
Design Patterns for Real-Time Computer Music Systems
Roger B. Dannenberg and Ross Bencina

4 September 2005

This document contains a set of “design patterns” for real time systems, particularly for
computer music systems. We see these patterns often because the problems that they
solve come up again and again. Hopefully, these patterns will serve a more than just a set
of canned solutions. It is perhaps even more important to understand the underlying
problems, which often have subtle aspects and ramifications. By describing these
patterns, we have tried to capture the problems, solutions, and a way of thinking about
real-time systems design. We welcome your comments and questions.

 ICMC 2005 Workshop on Real Time Systems Concepts for Computer Music

2 © 2005, Roger B. Dannenberg and Ross Bencina

Static Priority Scheduling

Also known as Deadline Monotonic Scheduling.

Context
Real-time systems often have a mix of tasks. Tasks may have hard deadlines, as in
sample buffer computation, or strongly desirable upper limits on latency, as in interactive
MIDI processing. If this allowable time-to-completion for some task is less than the
execution time of some other task, then the long-running task must be preempted so that
the low-latency task can meet its deadline.

Problem
Organize the program so that deadlines are met and latencies are acceptable, using
relatively few processes or threads.

Forces
When there is coordination and communication between tasks (e.g. shared variables,
memory, and data structures), it is much easier for the programmer if these tasks do not
preempt one another – they can then run in a single thread. Design is a tradeoff between
letting tasks share threads, to simplify coordination, and allocating tasks to separate
threads, to allow fine-grain scheduling.

Solution
Minimize the number of threads, typically using 2 or 3. Divide tasks according to their
latency requirements, i.e. the time from when the task can run to its completion deadline.
Low-latency tasks are assigned to the highest-priority thread, and the highest-latency
threads are assigned to the lowest-priority thread, etc. The threads are scheduled
according to fixed priorities.

Analysis can sometimes be used to evaluate solutions before they are implemented.
Essentially, the worst-case latency at the highest priority thread is just the sum of all task
run times (assuming tasks will not run again until other tasks have finished). The latency
of the thread at the next lower priority level is also the sum of the run times for tasks
running in this thread, but in addition, the high priority thread “steals” time and this must
be accounted for. Continuing until worst-case latencies are estimated for all threads, one
can then decide whether the latencies are small enough to satisfy all tasks.

Further Reading
Ken Tindell, “Deadline Monotonic Analysis,” in
http://www.embedded.com/2000/0006/0006feat1.htm.

J. Y. T. Leung, J. Whitehead, “On the Complexity of Fixed Priority Scheduling of
Periodic, Real-Time Tasks”, Performance Evaluation, 2(4), pages 237-250, 1989.

 ICMC 2005 Workshop on Real Time Systems Concepts for Computer Music

3 © 2005, Roger B. Dannenberg and Ross Bencina

Real Time Memory Management
Also known as non-blocking memory management or deterministic memory
management.

Context
When programming “real-time” code to run on a general purpose operating system, such
as to generate audio in a high-priority callback, it is not advisable (or sometimes not even
possible) to call operating system functions, including those which allocate memory,
because it is impossible to predict the time which may be taken by such calls (which
could acquire locks, cause priority inversion, or page faults). Yet often in real-time music
software objects need to be allocated dynamically.

Problem
Allocate memory for program objects using methods which avoid calling the operating
system to allocated memory in real-time code.

Forces
How well is the allocation behavior of these objects understood? How many different
types (or size classes) of objects are needed? Is a fully generalised allocation mechanism
necessary, or does the allocation behavior allow a simpler solution? How are allocated
objects shared between threads of execution?

Solutions
Depending on the type of allocation patterns which need to be supported there are a
number of practical options, many can be combined or used in different parts of the same
application.

Fixed Up-front allocations with a free list
If the maximum number of required objects is known, arrays of these objects can be
preallocated, and a linked list of free objects can be maintained for fast allocation and
deallocation.

Size-segregated free lists
An extension of the previous pattern is to keep free lists for separate size classes, instead
of distinct object types.

Per-thread memory pools
One way to avoid locks is to only use memory within a specific thread context and write
a custom allocator which allocates memory from a large preallocated block. This avoids
calling the OS, but the memory allocation algorithm should be chosen carefully if
deterministic timing is important.

 ICMC 2005 Workshop on Real Time Systems Concepts for Computer Music

4 © 2005, Roger B. Dannenberg and Ross Bencina

Allocate in a non-real-time context
Don't allocate any memory in the real-time context, instead allocated memory in a non-
real-time thread and send it using an asynchronous message queue.

