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This document contains a set of “design patterns” for real time systems, particularly for 
computer music systems. We see these patterns often because the problems that they 
solve come up again and again. Hopefully, these patterns will serve a more than just a set 
of canned solutions. It is perhaps even more important to understand the underlying 
problems, which often have subtle aspects and ramifications. By describing these 
patterns, we have tried to capture the problems, solutions, and a way of thinking about 
real-time systems design. We welcome your comments and questions.
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Static Priority Scheduling 

Also known as Deadline Monotonic Scheduling. 

Context 
Real-time systems often have a mix of tasks. Tasks may have hard deadlines, as in 
sample buffer computation, or strongly desirable upper limits on latency, as in interactive 
MIDI processing. If this allowable time-to-completion for some task is less than the 
execution time of some other task, then the long-running task must be preempted so that 
the low-latency task can meet its deadline. 

Problem 
Organize the program so that deadlines are met and latencies are acceptable, using 
relatively few processes or threads. 

Forces 
When there is coordination and communication between tasks (e.g. shared variables, 
memory, and data structures), it is much easier for the programmer if these tasks do not 
preempt one another – they can then run in a single thread. Design is a tradeoff between 
letting tasks share threads, to simplify coordination, and allocating tasks to separate 
threads, to allow fine-grain scheduling. 

Solution 
Minimize the number of threads, typically using 2 or 3. Divide tasks according to their 
latency requirements, i.e. the time from when the task can run to its completion deadline. 
Low-latency tasks are assigned to the highest-priority thread, and the highest-latency 
threads are assigned to the lowest-priority thread, etc. The threads are scheduled 
according to fixed priorities. 

Analysis can sometimes be used to evaluate solutions before they are implemented. 
Essentially, the worst-case latency at the highest priority thread is just the sum of all task 
run times (assuming tasks will not run again until other tasks have finished). The latency 
of the thread at the next lower priority level is also the sum of the run times for tasks 
running in this thread, but in addition, the high priority thread “steals” time and this must 
be accounted for. Continuing until worst-case latencies are estimated for all threads, one 
can then decide whether the latencies are small enough to satisfy all tasks. 

Further Reading 
Ken Tindell, “Deadline Monotonic Analysis,” in 
http://www.embedded.com/2000/0006/0006feat1.htm. 

J. Y. T. Leung, J. Whitehead, “On the Complexity of Fixed Priority Scheduling of 
Periodic, Real-Time Tasks”, Performance Evaluation, 2(4), pages 237-250, 1989. 
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Real Time Memory Management 
Also known as non-blocking memory management or deterministic memory 
management. 

Context  
When programming “real-time” code to run on a general purpose operating system, such 
as to generate audio in a high-priority callback, it is not advisable (or sometimes not even 
possible) to call operating system functions, including those which allocate memory, 
because it is impossible to predict the time which may be taken by such calls (which 
could acquire locks, cause priority inversion, or page faults). Yet often in real-time music 
software objects need to be allocated dynamically. 

Problem 
Allocate memory for program objects using methods which avoid calling the operating 
system to allocated memory in real-time code. 

Forces 
How well is the allocation behavior of these objects understood? How many different 
types (or size classes) of objects are needed?  Is a fully generalised allocation mechanism 
necessary, or does the allocation behavior allow a simpler solution? How are allocated 
objects shared between threads of execution? 

Solutions 
Depending on the type of allocation patterns which need to be supported there are a 
number of practical options, many can be combined or used in different parts of the same 
application. 

Fixed Up-front allocations with a free list 
If the maximum number of required objects is known, arrays of these objects can be 
preallocated, and a linked list of free objects can be maintained for fast allocation and 
deallocation. 

Size-segregated free lists 
An extension of the previous pattern is to keep free lists for separate size classes, instead 
of distinct object types. 

Per-thread memory pools 
One way to avoid locks is to only use memory within a specific thread context and write 
a custom allocator which allocates memory from a large preallocated block. This avoids 
calling the OS, but the memory allocation algorithm should be chosen carefully if 
deterministic timing is important. 
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Allocate in a non-real-time context 
Don't allocate any memory in the real-time context, instead allocated memory in a non-
real-time thread and send it using an asynchronous message queue. 

