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Abstract 
Computer music research calls for a good tool to display 
and edit music and audio information. Finding no suitable 
tools available that are flexible enough to support various 
research tasks, we created an open source tool called 
Audacity that we can customize to support annotation, 
analysis, and processing. The editor displays large audio 
files as well as discrete data including MIDI. Our 
implementation introduces a new data structure for audio 
that combines the speed of non-destructive editing with the 
direct manipulation convenience of in-place editors. This 
paper describes the data structure, its performance, 
features, and its use in an audio editor. 

1 Introduction 
Audio editors can be classified as either in-place or non-

destructive, depending on whether they modify original 
samples on disk or not.  The first audio editors, as described 
by Kirby and Shute (1988) and Moorer (1990) were non-
destructive, and they were modeled after tape-based editors, 
with similar control panels and basic operations, with the 
main advantage that edits could be changed or reversed 
later. However, these types of editors force users to keep all 

of the original audio clips that are used to create the final 
mix, and once the editing is complete, an additional step is 
required to actually produce the output audio file from the 
originals.  Another disadvantage is that as edits build up, 
more and more processing must be done in order to play the 
audio, at some point hurting real-time performance. In this 
sense, non-destructive editors are not well-suited to large 
numbers of edits or to displaying the results of arbitrary 
sound manipulations. Often, processed samples must be 
written to a new file before they can be viewed, and usually 
this implies some extra file management tasks for the user. 

As personal computers have grown faster and more 
powerful, new audio editors have emerged that more closely 
resemble a computer word-processor or computer painting 
program than a reel-to-reel tape editor.  These editors allow 
users to perform many effects on their audio files in place, 
with all changes affecting the original waveform data on 
disk. This makes editing much simpler and faster, especially 
for small files, and eliminates the extra step at the end, since 
the current copy of the entire project is always stored on 
disk. Modified waveforms can be viewed immediately since 
computed samples are directly available. Unfortunately, in-
place editors do not scale with the size of the file: editing 
operations such as cut, paste, and undo take more time as 
the size of the file grows. Today both types of audio editor 
are popular. 

Our work adopts the in-place editor model, where 
computation is performed immediately on stored samples 
and where the results of computations are immediately 
viewable on the screen. However, we introduce an 
implementation with performance that compares to a non-
destructive editor. Unlike in-place or non-destructive 
editors, our approach scales well with both the size of the 
file and the number of edits.  We have incorporated this 
approach in a cross-platform audio editor named Audacity. 
Because of its data structures, it can perform insertions and 
deletions extremely quickly, and it also supports multiple 
undo, which is also nearly instantaneous.  Unlike a non-
destructive editor, Audacity always has the current version 
of the audio file on disk, so it does not need to do any real-
time processing in order to play the audio at any time.  This 
also means that the user can safely throw away the original 
files or modify them in a different program without 
worrying that some audio project is depending on parts of 

Figure 1. Using Audacity on Linux. 



them.  The core editing functionality of Audacity is 
finished, but we are continuing to develop the program 
under the open-source model to add features and improve its 
interface. 

2 Data Structure 
In order to achieve fast editing while writing changes to 

disk, Audacity uses a Sequence data structure, a generic 
structure that was recently described and analyzed by 
Charles Crowley (1996). A Sequence is an abstraction of an 
ordered array of small values (like samples in the case of 
audio) that supports the following operations: 

 
Get(i, l): Retrieve l consecutive samples from the ith sample. 
Set(i, l): Change l consecutive samples from the ith sample. 
Insert(i, l): Insert l consecutive samples before the ith sample. 
Delete(i, l): Delete l consecutive samples from the ith sample. 

 
If the primary goal is to do disk-based editing, the strict 

algorithmic complexity of these operations (i.e. O(l)) is not 
nearly as important as the number and magnitude of disk 
operations that must take place for each editing operation. 
There may be many ways to implement a Sequence 
efficiently with respect to disk operations, but the way we 
chose is to store the samples in small blocks of size k to 2k, 
where k is suitably chosen to be small enough that 
processing one block takes negligible time, but not so small 
that the audio is split into an unreasonable number of 
blocks. The limited range of block sizes is critical to 
guarantee good performance. Very large blocks make small 
edits take too long, and very small blocks reduce 
throughput. In our implementation, we store each block in a 
separate file on disk and we found that k=16K two-byte 
samples nearly maximizes efficiency (in terms of editing 
speed). 

