 
computation graph of UG primitives. Retained and still 
visible at the higher level are objects that are used to update 
and manage the UGs. 

4.2 Updates 
Recall that updates are the point where objects and 

functional programming meet. How do we effect a change 
in a computation that is functionally specified? Somehow, 
after a patch has started, we need to go back to the patch, 
locate a specific UG, and alter some of its state. A direct 
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way to do this is to save references to UGs as they are 
instantiated. For example, we could write: 

the_osc = osc(hz) 
return mult(the_osc, env(a,b,c)) 

If  the_osc  is an instance variable of an Instr , then we 
can use it later to access the oscillator UG. This approach 
can work, but leads to an awkward programming style 
where expressions are broken up by assignments. Even if 
assignments are in-line within the expression, they are still 
bothersome, and more code must be added manually in 
order to perform updates. 

Another possibility is to mark certain parameters as 
“updatable” and to automate the rest. In this approach, the 
patch expression might look like: 

mult(osc(_hz:hz), env(a,b,c)) 
and the interpretation is as follows: “this instrument has a 
settable attribute named _hz  whose initial value is hz  (a 
parameter to patch ). Updates will be specified in terms of 
attribute/value pairs. When the _hz  attribute is updated, 
pass the value on to the instance of osc .” Note that in this 
scheme, the instance of osc remains anonymous, and all the 
apparatus to manage updates can be automatically generated 
from this expression. 

We will describe a simple implementation for 
clarification. Each primitive UG function such as osc  and 
mult  is implemented as a method in class Instr . The 
expression _hz:440.0  is compiled as update(_hz, 
440.0) , which simply creates a new object to hold the two 
values _hz  and  440.0 . The osc  method tests the 
parameter type: if it is float, the value is used for the initial 
frequency; if it is an update structure, the initial frequency is 
pulled from the structure, and in addition, an update map is 
extended to include “map updates to the _hz  attribute to the 
frequency attribute of osc,” where osc is a reference to the 
actual instance of the osc  unit generator created by this 
osc  method. Now, the program can call another method of 
Instr  as follows: 

someinstr.set(_hz, 600.0) 
and the update will be passed to the oscillator’s frequency 
(phase increment) parameter. 

4.3 Abstraction Issues 
With the techniques described above, one can create and 

assemble patches hierarchically. For example, the Note  
class can be combined with a filter to form a new class: 

class Note2 (Instr): 
   def patch(hz, cutoff): 
      lowpass(Note(_hz:hz), _co:cutoff) 

and instances will have two updateable parameters: _hz , 
and _co .  There is a question here of whether all parameters 
should be updateable. Why not simply allow something like 

a_note2.note.osc.hz = 600 ? 
The whole reason for abstraction is to hide some details 
while bringing to focus other features. Unconstrained access 
to synthesis parameters may offer great flexibility, but it 
may also hinder the management of complexity and 

ultimately become limiting. A good analogy is 
programming with parameterized procedures. One always 
defines a procedure in terms of parameters, and it is never 
possible to say “call p(5), but when p calls q(x), pass 3 as 
the actual parameter value.” Just as we cannot reach inside a 
procedure declaration to modify the code, by analogy, we 
should not reach inside a patch to manipulate it.  

Our experience with Nyquist is that, rather than make all 
parameters visible, it is sufficient to modify code to expose 
the parameters of interest. Rather than violate the 
abstraction, simply redefine it to be more suitable. In our 
language proposal, making a parameter updateable requires 
only the addition of an attribute name (and a colon), e.g. 
_co:  in front of the initial value expression. If the 
parameter of interest is several abstraction layers down, new 
parameters must also be added to the intermediate patches. 

Figures 1 and 2 illustrate the analogy between 
conventional parameter passing and update parameters. 
Figure 1 shows how values are renamed according to formal 
parameter names as nested procedures are called. Figure 2 
illustrates how an update message, setting an attribute to a 
value, propagates to nested patches, also with renaming 
according to a static definition. 

def f(x,y):
…g(x)…h(y)…

def g(a):
…u(a)…

def h(b):
….

