
1

Real-Time Systems
Concepts for
Computer Music

Roger B. Dannenberg
Carnegie Mellon University
and
Ross Bencina
Universitat Pompeu Fabra, MTG

© 2005, Ross Bencina and Roger Dannenberg2 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Introduction

� Goals
� Give practical know-how
� Present some reusable design patterns for

real-time, interactive music systems
� Review “best practices” for common problems

� Divided into a number of topic areas

2

© 2005, Ross Bencina and Roger Dannenberg3 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Basic Real-Time Concepts

� Objectives of Computing
� Why We Need/Use Concurrency
� Preemption
� Scheduling Basics
� Latency
� Design Pattern: threads with static priority
� Locks and Critical Sections
� Interaction with Priority

© 2005, Ross Bencina and Roger Dannenberg4 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Objectives of Computing

� Get the right answer (program correctness)
� Get it fast (algorithm complexity theory)
� Be on time (real-time computing)

� Faster is not always better
� Sensitive to worst case, average doesn’t

matter
� Security, Reliability, Availability,

Low-power, …

3

© 2005, Ross Bencina and Roger Dannenberg5 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Why We Need/Use Concurrency

� Real-Time systems have a mix of tasks
� Compute audio
� Respond to MIDI
� Manage Graphical User Interface
� Read files from disk
� …

� Maximum response time allowed for audio might be 1ms
� Maximum computation time for screen update may be 200 ms
� Maximum latency in the operating system to open a file may be

100ms
� How can we respond to audio input quickly if we are in the

middle of a long graphics update or file access?

© 2005, Ross Bencina and Roger Dannenberg6 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Preemption

� When two or more programs are “running”
� and there is only one CPU,
� one program can be halted,

� its registers are saved
� all other program state is saved or retained

� another program can continue
� by restoring all registers and any other state

� How do we decide what to run when?

4

© 2005, Ross Bencina and Roger Dannenberg7 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Scheduling Basics

� Standard OS tries to be “fair” and responsive
� Give each process an equal “slice” of time
� May detect compute-bound processes and run them in

the background (when other processes are not ready
to run)

� Real-time OS may try to be “on time”
� Admission schemes only let a new process run if

resources are available
� Earliest Deadline First – optimal if all deadlines can be

met
� Static Priority – run the process with the highest priority

of all ready-to-run processes

© 2005, Ross Bencina and Roger Dannenberg8 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Latency

� How long does it take to deliver results?
� Sources:

� Hardware (usually very small), e.g. audio anti-aliasing filters,
sample buffers

� Interrupt latency
� System may be processing higher-priority device
� System my have interrupts disabled for a time

� Kernel latency, deferred procedure calls
� Systems often defer processing from the hardware interrupt to

a software level (interrupts become more responsive, actual
response time may suffer)

� Process-scheduling latency
� How long before a ready-to-run process actually runs

� Application latency
� How long before the application computes the result

5

© 2005, Ross Bencina and Roger Dannenberg9 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Latency (2)

� Latency can vary widely among systems
� Modern systems are being tuned to deliver

about 1ms latency (worst case) to highest
priority process.

© 2005, Ross Bencina and Roger Dannenberg10 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Design Pattern: Threads With
Static Priority
� Description:

� Multiple tasks.
� Some must be completed quickly (with low latency)
� Some take long to compute

� Computation time is small compared to allowable
latency

� Design Solution:
� Divide tasks into a small number of latency classes

(low latency, medium latency, etc.)
� Create one thread for each latency class
� Schedule threads with static (real-time) priorities:

lowest latency class gets highest priority

6

© 2005, Ross Bencina and Roger Dannenberg11 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Locks and Critical Sections

� A classic problem is the critical section:

� Solution:
if balance > withdrawal
then balance = balance – withdrawal
else raise “overdraft”

© 2005, Ross Bencina and Roger Dannenberg12 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Locks and Critical Sections

� A classic problem is the critical section:

� Solution:
Process A Process B

release(account_lock)

lock(account_lock)
if balance > withdrawal
then balance = balance – withdrawal
else raise “overdraft”

7

© 2005, Ross Bencina and Roger Dannenberg13 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Interaction with Priority

� Suppose a low-priority thread L has the lock.
� A medium-priority thread M starts to run.
� A high-priority thread H starts to run and tries to

acquire the lock.
� H blocks, so M resumes.
� H blocked as long as M runs! (Priority Inversion)
� One solution: Priority Inheritance

� Modern Real-Time Operating systems implement it
� Does WinXP, Linux, Mac OS X?