By making the restriction that all of the blocks in a 
Sequence must be between k and 2k samples, we guarantee 
that an insert or delete operation of any size involves 
reading or writing only a constant number of blocks on disk.  
The structure that holds the sorted list of pointers to the 
blocks and their relation to one another can be kept in 
memory, and it can be implemented as a binary tree or even 
as a simple dynamic array without sacrificing performance. 

The intuition behind the k-2k restriction is that whenever 
you’re given a block of at least k samples (but possibly 
much more), you can always split it into some number of 
blocks such that each block contains between k and 2k 
samples. 

As an example, consider the operation Delete(i, l).  By 
searching the list of blocks, we find that sample i is in block 
a, and that sample i+l is in block b.   (See Figure 2.)  The 
blocks strictly between a and b contain all deleted samples, 
so we can remove them from the list immediately (deleting 
their associated files). Then we remove the deleted samples 
from the end of a and the beginning of b, taking time at 
most 4k.  Now one or both of blocks a and b may contain 

fewer than k samples. However, now combine block a with 
block a-1, and block b with block b+1.  (If block a is the 
first, or block b is the last, then this step is not necessary 
because the first and last blocks have no minimum number 
of samples.)  It is easy to see that the number of samples in 
block a plus a-1, and similarly in b plus b+1, is between k 
and 4k.  The samples can thus be reapportioned into either a 
single block or two blocks such that all blocks in the list 
now satisfy the k-2k property, and while only modifying a 
constant number of blocks on disk.  The operation Insert(i, 
l) is more complicated than Delete, but the idea is the same. 

Splitting each audio track into blocks has many other 
benefits. By adding a reference count to each block, we 
make it possible for multiple tracks or even multiple places 
in the same track to share the same audio data, with minimal 
extra storage requirements. This also makes it easy to have 
multiple versions of an audio file around and implement an 
undo feature easily. 

This data structure also lends itself very well to 
implementing other important features of an audio editor.  
Although it is occasionally useful to see the individual 
samples of a waveform, most of the time we want to see a 
few seconds, or even minutes, of audio on the computer 
screen at once. It is impractical to scan through minutes 
worth of audio just to render an image of the waveform on 
the screen, and thus audio editors need to cache a reduction 
of the audio somewhere in order to render it more quickly 
when the level of magnification is small.  The most 
common type of reduction is to display the peaks – i.e. the 
minimum and maximum amplitudes of the samples 
represented by each pixel. 

We take advantage of our Sequence structure and store 
these reductions in each block.  By design, we have chosen 
our block size so that the time needed to process the 
samples in a single block is almost negligible.  In our 
particular implementation, for every block we calculate the 
minimum and maximum of each group of 256 samples 

Figure 2. Deleting samples from a Sequence. 
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within it, and store these numbers at the beginning of the 
file on disk for fast lookup. 

3 Performance Measurements 
In order to determine just how quickly this 

implementation of a Sequence performs in practice when 
doing many insertions and deletions, we set up the 
following benchmark: Using a fixed value for k 
(corresponding to blocks containing between 16K and 32K 
samples), we took audio files of sizes varying from 1MB to 
512MB and imported them into the data structure.  Then we 
performed 100 random edits, where each edit consists of 
cutting a random segment out of the file and inserting it at a 
different random location.  Each benchmark was automated 
and run several times on our test computer, a Linux-based 
system containing a Pentium III at 500MHz and an Ultra 
ATA hard drive. 

We had hoped to find that the total time to perform this 
sequence of operations was constant independent of total 
file size, and this is approximately true. We found actually it 
does take longer to perform operations as the data size 
increases (see Figure 3). The trend is not linear, but has a 
large jump, most likely due to disk caching: as the file size 
grows, less and less of the total file can be kept in the disk 
cache, so the probability that the samples at the boundary of 
a cut or paste are in the cache goes down. There are also 
some in-memory data structures that grow with the file size, 
but these structures are fairly small even for very large files. 

For all practical purposes, though, editing operations do 
not take time proportional to the size of the edit. We are 
pleased that the average time per editing operation is only 
about an eighth of a second, even when the total file size is 
half a gigabyte. This is over 100 times faster than the 
conventional in-place editing approach and comparable to a 
non-destructive editor as we had hoped. Users never suffer 
from long delays that are common with in-place editors. 