Static Code Dynamic Execution
f(3,4)

g(3)
h(4)

x=3,y=4

a=3
b=4

u(3)

s=3

 

Figure 1. An illustration of conventional parameter 
passing. Parameters are passed from f to g and h and from 
g to u. Variable bindings are shown in boxes at right. u is a 
primitive with formal parameter s. 

class F
def patch(x,y):

…G(_x:x)…H(_x:y)…

class G
def patch(_a:a):

…u(_a:a)…

class H
def patch(b):

…

Static Code Dynamic Execution

F(3,4)

G(3)
H(4)

set _x to 5

u(3)

set _a to 5

set _s to 5

 
Figure 2. An analogous patch created by F(3,4) , which 
instantiates subpatches G and H. G includes unit generator 
u. When an update is sent to an instance of F, the update 
attribute _x  is mapped to _a  and passed to G, and then to 
_s  and passed to u. u is a unit generator with attribute _s . 
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For user-defined instruments to work like unit generator 
primitives, it is necessary to declare formal attributes. 
Notice that the patch in G includes _a:a  in its formal 
parameter list. This tells F, for example, to map a set _x 
message to a set _a message before sending it on to G, just 
as local variable x  is mapped to formal parameter a in 
Figure 1 when f  calls g. 

4.4 Non-Identity Updates 
Not all updates are simply passed through to a lower-

level patch or UG. It must be possible to filter, select, and 
transform updates when desired. For this, the object-
oriented framework is ideal for adding update “handlers” in 
the form of methods. A special syntax is defined as 
illustrated here: 

on _hz(hz): 
   set_to(id, _actual_hz, f(hz)) 

so that when an update to the _hz  attribute arrives, the 
value is bound to the parameter hz , and the following code 
body is evaluated. This code applies function f  (for 
example, f  might quantize hz  to the nearest semitone) and 
updates _actual_hz . If the patch is written to “listen” to 
_actual_hz , the patch updates will be quantized. 

More elaborate schemes, including constraint systems, 
could easily be envisioned, but this one seems to be easy to 
understand and effective. 

5 Implementation 
To explain the implementation, we need to discuss 

attributes in greater detail. Our system is an extension of 
Aura (Dannenberg & Rubine, 1995), where objects are 
named by globally unique identifiers (Aura IDs) and where 
objects respond to messages of the form “set attribute to 
value at time.” A new real-time object-oriented language, 
based on Python (Python, 2002), runs within Aura. The new 
language is named Serpent, and its objects are independent 
of Aura objects, mainly because of multithreading and 
garbage collection issues that we will ignore here. UG 
primitives are Aura objects, and are thus only accessed by 
sending updates via Aura messages. To maintain 
consistency and the advantages of globally unique names, 
Instr  objects have “shadow” Aura objects that call 
Serpent methods when Aura messages are received. Thus, it 
is possible to send Aura messages to an Instr , and thus an 
Instr  can masquerade as a first-class Aura object. 

The examples in this article are “real,” that is, executable 
Serpent code, and run with minor alterations under Aura to 
produce real-time interactive audio. A few compiler 
extensions have not been implemented, so the _hz:440.0  
notation must be entered as update(_hz, 440.0) , and 
the on _hz(hz):  notation must be entered as def 
set_hz(hz):  and a call to add_handler(_hz, 
‘set_hz’) . 

Memory and object management is an important 
problem. While Serpent employs per-process real-time 

garbage collection, Aura objects are not garbage collected 
(GC in Aura would require a distributed real-time garbage 
collector, a formidable design problem left for future work.) 
Thus, if an Instr  is instantiated at run time, it needs to be 
freed along with all the objects it created to avoid running 
out of memory. Since UG functions are member functions, 
they can build a hidden list of patch elements, so that when 
the Instr  is freed, the UGs can also be freed. Aura uses 
backpointers so that when a UG is freed, any references to it 
are automatically redirected to a source of zeros, at least 
limiting the damage of “dangling pointers.” An Instr  
should often be freed when it stops making sound. 
Mechanisms exist for envelop generators and other UGs to 
report completion via an update, which can then be used to 
free the Instr , but at present, this is an explicit 
programming task. 

