Real-Time Systems
Concepts for
Computer Music

Roger B. Dannenberg
Carnegie Mellon University

and

Ross Bencina

Universitat Pompeu Fabra, MTG

Introduction

Goals

Give practical know-how

Present some reusable design patterns for
real-time, interactive music systems

Review “best practices” for common problems
Divided into a number of topic areas

2 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Basic Real-Time Concepts

Objectives of Computing
Why We Need/Use Concurrency
Preemption

Scheduling Basics

Latency

Design Pattern: threads with static priority
Locks and Critical Sections

Interaction with Priority

3 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Objectives of Computing

Get the right answer (program correctness)
Get it fast (algorithm complexity theory)
Be on time (real-time computing)
Faster is not always better
Sensitive to worst case, average doesn’t
matter
Security, Reliability, Availability,
Low-power, ...

4 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Why We Need/Use Concurrency

Real-Time systems have a mix of tasks
Compute audio
Respond to MIDI
Manage Graphical User Interface
Read files from disk

Maximum response time allowed for audio might be 1ms
Maximum computation time for screen update may be 200 ms

Maximum latency in the operating system to open a file may be
100ms

How can we respond to audio input quickly if we are in the
middle of a long graphics update or file access?

5] ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Preemption

When two or more programs are “running”
and there is only one CPU,
one program can be halted,

its registers are saved

all other program state is saved or retained
another program can continue

by restoring all registers and any other state
How do we decide what to run when?

6 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Scheduling Basics

Standard OS tries to be “fair” and responsive
Give each process an equal “slice” of time
May detect compute-bound processes and run them in
the background (when other processes are not ready
to run)

Real-time OS may try to be “on time”

Admission schemes only let a new process run if
resources are available

Earliest Deadline First — optimal if all deadlines can be
met

Static Priority — run the process with the highest priority
of all ready-to-run processes

7 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

How long does it take to deliver results?
Sources:
Hardware (usually very small), e.g. audio anti-aliasing filters,
sample buffers
Interrupt latency
System may be processing higher-priority device
System my have interrupts disabled for a time
Kernel latency, deferred procedure calls

Systems often defer processing from the hardware interrupt to
a software level (interrupts become more responsive, actual
response time may suffer)

Process-scheduling latency

How long before a ready-to-run process actually runs
Application latency

How long before the application computes the result

8 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Latency can vary widely among systems

Modern systems are being tuned to deliver
about 1ms latency (worst case) to highest
priority process.

9 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Design Pattern: Threads With
Static Priorit

Description:
Multiple tasks.
Some must be completed quickly (with low latency)
Some take long to compute

Computation time is small compared to allowable
latency

Design Solution:

Divide tasks into a small number of latency classes
(low latency, medium latency, etc.)

Create one thread for each latency class

Schedule threads with static (real-time) priorities:
lowest latency class gets highest priority

10 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Locks and Critical Sections

A classic problem is the critical section:

Solution: , _
if balance > withdrawal
then balance = balance — withdrawal
else raise “overdraft”
11 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Locks and Critical Sections

A classic problem is the critical section:

lock(account_lock)

if balance > withdrawal
then balance = balance — withdrawal
else raise “overdraft”

release(account_lock)

Solution:

12 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Interaction with Priority

Suppose a low-priority thread L has the lock.
A medium-priority thread M starts to run.

A high-priority thread H starts to run and tries to
acquire the lock.

H blocks, so M resumes.

H blocked as long as M runs! (Priority Inversion)

One solution: Priority Inheritance
Modern Real-Time Operating systems implement it
Does WinXP, Linux, Mac OS X?

Another solution: no locks! (discussed later)

13 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Basic Digital Audio Concepts

PC Audio Systems, DMA
Buffering Schemes

Userspace Audio APIs: Synchronous/blocking
vs. Asynchronous/callback APls

PortAudio: an abstraction of audio APls
PortAudio example: playing a sine wave

14 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

PC Audio Systems & DMA

Handling a CPU interrupt for each sample
isn't practical (context switching overhead...)
Typical solution:

Audio Hardware exchanges data with main
memory using DMA

CPU gets interrupts when buffers are
full/empty

These interrupts can lead to user-space code
being executed (eventually)

15 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Buffering Schemes

Hardware buffering schemes include:
Circular Buffer sS———————p
Double Buffer <——-—— P
Buffer Queues T+ P

these may be reflected in the user level API

Poll for buffer position, or get interrupts when

buffers complete

Typically audio code generates samples into a
buffer, it doesn't care about the buffering
scheme.