Real-time Garbage Collection 
Write a garbage collector for objects which are used in your real-time thread. An 
incremental collector can be coded to provide deterministic timing behavior by 
interrupting collection if its timing allocation is exceeded. 

Examples 
SuperCollider Language and Serpent both use real-time garbage collectors to manage 
dynamic memory. Aura and AudioMulch use per-thread size-segregated memory pools. 
AudioMulch allocates in a non-real-time context for many types of dynamic objects, 
especially large ones. Fixed up-front allocation is often used for things like synthesizer 
voices, where the maximum polyphony is known up-front. 

Further Reading 
See the Memory Patterns chapter of “Real-Time Design Patterns: Robust Scalable 
Architecture for Real-Time Systems” by Bruce Powel Douglass.  Addison Wesley 
Professional, 2002. or the online extract at: 
http://www.awprofessional.com/articles/article.asp?p=30309 
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Communication and Synchronization with Lock-Free 
Queues 
Also known as asynchronous message passing. 

Context  
On general purpose operating systems it is not usually possible to depend on 
synchronization primitives such as mutexes (locks) to provide deterministic timing 
behavior since these systems are often optimized for high-throughput rather than low-
latency. 

Problem 
Exchange data or events safely between multiple threads of execution without using 
operating system synchronization primitives such as mutexes or semaphores. 

Forces 
Polling can (sometimes) add latency and overhead compared to implementations based 
on synchronization primitives (but suitable real-time synchronization primitives may not 
exist and tend to be less portable). Single-reader, single-writer queues are simple, but 
may be more wasteful of resources than more sophisticated lock-free schemes. 

Solution 
Use lock free queues to queue messages or data between threads. The queues can contain 
things such as data samples, message records, variable length messages, or pointers to 
other data structures. Such queues need to be polled periodically to ensure that they don't 
overflow. If a queue has data in it a semaphore (pthreads condition variable) may be used 
to signal this state to a non-real-time thread, however a real-time thread should not 
normally block waiting for a queue. By virtue of the algorithms used, access to these 
queues is lock-free. 

Examples 
Supercollider 3 server uses lock-free queues for communication between the real-time 
audio callback and non-real-time threads such as the OSC network communications 
thread. AudioMulch uses lock-free queues for most communication between real-time 
audio and other threads such as those for the GUI, incoming MIDI callbacks, disk i/o and 
sample loading. Jsyn uses a lock free ring-buffer for communications to the audio thread, 
and a lock-free linked list queue for communications from the audio thread. Aura uses 
lock-free queues between zones. PortMIDI includes an example using a lock-free queue 
to communicate between the main thread and a high-priority MIDI thread. 

Further Reading 
Some Notes on Lock-Free and Wait-Free Algorithms: 
http://www.audiomulch.com/~rossb/code/lockfree/ 
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Accurate Timing with Timestamps 
This pattern is closely tied to discrete event simulation. 

Context 
Many musical sequences and computations give rise to a set of events with precise 
timings. The simple timing approach, which is something like  

A(); sleep(5); B(); sleep(3); C(); sleep(7); … 

will accumulate error due to finite computation speed and system latencies. We assume 
that tasks run when methods or functions are called by a scheduler and that tasks do not 
suspend or sleep. 

Problem 
To deliver accurately timed outputs. Momentarily high CPU load should at most cause 
momentary degradation of the output, but no long-term errors. 

Forces 
Sometimes, it is desirable to let time “slip” when systems encounter too much load. In 
other words, once a system falls behind, it may be better to remain behind than to catch 
up. 

Solution 
Tasks always compute the “ideal” time at which they should run. The scheduler 
remembers the time at which the task requested to wake up. When the task wakes up, it 
operates as if this “ideal” time is the true real time. If future events are scheduled relative 
to this one, they will be scheduled relative to the “ideal” time rather than real time, 
insuring accurate timing. For example, if every time a task runs, it schedules itself to run 
again in 0.1 seconds, then it will compute the “ideal” sequence of wake-up times 0.1, 0.2, 
0.3, etc. with no error due to finite CPU speed. 