� Another solution: no locks! (discussed later)

© 2005, Ross Bencina and Roger Dannenberg14 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Basic Digital Audio Concepts

� PC Audio Systems, DMA
� Buffering Schemes
� Userspace Audio APIs: Synchronous/blocking

vs. Asynchronous/callback APIs
� PortAudio: an abstraction of audio APIs
� PortAudio example: playing a sine wave

8

© 2005, Ross Bencina and Roger Dannenberg15 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

PC Audio Systems & DMA

� Handling a CPU interrupt for each sample
isn't practical (context switching overhead...)

� Typical solution:
� Audio Hardware exchanges data with main

memory using DMA
� CPU gets interrupts when buffers are

full/empty
� These interrupts can lead to user-space code

being executed (eventually)

© 2005, Ross Bencina and Roger Dannenberg16 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Buffering Schemes

� Hardware buffering schemes include:
� Circular Buffer
� Double Buffer
� Buffer Queues

� these may be reflected in the user level API
� Poll for buffer position, or get interrupts when

buffers complete
� Typically audio code generates samples into a

buffer, it doesn't care about the buffering
scheme.

� Exception: when buffer lengths don't factor well

9

© 2005, Ross Bencina and Roger Dannenberg17 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

User space Audio APIs:
Synchronous/blocking vs Asynchronous/callback APIs

� Blocking APIs
� Typically provide primitives like read() and write()
� Can be used with select() to interleave with other operations
� Users manage their own threads for concurrency
� Great if your OS threading services can provide real-time

guarantees (e.g. SGI)

� Callback APIs
� User provides a function pointer to be called when samples

are available/needed
� Concurrency is implicit, using locks or blocking functions

may not be possible or desirable
� You can assume the API is doing its best to be real-time

© 2005, Ross Bencina and Roger Dannenberg18 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

PortAudio: an abstraction of audio APIs

� PortAudio wraps multiple Host APIs providing a
unified and portable interface for writing real-time
audio applications

� Main entities:
� Host API – a particular user-space audio API (ie JACK,

DirectSound, ASIO, ALSA, WMME, CoreAudio, etc.)
� ��������	
���
�������������	�������
�������������	
�����

� Device – a particular device, usually maps directly to a host
API device. Can be full or half duplex depending on the host

� �����	��
���
����������	���������
���������	��
�����

� Stream – an interface for sending and/or receiving samples
to an opened Device

� ��������
����������������
�����������������

� See http://www.portaudio.com

10

© 2005, Ross Bencina and Roger Dannenberg19 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

PortAudio example: generating a sine wave

����������������
�������	�� ��!"#��
$#%&
	����'���&

(&

����	��	�����������)��*����������	+�,	����!�����
���	+�
,������!�����

���	-��+����-����������!�����
�������
������������)��*�	��
���,��	��
���

������������)��*.��-��������.��-�
���	+�,������������
���������,+����/����������,���������&
������,����/�������,�������!�����&

�����	���	/0&�	1���������!�����&�	22����
�������������/�+���34�	�� �+���34�'���22�%&
,���22�/�������&��5,������,5
,���22�/�������&��5,��	-'��,5
	���+���34�'����4/���!"#��
$#���+���34�'����3/���!"#��
$#&

(
�������������	���&

(

© 2005, Ross Bencina and Roger Dannenberg20 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

PortAudio example: running a stream (1)

	�����	����	+�
�

���������+���&
�����	���	/0&�	�1���!"#��
$#&�22	��

+���6�	�� 	%�/��	���7��
�,�8�,�
��+��)���	5�+��)�����!"#��
$#���&
+���6�'����/�0&

���
�	�	��	9����
�	�	��	9����
�	�	��	9����
�	�	��	9���&

�����������������������������������&
����������������6+��	���/�����������������������	����&
����������������6�'�����������/�8&������
����������������6������.������/���.����:8&
����������������6��--����+"�����;�/�

���������	��
������������	��
������������	��
������������	��
���������������������6+��	����3
4+������"�<������"�����;&
����������������6'�����	����	�	�������
����/�=>""&

666����

11

© 2005, Ross Bencina and Roger Dannenberg21 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

PortAudio example: running a stream (2)

666

���������,������&
��?������
�=>""�5,����	�����,5
��

?����������������

��7�"#�@��#
�.@�7#���#@�!>..#@
�����	�����5,���-�,5
������
��������)��*
�?+�����&

��&

��	����A���;�����B+������+�6C�A
�=>7��#��=����&
�������=>7��#��=����&

��&
��&
�������	�����������	�����������	�����������	������&

(

© 2005, Ross Bencina and Roger Dannenberg22 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Real-Time Memory Management

� Conventional Memory Management
� Real-Time Memory Management Strategies
� How Does malloc() Work?
� Memory Allocation in Aura
� Design Pattern: Memory Allocation
� Reference Counting
� Real-Time Garbage Collection
� Other Memory Issues

12

© 2005, Ross Bencina and Roger Dannenberg23 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Conventional Memory
Management Issues

� alloc(n): return address of n contiguous bytes
� free(ptr): free a block previously allocated
� external fragmentation – wasted space between

allocated blocks of memory
� internal fragmentation – wasted space when

allocated block is bigger than request (e.g. power of 2)
� Is the memory pool shared by threads?

� Is memory allocation in a critical section?
� Are freed blocks consolidated? At what cost?
� Does alloc search for a good block? At what cost?
� Can compaction operation eliminate fragmentation?

© 2005, Ross Bencina and Roger Dannenberg24 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Real-Time Memory Management
Strategies
� Static allocation – allocate what you need when

program initializes.
� Example: Aura copies and converts floating point samples from

multiple buffers into interleaved 16-bit samples before playing them.
Rather than allocating temporary space before each write, Aura
pre-allocates a big buffer and reuses it.

� Allocate but do not free – allocate from a big free
memory block. Do not free anything.

� Allocate only in non-real-time thread and send
pointers to real-time thread.

� Traditional alloc(n) and free(p) operations.
� Reference counting to replace free(p)
� Garbage collection to replace free(p)

13

© 2005, Ross Bencina and Roger Dannenberg25 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

How Does malloc() Work?

� Single free memory pool protected by locks.
� Size of allocated block is stored before block:

� Once allocated, blocks are not moved
� Allocation and free algorithms are part of C

run-time library

length
Pointer returned by alloc()

© 2005, Ross Bencina and Roger Dannenberg26 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Memory Allocation in Aura

per-thread
memory

pool

Free Lists
8

16
24
32
40
48
56
64
…

1024
2048
4096

…

New blocks allocated
here when a free list is
empty (no block splitting)

Note: at some point,
block sizes go up
exponentially – more
internal fragmentation,
but better chance of
reusing freed memory.

Note: when pool is
exhausted call
malloc(). But ideally,
allocate a big enough
pool to begin with.

alloc(n) looks to free
list with smallest
blocks >= n

Each thread has
its own memory
pool – no locks,
no critical section

14

© 2005, Ross Bencina and Roger Dannenberg27 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Design Pattern: Memory Allocation

� Description:
� Real-time demands constant time allocate and free

operations
� Memory efficiency is not critical
� Most allocations likely to be from a relatively small set

of different sizes
� Solution:

� Linked lists of free memory blocks
� Each list contains one size of block
� If there are multiple threads, keep memory pools

separate to avoid lock overhead and possible priority
inversion

© 2005, Ross Bencina and Roger Dannenberg28 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Reference Counting

� Every memory object keeps track of the number of
incoming pointers

� When count goes to zero, free the block
� When assigning to a pointer: decrement ref count of

old value and increment ref count of new value

� Can be good when objects are shared
� Problems:

� Costly to assign pointers to new values
� Free operation can have unbounded cost

� Because many dependent objects can be freed

1

1

1

15

© 2005, Ross Bencina and Roger Dannenberg29 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Real-Time Garbage Collection

� Mark all reachable objects
� Scan all objects: any object unmarked is moved to free list
� GC can be performed incrementally
� Marking must be very carefully coordinated with the application

(the “mutator”)
� Usually, writes to pointers must run some code to maintain

consistency
� Some variants “mark” objects by copying them from one half of

address space to other
� Getting this right and debugging is a BIG job.
� Some real-time garbage collectors for C++ may be available.
� Serpent and Supercollider are two examples with GC integrated

into real-time scripting languages.