We also did benchmarks to verify that storing audio data 
in small files did not affect performance. By comparing 
different block sizes, we discovered that for block sizes 
below a certain threshold, performance seriously degrades, 
as the time overhead required to find and open each file 
dominates the time to read the data.  On our test system, this 
minimum size is 32K bytes (16K two-byte samples), but 
this number is dependent on the speed of the host computer 
and the operating system used.  However, as long as we 
choose block sizes larger than this minimum, performance 
is roughly the same.  This is consistent with the observation 
by Abbott (1984) that by using large enough buffers, one 
can achieve high bandwidth reading blocks of audio that are 
scattered all over the disk. 

Our only remaining cause for concern is that it is 
annoying to deal with large numbers of small data files 
manually.  While any modern operating system can handle 
tens of thousands of files in a single directory without any 
problems, the user interfaces that people use to interact with 

their file systems often have issues with this number of files, 
whether you are using UNIX command-line tools or 
Microsoft Windows Explorer.  It is also noticeably slower to 
delete a thousand files than one big one. These concerns 
should be considered when choosing whether or not to 
implement this structure, and if so, when choosing what 
block size to use. 

4 Current Status 
Audacity was originally created as an audio research 

tool. We added tools for interactive labeling of audio, MIDI 
display, and spectral analysis to support various research 
projects, including labeling and annotation of audio 
recordings, and automatic pitch extraction. 

We have also released the code to Audacity under an 
open-source license, encouraging others to study the source 
code for ideas and donate their contributions to the 
community. So far contributors have added many custom 
effects and customization options. It was our intention that 
Audacity be useful for general editing tasks in addition to 
specialized research goals. By accepting commercial plug-
ins (in the VST format), Audacity has access to high-quality 
digital effects. Audacity uses the wxWindows toolkit and 
runs natively on Linux, Win32, and Macintosh systems. 

5 Conclusions 
We have found that by storing audio data in small 

blocks, we can achieve the speed and responsiveness of 
non-destructive editors, with the convenience, simplicity of 
design, and waveform visualization advantages of in-place 
editors.  Not only can cuts and pastes be done in near 

Figure 3. These performance measurements show 
that the time to perform one editing operation, 
while small, is affected by the total size of the file, 
probably due to less disk caching. 
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constant time, but unlimited undo and redo can also be 
implemented with very little extra space overhead.  The 
entire data structure can be abstracted by a C++ class that 
allows the programmer to treat the structure as if it were a 
flat file while the class handles the internal details of the 
structure itself. 

Our approach also allows disk blocks holding portions 
of an audio file to be reused after a certain number of 
editing operations have been applied, conserving disk space 
while still allowing a certain number of steps to be undone.  
Furthermore, our approach automatically merges small 
adjacent edits into a reasonably large, single block of data to 
improve playback performance.  Finally, it encourages 
editors where users are never required to keep track of and 
manage the underlying files to get good performance or to 
minimize disk space. Because of all this, we believe that 
many can benefit from using this data structure as an 
alternative to storing audio data in a large flat file or using 
edit decision lists. 

6 Acknowledgments 
The authors are grateful to Bernard Mont-Reynaud and 

Andy Moorer for offering perspectives on digital audio 
editors. Additional thanks go to Eli Brandt for valuable 
feedback on this paper. This material is based upon work 
supported by NSF Award #0085945, an IBM Faculty 
Partnership Award, and an NSF Graduate Research 
Fellowship. 

References 
Abbott, Curtis. 1984.  “Efficient editing of digital sound on disk.”  

Journal of the Audio Engineering Society, June, pp. 394 - 402. 
Crowley, Charles. 1996.  “Data Structures for Text Sequences.” 

http://www.cs.unm.edu/~crowley/papers/sds/sds.html 
Kirby, D.G. and Shute, S.A. 1988. “The exploitation and 

realization of a random access digital audio editor.” IEEE 
Broadcasting Convention, pp. 368 – 371.  

Mazzoni, Dominic et. al.  Audacity. 2001.  (Software).  
http://www.cs.cmu.edu/~music/audacity/ 

Moorer, James A.  1990. “Hard-Disk Recording and Editing of 
Digital Audio.” 89th AES convention, September. 

 