Exception: when buffer lengths ¢ dontfactor weII

16 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music

User space Audio APIs:

Synchronous/blocking vs Asynchronous/callback APIs

Blocking APls
Typically provide primitives like read() and write()
Can be used with select() to interleave with other operations
Users manage their own threads for concurrency
Great if your OS threading services can provide real-time
guarantees (e.g. SGI)

Callback APIs

User provides a function pointer to be called when samples
are available/needed

Concurrency is implicit, using locks or blocking functions
may not be possible or desirable

You can assume the APl is doing its best to be real-time

17 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

PortAudio: an abstraction of audio APls

PortAudio wraps multiple Host APls providing a
unified and portable interface for writing real-time
audio applications

Main entities:

Host API — a particular user-space audio API (ie JACK,
DirectSound, ASIO, ALSA, WMME, CoreAudio, etc.)
PaHostApiInfo, Pa_GetHostApicCount(), Pa_GetHostApiInfo()
Device — a particular device, usually maps directly to a host
API device. Can be full or half duplex depending on the host
pPaDeviceInfo, Pa_GetDeviceCount(), PaGetDeviceInfo()
Stream — an interface for sending and/or receiving samples

to an opened Device
Pastream, Pa_OpenStream(), Pa_StartStream()

See http://www.portaudio.com

18 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

PortAudio example: generating a sine wave

struct TestbData{
float sine[TABLE_SIZE];
int phase;

static int TestCallback(const void *inputBuffer, void
*outputBuffer,
unsigned long framesperBuffer, const
PastreamcCallbackTimeInfo* timeInfo,
PastreamCallbackFlags statusFlags, void *userbData) {
TestData *data = (TestData*)userData;
float *out = (float*)outputBuffer;

for(int i=0; i<framespPerBuffer; i++) {
float sample = data->sine[data->phase++];
out++ = sample; / left */
out++ = sample; / right */
if(data->phase >= TABLE_SIZE) data->phase -= TABLE_SIZE;

return paCont'i nue;
19 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

PortAudio example: running a stream (1)

int main(void)

TestData data;

for(int i=0; i < TABLE_SIZE; ++i)
data.sine[i] = sin(M_PI * 2 *

((doubTle)i/(doubTe)TABLE_SIZE));

data.phase = 0;

Pa_Initialize(Q);

PaStreamParameters outputParameters;

outputParameters.device = Pa_GetDefaultOutputDevice();

outputParameters.channelCount = 2;

outputParameters.sampleFormat = paFloat32;

outputParameters.suggestedLatency =

Pa_GetDeviceInfo(outputParameters.device)-

>defaultLowOutputLatency;

outputParameters.hostApiSpecificStreaminfo = NULL;

20 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

10

PortAudio example: running a stream (2)

PaStream *stream;
Pa_OpenStream(&stream, NULL /* no input */,
&outputParameters,
SAMPLE_RATE, FRAMES_PER_BUFFER, pacClipoff /*flags*/,
TestCallback, &data);

Pa_StartStream(stream);

printf("Play for %d seconds.\n", NUM_SECONDS);
sTeep(NUM_SECONDS);

Pa_StopStream(stream);

Pa_CloseStream(stream);
Pa_Terminate();

21 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Real-Time Memory Management

Conventional Memory Management
Real-Time Memory Management Strategies
How Does malloc() Work?

Memory Allocation in Aura

Design Pattern: Memory Allocation
Reference Counting

Real-Time Garbage Collection

Other Memory Issues

22 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

11

Conventional Memory
Management Issues

alloc(n): return address of n contiguous bytes
free(ptr): free a block previously allocated

external fragmentation —wasted space between
allocated blocks of memory

internal fragmentation — wasted space when
allocated block is bigger than request (e.g. power of 2)

Is the memory pool shared by threads?
Is memory allocation in a critical section?
Are freed blocks consolidated? At what cost?
Does alloc search for a good block? At what cost?
Can compaction operation eliminate fragmentation?