© 2005, Ross Bencina and Roger Dannenberg30 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Other Memory Issues

� Virtual memory – it may be expensive to
touch newly allocated memory because it
may not be mapped to physical memory.

� Mapping to physical memory may require
zeroing memory for security reasons.

16

© 2005, Ross Bencina and Roger Dannenberg31 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Timed Events

� Computer music computation has mix of:
� Very heavy but periodic audio computation
� Very light but non-periodic event computation

� (MIDI, envelope breakpoints, start, stop,
sequenced events and updates, etc.)

� Perhaps some high-latency activities:
� File I/O, Network I/O

� Let’s focus on non-periodic events

© 2005, Ross Bencina and Roger Dannenberg32 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Concurrency without locks?

� Lock-based designs aren't a good solution for
real-time applications unless the OS supports
real-time thread scheduling.

� How can we communicate data between
threads safely without locks?
� Atomic values

� Limited applicability, easy to misuse
� Lock-free queues

17

© 2005, Ross Bencina and Roger Dannenberg33 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Queue Topics

� Queue Usage
� Applications
� Simple single-reader, single-writer lock-free

queue
� Variations
� Other Considerations
� Multiple CPU issues (memory ordering)

© 2005, Ross Bencina and Roger Dannenberg34 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Queue Usage

� Communicate between asynchronous processes
� Producer pushes items, consumer polls for items

“sometime later”
� Queues can contain:

� Audio samples
� Fixed size data blocks e.g. MIDI messages,

Message records (message id, params), pointers
to messages

� Variable length messages
� Bundles of messages to execute atomically

� Lock-free implementations exist

18

© 2005, Ross Bencina and Roger Dannenberg35 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Some Applications

� Send samples to another thread so it can
perform blocking operations with them (write
to disk/network)

� Send MIDI messages for interpretation by an
audio callback

� Send commands to another thread for
execution
� (see SC server for a good example of this)

� Send VU meter data to a GUI thread for
display

© 2005, Ross Bencina and Roger Dannenberg36 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Simple single-reader single-writer
lock-free queue

� Ring buffer with one read pointer and one
write pointer:

� Data is available when read pointer != write
pointer

� Queue is full when read pointer == write
pointer – 1

Read Write

19

© 2005, Ross Bencina and Roger Dannenberg37 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Variations

� Linked lists
� Pro: Variable size queues
� Con: Need to allocate links somehow

� Semaphores to signal full/empty state for
blocking readers and/or writers

� Connecting more than one reader/writer:
� Combine locks with srsw queues
� Use one srsw queue for each writer-reader pair
� Use multiple reader multiple writer queues

© 2005, Ross Bencina and Roger Dannenberg38 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Other Considerations

� Don't forget overflow (fixed size queues) or
node allocation (variable length queues)

� Programs designed around asynchronous
messaging tend to be organised differently
from those using synchronous execution –
plenty has been done in this field, it's worth
reading about it.

� Some languages are built around
asynchronous message passing with no
shared-state e.g. Erlang

20

© 2005, Ross Bencina and Roger Dannenberg39 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Multiple CPU lock-free issues

� Lock free algorithms assume in-order
memory access

� Compilers don't guarantee in-order access
(volatile is not enough!)

� Hardware can reorder memory access: OK
for 1 cpu, leads to inconsistent view of
memory on multiprocessor systems.