Further Reading 
Anderson, D. P. and Kuivila, R. 1990. A system for computer music performance. ACM 
Trans. Comput. Syst. 8, 1 (Feb. 1990), 56-82. 
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Event Buffers 
Often discussed in the context of jitter, and this could be considered a special case of 
Accurate Timing with Timestamps. Also called Action Buffers. 

Context 
Sometimes, data cannot be computed accurately at the desired time. This is usually 
caused by latency when the operating system fails to run a process immediately. It may 
also be caused when the application has too much to do, perhaps because work comes in 
bursts. In some of these cases, data can be computed early. In other words, in some cases, 
it is better to reduce timing deviations, called jitter, than to reduce overall timing delay, 
or latency. 

Problem 
Deliver output with timing that is more accurate than can be achieved by the task that 
computes the output. 

Forces 
This design relies on the ability to pre-compute data, which means that latency will suffer 
in order to reduce jitter. Sometimes, it is better to just minimize latency. As latency 
approaches zero, jitter also approaches zero, so sometimes this pattern has no advantage. 
This pattern will be most useful when the computation time for output data is significant 
and exhibits a lot of variation or burstiness. 

Solution 
Compute both data and the time at which the data should be delivered. Typically, the data 
is computed using the Accurate Timing with Timestamps pattern, and the “ideal” time of 
the computation is used as the time at which the data should be delivered. However, since 
the computation will often be somewhat late, a constant time offset is added to the “ideal” 
time to form an output time stamp. The data is then transferred through a buffer to 
another process (or device driver or hardware) running at higher priority and better able 
to output data accurately according to the timestamp. A trivial example is prefetching a 
MIDI sequence from disk so that it can be output with lower latency than disk read 
operations would otherwise allow. Another common example is the use of timestamps on 
MIDI data which is delivered to a device driver. 

Further Reading 
D. P. Anderson and G. Homsy. “A Continuous Media I/O Server and its Synchronization 
Mechanism”. IEEE Computer, 24(10):51-57, October 1991. 

Roger B. Dannenberg, Thomas P. Neuendorffer, Joseph M. Newcomer, Dean Rubine, 
David B. Anderson: “Tactus: Toolkit-Level Support for Synchronized Interactive 
Multimedia”. Multimedia Syst. 1(2): 77-86 (1993) 
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Synchronous Dataflow Graph 
Also known as synthesis graph, Signal Graph (PD), Filter Graph (DirectShow), Ugen 
Graph (SuperCollider) 

Context  
Multiple independent signal generation and processing modules (unit generators) need to 
be dynamically interconnected at program runtime, such as when loading a new 
configuration file (i.e. an orchestra) or in response to dynamic interconnection requests 
from the user interface. The nature of the interconnections is not limited to sequential or 
parallel topologies. 

Problem 
Unit generators have data dependencies: The inputs to a unit generator must be computed 
before the unit generator runs. The many interconnections and their implied dependencies 
require that special attention be paid to the order of unit generator execution. 

Forces 
Some systems are static, i.e. the graph does not change at run-time. Other systems are 
dynamic, allowing the graph to be modified interactively. 

Solution 
Organise the modules in a directed graph which indicates the signal flow between 
modules.  By traversing backwards through the graph it is possible to establish the data 
dependencies, and hence which modules need to be allocated first. By applying graph-
coloring techniques from the compiler literature it is possible to minimize the number of 
buffers necessary to communicate intermediate data between modules. 

Two major variations of this technique exist: one is to traverse the graph once to 
determine evaluation order, and cache this ordering in a secondary structure. The other 
alternative is to traverse the graph directly.  Each alternative has its own benefits. For 
example, although direct graph traversal is simpler, caching the execution order means 
that the graph may be altered without needing to protect the execution list from 
concurrent access. 

Further Reading 
Read the compiler literature on graph coloring. 

 