23 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Real-Time Memory Management
Strategies

Static allocation — allocate what you need when
program initializes.
Example: Aura copies and converts floating point samples from

Rather than allocating temporary space before each write, Aura
pre-allocates a big buffer and reuses it.

Allocate but do not free — allocate from a big free
memory block. Do not free anything.

Allocate only in non-real-time thread and send
pointers to real-time thread.

Traditional alloc(n) and free(p) operations.
Reference counting to replace free(p)

Garbage collection to replace free(p)

24 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

multiple buffers into interleaved 16-bit samples before playing them.

12

How Does malloc() Work?

Single free memory pool protected by locks.
Size of allocated block is stored before block:

length

Pointer returned by alloc()

Once allocated, blocks are not moved

Allocation and free algorithms are part of C
run-time library

25 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Memory Allocation in Aura
Free Lists) Each thread has
8 "L_'JE its own memory
pool — no locks,
16 \’D 17 no critical section
oa | ——— T
32 alloc(n) looks to free |-..t.l Tt New blocks allocated
40 list with smallest l here when a free list is
18 blocks >=n per-thread| ©MPty (no block splitting)
56 memolry
64 e
Note: at some point, Note: when pool is
1024 block sizes go up exhausted ca]l
exponentially — more malloc(). But ideally,
2048 internal fragmentation, allocate a big enough
4096 but better chance of pool to begin with.
reusing freed memory.
26 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

13

Design Pattern: Memory Allocation

Description:

Real-time demands constant time allocate and free
operations

Memory efficiency is not critical

Most allocations likely to be from a relatively small set
of different sizes

Solution:
Linked lists of free memory blocks
Each list contains one size of block

If there are multiple threads, keep memory pools
separate to avoid lock overhead and possible priority
inversion

27 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Reference Counting

Every memory object keeps track of the number of
incoming pointers
When count goes to zero, free the block

When assigning to a pointer: decrement ref count of
old value and increment ref count of new value

Can be good when objects are shared
Problems:
Costly to assign pointers to new values

Free operation can have unbounded cost
Because many dependent objects can be freed

28 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

14

Real-Time Garbage Collection

Mark all reachable objects
Scan all objects: any object unmarked is moved to free list
GC can be performed incrementally

Marking must be very carefully coordinated with the application
(the “mutator”)

Usually, writes to pointers must run some code to maintain
consistency

Some variants “mark” objects by copying them from one half of
address space to other

Getting this right and debugging is a BIG job.
Some real-time garbage collectors for C++ may be available.

Serpent and Supercollider are two examples with GC integrated
into real-time scripting languages.

29 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Other Memory Issues

Virtual memory — it may be expensive to
touch newly allocated memory because it
may not be mapped to physical memory.
Mapping to physical memory may require
zeroing memory for security reasons.

30 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

15

Timed Events

Computer music computation has mix of:
Very heavy but periodic audio computation

Very light but non-periodic event computation

(MIDI, envelope breakpoints, start, stop,
sequenced events and updates, etc.)

Perhaps some high-latency activities:
File 1/0, Network 1/0

Let’s focus on non-periodic events

31 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Concurrency without locks?

Lock-based designs aren't a good solution for
real-time applications unless the OS supports
real-time thread scheduling.

How can we communicate data between
threads safely without locks?

Atomic values
Limited applicability, easy to misuse
Lock-free queues

32 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

16

33

Queue Topics

Queue Usage
Applications

Simple single-reader, single-writer lock-free
queue

Variations
Other Considerations
Multiple CPU issues (memory ordering)

ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

34

Queue Usage

Communicate between asynchronous processes
Producer pushes items, consumer polls for items
“sometime later”
Queues can contain:

Audio samples

Fixed size data blocks e.g. MIDI messages,
Message records (message id, params), pointers
to messages

Variable length messages
Bundles of messages to execute atomically
Lock-free implementations exist

ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

17

Some Applications

Send samples to another thread so it can
perform blocking operations with them (write
to disk/network)
Send MIDI messages for interpretation by an
audio callback
Send commands to another thread for
execution