� Therefore, use memory barriers, or atomic
access APIs which use them (e.g.
Interlocked* API on windows)

© 2005, Ross Bencina and Roger Dannenberg40 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Logical Clock Systems

� Timed Events
� Scheduling and Dispatching
� Accurate Timing With No Accumulated Error
� Scheduler/Dispatcher
� Logical Time

21

© 2005, Ross Bencina and Roger Dannenberg41 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Scheduling and Dispatching

� schedule(time_stamp, function_pointer,
parameter_1, parameter_2, …)

� Call on schedule should return immediately
� In the future, at time_stamp, there should be

a call to (*function_pointer)(parameter_1,
parameter_2, …)

� Terminology:
� The scheduler is a software module
� The function and parameters are an event
� Calling the function is dispatching the event

© 2005, Ross Bencina and Roger Dannenberg42 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

(In)accurate Timing

� Consider this function to play a sequence of
notes:

� Possible outcome:

fir
st

ca
ll t

o

no
te
_s
eq

tim
e t

o c
all

no
te
_s
eq

ac
tua

l c
all

 tim
e

void note_seq() {

play_a_note_via_midi();

schedule(get_time() + 100, // in ms

¬e_seq);

}

ca
ll t

o g
et
_t
im
e

100 ms100 ms

?

100 ms

Unless functions run
infinitely fast, timing
error will accumulate

22

© 2005, Ross Bencina and Roger Dannenberg43 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Design Pattern: Accurate Timing
With Timestamps

void note_seq() {
play_a_note_via_midi();
schedule(NOW + 100, // in ms

¬e_seq);
}

NOW = scheduled_wakeup_time;
(*event->fn_ptr)(event->p1, event->p2,
…);

� Scheduler records “ideal” time

� Future scheduling
in terms of
“ideal” time,
not real time.

© 2005, Ross Bencina and Roger Dannenberg44 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Extension for Accurate MIDI Timing

� Problem: you may not see MIDI data immediately, JIJO: (timing)
jitter in, jitter out

� Solution:
� Get timestamps from MIDI device driver (e.g. use PortMidi

and use incoming timestamps)
� Treat (accurate) MIDI timestamps as “NOW”
� If response to MIDI is immediate

� E.g. MIDI controls audio synthesis

� Then one option is to delay the response a few milliseconds.
� PortMidi output can automatically add a time offset and

schedule MIDI output in the driver to reduce output jitter
� Tradeoff between Jitter and Latency

23

© 2005, Ross Bencina and Roger Dannenberg45 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Fast Scheduling and Dispatching

� Calendar Queue

� Expected case is O(1), worst case is O(n)

0

1

2

3

…

n-1

© 2005, Ross Bencina and Roger Dannenberg46 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Alternative: Priority Queue

� Various structures allow log(n) insert/delete:
� Red-Black Trees
� Heap

� To Schedule: insert into priority queue
� To Dispatch: remove earliest item from queue

24

© 2005, Ross Bencina and Roger Dannenberg47 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Logical Time (or Virtual Time)

� Used for
� tempo control
� clock synchronization
� speed control/time-scaling

� Mapping from logical/virtual time to real time:

v0 virtual time

re
al

 ti
m

e

r0

s = slope

r(v) = r0 + (v – v0)s
v(r) = v0 + (r – r0)/s

set_tempo(new_s, at_v):
r0 = r(at_v)
v0 = at_v
s = new_s

© 2005, Ross Bencina and Roger Dannenberg48 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Implementing Virtual Time

� Build on real-time scheduler/dispatcher
� Logical time system represented by object with:

� priority queue
� r(v) – virtual time to real time
� v(r) – real time to virtual time

lts::schedule(time, event)
queue.insert(time, event)
v = queue.next_time()
schedule(r(v), lts_wakeup, lts)

lts_wakeup(lts)
lts->wakeup()

lts::wakeup()
v = queue.next_time()
if (r(v) <= NOW)

VNOW = v
dispatch(queue.get())
v = queue.next_time()
schedule(r(v), lts_wakeup, lts)

25

© 2005, Ross Bencina and Roger Dannenberg49 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Clock Synchronization

� The Problem
� Simple Network Clock Synchronization
� High Resolution vs. High Latency
� Synchronizing to MIDI clocks
� Other Clock Issues

© 2005, Ross Bencina and Roger Dannenberg50 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

The Problem

� Clocks are based on crystal oscillators
� Machines can have multiple clocks:

� Time-of-day clock
� CPU clock (e.g. 3.3 GHz)
� Audio sample clock

� Crystals are accurate only to about 0.1%
� Crystal clock speed varies with temperature
� 10 minutes x 0.1% x 2 = 600s/500 = 1.2s (!)