5.1 Serpent Details 
Although Aura is implemented in C++, this language is 

not conducive to rapid prototyping of interactive audio 
programs. A scripting language seemed to be necessary, but 
existing languages exhibit long latencies due to garbage 
collection and thread context switching. Serpent was 
designed with a real-time garbage collector that can be 
tuned to have less than 1ms pauses. Also, Serpent is 
designed to allow multiple instances in one address space. 
Each instance can run on a separate, preemptable thread, 
allowing Serpent programs to run with very low latency. 
Although latency is tightly controlled, Serpent is much 
slower than C++, so it is not suitable for DSP at the sample 
level. However, it is sufficiently fast to configure patches of 
unit generators which are written in C++. 

Serpent is open source, cross-platform, and available 
from the author. As a real-time scripting language, it has 
many potential uses in computer music systems. All access 
to MIDI, audio, and Aura are made through external 
function calls and a few bits of conditional compilation, so 
Serpent can be configured in many ways. Serpent also has 
an interface to wxWindows (Smart & Roebling, 2001), 
bringing easy-to-program, platform-independent graphical 
interfaces to Aura or stand-along programs. Aura is also 
open source, but continues to evolve, and is not well 
documented. The author is happy to work with 
collaborators, of which there are now a few. 

6 Summary 
One of the interesting things about interactive audio 

programming systems is that they are so unlike most other 
programming systems. Subroutine and class libraries have 
not worked as well as entirely new languages and language 
models. Some existing languages and systems are widely 
used, but this seems as much a reflection of the need for 
support as an indication that problems are solved. Every 
system has well-known and widely discussed drawbacks 
and pitfalls. With this in mind, it is important to consider 
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alternatives and to explore different principles, concepts, 
and assumptions. 

The Serpent/Aura system described here is one such new 
approach. It begins with the premise that functional 
programming is essential to express signal computation. The 
main advantage of functional programming is that nested 
expressions are so readable: it is obvious that 
filter(sum(osc(…), osc(…))) is the filtered sum of two 
oscillators. The object-oriented style of building a patch is 
much less readable: 

Filter filter; 
Adder sum; 
Osc osc1(...), osc2(...); 
filter.input = sum; 
sum.input1 = osc1; 
sum.input2 = osc2; 

The Serpent/Aura organization provides “unit generator” 
abstraction in that user-defined patches behave just like unit 
generators. They return signals as values, they can be used 
to define new patches, and they can be updated by setting 
attributes to new values. It is important to note that 
instruments do not mix their outputs to some predetermined 
output channel, which would make it impossible to compose 
instruments into higher-level structures. 

While the functional programming style is natural for 
patches, imperative programming seems more natural for 
building interactive, reactive systems. The design assumes 
that it is easier, in general, to say “make the following state 
changes when the key goes down” than to say (for each 
changeable thing) “here are my functional dependencies 
upon the times at which the key goes down (along with all 
other dependencies).” 

Given these premises, we develop a model where 
computations exhibit a dual nature as both objects and 
(signal) values. The crossover between these two aspects is 
so transparent that code is quite readable, with intuitive 
semantics. References to patches, viewed as signals, can be 
assigned to variables, passed as parameters, and stored in 
data structures. Viewed as objects, patches can be updated  
(i.e. their internal state can be changed) in real time in 
response to real-time data and sensors. 

One of the key innovations in this work is the concept of 
update: an attribute/value pair directed to a patch. This is 
where object-oriented or procedural reactive programs 
“connect” to functional patch programs.  The key problem is 
that in functional programs, there is no state and no “object” 
to update. In this solution, updates become a form of 
parameter passing, where the parameter value is not 
available after the expression is instantiated. The update 
concept supports information hiding and a mapping, from 
“formal” or “external” attributes to which a patch responds, 
to “actual” or “internal” attributes of component unit 
generators and nested patches. 

Although a particular syntax and implementation was 
chosen in this work, the ideas are quite general. One could 
imagine other ways to specify update attributes and their 
mapping from patches to patch components. 

5 Conclusions 
There is much to learn about programming interactive 

audio systems effectively. I have offered a novel approach 
and described its implementation. This approach is a direct 
attack on the split between functional programming, which 
seems perfect for most synchronous signal processing tasks, 
and object-oriented programming, which seems ideal for 
interactive, event-driven programs. The result offers great 
promise as a very high-level programming language system 
for interactive audio. An implementation is available now 
for sympathetic users, and a demonstration of much larger 
and interesting examples than could be explained within the 
pages of this paper will be included in the conference 
presentation. 
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