(see SC server for a good example of this)
Send VU meter data to a GUI thread for
display

85 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Simple single-reader single-writer
lock-free queue

Ring buffer with one read pointer and one
write pointer:

_

Read Write

Data is available when read pointer != write

pointer
Queue is full when read pointer == write
pointer — 1

36 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

18

Variations

Linked lists

Pro: Variable size queues
Con: Need to allocate links somehow
Semaphores to signal full/empty state for
blocking readers and/or writers
Connecting more than one reader/writer:
Combine locks with srsw queues
Use one srsw queue for each writer-reader pair
Use multiple reader multiple writer queues

37 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Other Considerations

Don't forget overflow (fixed size queues) or
node allocation (variable length queues)
Programs designed around asynchronous
messaging tend to be organised differently
from those using synchronous execution —
plenty has been done in this field, it's worth
reading about it.

Some languages are built around
asynchronous message passing with no
shared-state e.g. Erlang

38 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

19

39

Multiple CPU lock-free issues

Lock free algorithms assume in-order
memory access

Compilers don't guarantee in-order access
(volatile is not enough!)

Hardware can reorder memory access: OK
for 1 cpu, leads to inconsistent view of
memory on multiprocessor systems.

Therefore, use memory barriers, or atomic
access APIs which use them (e.g.
Interlocked™ APl on windows)

ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

40

Logical Clock Systems

Timed Events
Scheduling and Dispatching

Accurate Timing With No Accumulated Error
Scheduler/Dispatcher

Logical Time

ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

20

Scheduling and Dispatching

schedule(time_stamp, function_pointer,
parameter_1, parameter_2, ...)

Call on schedule should return immediately

In the future, at time_stamp, there should be
a call to (*function_pointer)(parameter_1,
parameter 2, ...)

Terminology:
The scheduleris a software module
The function and parameters are an event
Calling the function is dispatching the event

41 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

(In)accurate Timing

Consider this function to play a sequence of
notes: void note_seqg() {

play_a_note_via_midi();

schedule (get_time () + 100, // in ms

¬e_seq) ;

}
Possible outcome:

<
o
> &S i
\\o & <@ s \\x ®</ pqlgss functlops_run
O& @ @\0 & \qu oq infinitely fast, timing
X AN ill |
S o/ 27 error will accumulate
&6 Y O %C}‘ Cﬁb'\ ?
& >
| |] |
100 ms ‘\\]_QQ_@W
42 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

21

Design Pattern: Accurate Timing
With Timestamps

Scheduler records “ideal” time

NOW = scheduled_wakeup_time;
(*event—->fn_ptr) (event->pl, event->p2,
)

Future scheduling

in terms of
[1H ” g)
|dea| t|me, void note_seq() {
. play_a_note_via_midi ();
nOt real tlme schedule (NOW + 100, // in ms
¬e_seq) ;
}
43 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Extension for Accurate MIDI Timing

Problem: you may not see MIDI data immediately, JIJO: (timing)
jitter in, jitter out

Solution:

Get timestamps from MIDI device driver (e.g. use PortMidi
and use incoming timestamps)

Treat (accurate) MIDI timestamps as “NOW”

If response to MIDI is immediate
E.g. MIDI controls audio synthesis

Then one option is to delay the response a few milliseconds.

PortMidi output can automatically add a time offset and
schedule MIDI output in the driver to reduce output jitter

Tradeoff between Jitter and Latency

44 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

22

Fast Scheduling and Dispatching

Calendar Queue
0 —

1 —
2 —l

] — —

R

Expected case is O(1), worst case is O(n)

n-1

45 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Alternative: Priority Queue

Various structures allow log(n) insert/delete:
Red-Black Trees
Heap

To Schedule: insert into priority queue

To Dispatch: remove earliest item from queue

46 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

23

Logical Time (or Virtual Time)

Used for
tempo control
clock synchronization
speed control/time-scaling

Mapping from logical/virtual time to real time:
r(v) =10+ (v—v0)s

[0)
-E o v(r) =v0 + (r—r0)/s
3]
e s = slope
set_tempo(new_s, at_v):
rQf------------- / r0 = r(at_v)
v0 = at_v
‘ S = new_s
vO virtual time
47 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Implementing Virtual Time