26

© 2005, Ross Bencina and Roger Dannenberg51 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Simple Network Clock
Synchronization

� On the other hand, drift in 1s = 1/500 = 2ms
� So resynchronize every second or so…
� Simple protocol:

� Designate a master clock available at “server”
� Clients adjust their clocks as follows:

t0 = get_time()
tm = get_time_from_master()
t1 = get_time()
if (t1 < t0 + 5ms) {

tm += (t1 – t0) / 2
bump_local_time_by(tm – t1)

}

© 2005, Ross Bencina and Roger Dannenberg52 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

High Resolution and High Latency

� Simple protocol can break down due to:
� Need for high resolution
� High network latency

� Some solutions (see the literature):
� Average computed clock skew over multiple queries to

the master
� Estimate the difference in clock rates as well as the

difference in clock times
� Estimate network typical network latency to help

determine outliers
� Systems with many clients be based on broadcasts

from master – a very different approach

27

© 2005, Ross Bencina and Roger Dannenberg53 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Synchronizing with MIDI
Clocks

� Why?
� Performance involving multiple systems /

instruments
� How?

� Timestamp MIDI clocks
� Predict MIDI phase at buffer playback times
� Generate audio according to predicted phase

© 2005, Ross Bencina and Roger Dannenberg54 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

MIDI Clock Phase Prediction

See Bencina, R. (2003). “PortAudio and media synchronization. In
Proceedings of the 2003 Australasian Computer Music Association
(ACMC'03).

28

© 2005, Ross Bencina and Roger Dannenberg55 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Implementation Issues

� Multiple time bases, one OS, e.g.
� Soundcard sample clock
� API timers of unknown origin
� CPU cycle counter (high precision, unknown

frequency)
� OS timers (possibly low precision)

� This can lead to skew problems
� Different APIs use different timers, would be

good to be interoperable but no good
solutions exist.

© 2005, Ross Bencina and Roger Dannenberg56 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Modular Audio Processing

� Unit generators
� Graph evaluation
� Evaluation mechanisms
� Block-based processing
� Vector allocation strategies
� Variations

29

© 2005, Ross Bencina and Roger Dannenberg57 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Unit generators

� A sample generating or processing function,
and its acompanying state. e.g. Oscillators,
filters, etc
� f(state, inputs) -> (state, outputs)
� ���������	
���
�����������������������	����������������������

� In a dynamic system, the flow between units
is explicitly represented by a “synchronous
dataflow graph”

© 2005, Ross Bencina and Roger Dannenberg58 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Graph evaluation

� Generators which produce signals must be
evaluated before the generators which
consume those signals, therefore: execute in
a depth-first order starting from sinks.

(1) (2)

(3)

(4)

(5)

(6)

30

© 2005, Ross Bencina and Roger Dannenberg59 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Evaluation mechanisms

� Direct graph traversal
� Simple, dynamic
� Can't modify the graph while evaluating

� Execution sequence (list of function pointers,
polymorphic object pointers, bytecodes)
� Possibly more efficient, harder to modify
� Decouples evaluation from traversal. Graph

can be modified during traversal, e.g. different
language for graph (e.g. SC synthdefs)

© 2005, Ross Bencina and Roger Dannenberg60 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Block-based processing

� Process arrays of input samples and
produces arrays of output samples

� Pros: more efficient (loop unrolling, SIMD etc)
� Cons: latency, feedback loops incur blocksize

delay
� Vector size:

� fixed (c.f. Csound krate)
� variable (allows sample-accurate scheduling of

notes, envelope breakpoints, etc.)

31

© 2005, Ross Bencina and Roger Dannenberg61 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Vector allocation strategies

� One buffer/vector per generated signal, i.e.
for every Unit Generator output.

� Reuse buffers once all sinks have consumed
them (c.f. Graph colouring register allocation)

© 2005, Ross Bencina and Roger Dannenberg62 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Feedback

� Don't visit a node more than once during
graph traversal

� Save output from previous evaluation pass so
it can be consumed during next evaluation

� Consider compression/saturation in feedback
loops to avoid bad stuff happening

32

© 2005, Ross Bencina and Roger Dannenberg63 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Variations

� Hierarchical block sizes e.g. process
subgraphs with smaller blocks to reduce
feedback delay

� Synchronous multi-rate: separate evaluation
phases using the same or different graphs
(e.g. Csound krate/arate passes).