Build on real-time scheduler/dispatcher
Logical time system represented by object with:
priority queue

r(v) — virtual time to real time

v(r) — real time to virtual time

Its::schedule(time, event) Its::wakeup()
queue.insert(time, event) v = queue.next_time()
v = queue.next_time() if (r(v) <= NOW)
schedule(r(v), Its_wakeup, Its) VNOW =v
dispatch(queue.get())
Its_wakeup(lts) v = queue.next_time()
Its->wakeup() schedule(r(v), Its_wakeup, Its)

48 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Clock Synchronization

The Problem
Simple Network Clock Synchronization
High Resolution vs. High Latency
Synchronizing to MIDI clocks

Other Clock Issues

49 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

The Problem

Clocks are based on crystal oscillators
Machines can have multiple clocks:
Time-of-day clock
CPU clock (e.g. 3.3 GHz)
Audio sample clock

Crystals are accurate only to about 0.1%
Crystal clock speed varies with temperature
10 minutes x 0.1% x 2 = 600s/500 = 1.2s (!)

50 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

25

Simple Network Clock
Synchronization

On the other hand, drift in 1s = 1/500 = 2ms
So resynchronize every second or so...
Simple protocol:
Designate a master clock available at “server”
Clients adjust their clocks as follows:

10 = get_time()

tm = get_time_from_master()

tl = get_time()

if (¢1 < t0 + Sms) {
tm+=(t1 —10)/2
bump_local_time_by(tm — t1)

51 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

High Resolution and High Latency

Simple protocol can break down due to:
Need for high resolution
High network latency

Some solutions (see the literature):

Average computed clock skew over multiple queries to
the master

Estimate the difference in clock rates as well as the
difference in clock times

Estimate network typical network latency to help
determine outliers

Systems with many clients be based on broadcasts
from master — a very different approach

52 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

26

Synchronizing with MIDI
Clocks

Why?
Performance involving multiple systems /
instruments

How?

MIDlevent(time, status, data1, data2)

MIDI reception task audio generation task

Timestamp MIDI clocks
Predict MIDI phase at buffer playback times
Generate audio according to predicted phase

53] ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

MIDI Clock Phase Prediction

received MIDI clocks
vV V VvV VvV V VvV V VvV V V V V V VvV VvV Vv

predected MIDI clocks \»\»

vV vV VvV VvV VvV VvV V VvV V V V V V V V VY

audio generation task

audio output buffer playback

(I N N) | N I I | 2
|
|

syncronisation prediction interval

time
See Bencina, R. (2003). “PortAudio and media synchronization. In
Proceedings of the 2003 Australasian Computer Music Association
(ACMC'03).

54 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

27

Implementation Issues

Multiple time bases, one OS, e.g.
Soundcard sample clock
API timers of unknown origin

CPU cycle counter (high precision, unknown
frequency)

OS timers (possibly low precision)
This can lead to skew problems
Different APls use different timers, would be

good to be interoperable but no good
solutions exist.

58] ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Modular Audio Processing

Unit generators
Graph evaluation
Evaluation mechanisms
Block-based processing
Vector allocation strategies
Variations

56 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

28

Unit generators

A sample generating or processing function,
and its acompanying state. e.g. Oscillators,
filters, etc

f(state, inputs) -> (state, outputs)

Class Ugen{ virtual Update(float*[] ins, float *[] outs); }
In a dynamic system, the flow between units
is explicitly represented by a “synchronous
dataflow graph”

57 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Graph evaluation

Generators which produce signals must be
evaluated before the generators which
consume those signals, therefore: execute in
a depth-first order starting from sinks.

(1) (2)

(4)

58 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

29

Evaluation mechanisms

Direct graph traversal
Simple, dynamic
Can't modify the graph while evaluating

Execution sequence (list of function pointers,
polymorphic object pointers, bytecodes)
Possibly more efficient, harder to modify

Decouples evaluation from traversal. Graph
can be modified during traversal, e.g. different
language for graph (e.g. SC synthdefs)

59 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Block-based processing

Process arrays of input samples and
produces arrays of output samples

Pros: more efficient (loop unrolling, SIMD etc)
Cons: latency, feedback loops incur blocksize
delay
Vector size:

fixed (c.f. Csound krate)

variable (allows sample-accurate scheduling of
notes, envelope breakpoints, etc.)

60 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

30

Vector allocation strategies

One buffer/vector per generated signal, i.e.
for every Unit Generator output.

Reuse buffers once all sinks have consumed
them (c.f. Graph colouring register allocation)

61 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Feedback

Don't visit a node more than once during
graph traversal

Save output from previous evaluation pass so
it can be consumed during next evaluation

Consider compression/saturation in feedback
loops to avoid bad stuff happening

62 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

31

Variations

Hierarchical block sizes e.g. process
subgraphs with smaller blocks to reduce
feedback delay

Synchronous multi-rate: separate evaluation
phases using the same or different graphs
(e.g. Csound krate/arate passes).

Combine synchronous dataflow graph for
audio with asynchronous message
processing for control (e.g. Max/MSP)

63 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Case Study: Audio over Network

Key Idea: Accurately-timed event-based scheduling
Event = computation of 32 sample audio block (every 32/44100 s)

Master clock (at sink) based on audio sample clock (no drift
between clock and sample stream)

Assume some worst-case network latency (e.g. 50 ms = 0.05 s)
Schedule audio for time tto be computed at source at t —0.05 s
Buffer source audio into 10 block (320 sample = 1280 byte blocks)
Send to sink every 10t block time (every 320/44100 = 7.2 ms)

64 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

32

Audio over Network Discussion

Note that there is no flow control,
acknowledgements, or extra messages.
Use TCP/IP
Pro: reliable protocol
Con: lost data recovery is not “real-time”
Pro: packets almost never lost
Limit the message rate

Numbers are conservative choices — depends
on network load, machine load, etc.

65 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Case Study:
Effects Processor with Graphical
Con

Separate effect into the part which runs in real-time and

the part which exists in the graphics thread

Keep state in both threads and mirror it (Proxy pattern)

Message queue with commands to change values
messages could be paramld, value pairs, or functor
objects (command pattern)

In VST where the setValue call could come from any
thread you need to know which thread you are in to know
which methods to call.

Alternative: use atomic updates to shared synthesis
variables (makes it hard to do a group of updates
together)

66 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

33

Aura Architecture

Goal 1: General platform for interactive
multimedia

Goal 2: Open-ended, extensible for video,
graphics, networking, software systems.

Based on Real-Time Distributed Object
System

Objects have globally-unique 64-bit names
Asynchronous messages
Location independent

67 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Communication with Aura

Remote Method Invocation
send_set_hz_to(osc, 440.0)

Automatically generated macros to send
messages

Receiver is indicated by globally unique 1D
Location Transparency

Object in same thread — synchronous call

Object in same address space — msg queue

Object on remote machine — TCP/IP to msg
queue

68 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

34

Messages and
Location Transparency

N

/]
l

=
Zon(;' 2
/

N J
\ Machine 1 / \ Machine 2 J

69 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Output Ports

send_set_hz_to(osc, 440.0)
Vs.
send_set_hz(440.0)

70 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

35

Aura Detalils

Each Zone (thread + memory + scheduler):
Memory pool and real-time allocator
Calendar Queue-based scheduler
Time (seconds) based on audio sample count

Pre-processor generates:
RPC message handlers
Stubs to pack parameters into msgs and send
Macros to make them easy to call

Structure by latency, not function

71 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Serpent Scripting Language

Serpent virtual machine (everything the
program/programmer sees) is a C++ object

Multiple instances of Serpent give you multiple
independently running systems

One Serpent virtual machine per Aura zone

Absolutely no shared variables, so use Aura
messages

Serpent objects can be tied to special Aura objects
that relay Aura messages

Real-time garbage collection limits GC latency to a
constant time (can be set well below 1ms)

72 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

36

Audio Mulch Architecture

73 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

Thanks for attending!

We’'ll be happy to discuss these and other
issues throughout the ICMC and be email
afterward.

74 ICMC 2005 Workshop on Real-Time Systems Concepts for Computer Music © 2005, Ross Bencina and Roger Dannenberg

37