� Combine synchronous dataflow graph for
audio with asynchronous message
processing for control (e.g. Max/MSP)

© 2005, Ross Bencina and Roger Dannenberg64 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Case Study: Audio over Network

Key Idea: Accurately-timed event-based scheduling
Event = computation of 32 sample audio block (every 32/44100 s)
Master clock (at sink) based on audio sample clock (no drift

between clock and sample stream)
Assume some worst-case network latency (e.g. 50 ms = 0.05 s)
Schedule audio for time t to be computed at source at t – 0.05 s
Buffer source audio into 10 block (320 sample = 1280 byte blocks)
Send to sink every 10th block time (every 320/44100 ≈ 7.2 ms)

Source Sink

33

© 2005, Ross Bencina and Roger Dannenberg65 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Audio over Network Discussion

� Note that there is no flow control,
acknowledgements, or extra messages.

� Use TCP/IP
� Pro: reliable protocol
� Con: lost data recovery is not “real-time”
� Pro: packets almost never lost

� Limit the message rate
� Numbers are conservative choices – depends

on network load, machine load, etc.

© 2005, Ross Bencina and Roger Dannenberg66 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Case Study:
Effects Processor with Graphical
Control
� Separate effect into the part which runs in real-time and

the part which exists in the graphics thread
� Keep state in both threads and mirror it (Proxy pattern)
� Message queue with commands to change values

� messages could be paramId, value pairs, or functor
objects (command pattern)

� In VST where the setValue call could come from any
thread you need to know which thread you are in to know
which methods to call.

� Alternative: use atomic updates to shared synthesis
variables (makes it hard to do a group of updates
together)

34

© 2005, Ross Bencina and Roger Dannenberg67 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Aura Architecture

� Goal 1: General platform for interactive
multimedia

� Goal 2: Open-ended, extensible for video,
graphics, networking, software systems.

� Based on Real-Time Distributed Object
System

� Objects have globally-unique 64-bit names
� Asynchronous messages
� Location independent

© 2005, Ross Bencina and Roger Dannenberg68 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Communication with Aura

� Remote Method Invocation
� send_set_hz_to(osc, 440.0)
� Automatically generated macros to send

messages
� Receiver is indicated by globally unique ID

� Location Transparency
� Object in same thread – synchronous call
� Object in same address space – msg queue
� Object on remote machine – TCP/IP to msg

queue

35

© 2005, Ross Bencina and Roger Dannenberg69 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Messages and
Location Transparency

Machine 1 Machine 2

Zone 1

Zone 2

Obj1Obj2

Obj3

Zone 1

Zone 2

Obj4

Obj5

A

B
C

© 2005, Ross Bencina and Roger Dannenberg70 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Output Ports

Obj1

Obj2

Obj3

Obj4send_set_hz_to(osc, 440.0)
vs.

send_set_hz(440.0)

36

© 2005, Ross Bencina and Roger Dannenberg71 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Aura Details

� Each Zone (thread + memory + scheduler):
� Memory pool and real-time allocator
� Calendar Queue-based scheduler
� Time (seconds) based on audio sample count

� Pre-processor generates:
� RPC message handlers
� Stubs to pack parameters into msgs and send
� Macros to make them easy to call

� Structure by latency, not function

© 2005, Ross Bencina and Roger Dannenberg72 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Serpent Scripting Language

� Serpent virtual machine (everything the
program/programmer sees) is a C++ object

� Multiple instances of Serpent give you multiple
independently running systems

� One Serpent virtual machine per Aura zone
� Absolutely no shared variables, so use Aura

messages
� Serpent objects can be tied to special Aura objects

that relay Aura messages
� Real-time garbage collection limits GC latency to a

constant time (can be set well below 1ms)

37

© 2005, Ross Bencina and Roger Dannenberg73 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Audio Mulch Architecture

� Ross

© 2005, Ross Bencina and Roger Dannenberg74 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

Wrap-Up

� Thanks for attending!
� We’ll be happy to discuss these and other

issues throughout the ICMC and be email
afterward.