Real-time Garbage Collection
Write a garbage collector for objects which are used in your real-time thread. An
incremental collector can be coded to provide deterministic timing behavior by
interrupting collection if its timing allocation is exceeded.

Examples
SuperCollider Language and Serpent both use real-time garbage collectors to manage
dynamic memory. Aura and AudioMulch use per-thread size-segregated memory pools.
AudioMulch allocates in a non-real-time context for many types of dynamic objects,
especially large ones. Fixed up-front allocation is often used for things like synthesizer
voices, where the maximum polyphony is known up-front.

Further Reading
See the Memory Patterns chapter of “Real-Time Design Patterns: Robust Scalable
Architecture for Real-Time Systems” by Bruce Powel Douglass. Addison Wesley
Professional, 2002. or the online extract at:
http://www.awprofessional.com/articles/article.asp?p=30309

 ICMC 2005 Workshop on Real Time Systems Concepts for Computer Music

5 © 2005, Roger B. Dannenberg and Ross Bencina

Communication and Synchronization with Lock-Free
Queues
Also known as asynchronous message passing.

Context
On general purpose operating systems it is not usually possible to depend on
synchronization primitives such as mutexes (locks) to provide deterministic timing
behavior since these systems are often optimized for high-throughput rather than low-
latency.

Problem
Exchange data or events safely between multiple threads of execution without using
operating system synchronization primitives such as mutexes or semaphores.

Forces
Polling can (sometimes) add latency and overhead compared to implementations based
on synchronization primitives (but suitable real-time synchronization primitives may not
exist and tend to be less portable). Single-reader, single-writer queues are simple, but
may be more wasteful of resources than more sophisticated lock-free schemes.

Solution
Use lock free queues to queue messages or data between threads. The queues can contain
things such as data samples, message records, variable length messages, or pointers to
other data structures. Such queues need to be polled periodically to ensure that they don't
overflow. If a queue has data in it a semaphore (pthreads condition variable) may be used
to signal this state to a non-real-time thread, however a real-time thread should not
normally block waiting for a queue. By virtue of the algorithms used, access to these
queues is lock-free.

Examples
Supercollider 3 server uses lock-free queues for communication between the real-time
audio callback and non-real-time threads such as the OSC network communications
thread. AudioMulch uses lock-free queues for most communication between real-time
audio and other threads such as those for the GUI, incoming MIDI callbacks, disk i/o and
sample loading. Jsyn uses a lock free ring-buffer for communications to the audio thread,
and a lock-free linked list queue for communications from the audio thread. Aura uses
lock-free queues between zones. PortMIDI includes an example using a lock-free queue
to communicate between the main thread and a high-priority MIDI thread.

Further Reading
Some Notes on Lock-Free and Wait-Free Algorithms:
http://www.audiomulch.com/~rossb/code/lockfree/

 ICMC 2005 Workshop on Real Time Systems Concepts for Computer Music

6 © 2005, Roger B. Dannenberg and Ross Bencina

Accurate Timing with Timestamps
This pattern is closely tied to discrete event simulation.

Context
Many musical sequences and computations give rise to a set of events with precise
timings. The simple timing approach, which is something like

A(); sleep(5); B(); sleep(3); C(); sleep(7); …

will accumulate error due to finite computation speed and system latencies. We assume
that tasks run when methods or functions are called by a scheduler and that tasks do not
suspend or sleep.

Problem
To deliver accurately timed outputs. Momentarily high CPU load should at most cause
momentary degradation of the output, but no long-term errors.

Forces
Sometimes, it is desirable to let time “slip” when systems encounter too much load. In
other words, once a system falls behind, it may be better to remain behind than to catch
up.

Solution
Tasks always compute the “ideal” time at which they should run. The scheduler
remembers the time at which the task requested to wake up. When the task wakes up, it
operates as if this “ideal” time is the true real time. If future events are scheduled relative
to this one, they will be scheduled relative to the “ideal” time rather than real time,
insuring accurate timing. For example, if every time a task runs, it schedules itself to run
again in 0.1 seconds, then it will compute the “ideal” sequence of wake-up times 0.1, 0.2,
0.3, etc. with no error due to finite CPU speed.

Further Reading
Anderson, D. P. and Kuivila, R. 1990. A system for computer music performance. ACM
Trans. Comput. Syst. 8, 1 (Feb. 1990), 56-82.

 ICMC 2005 Workshop on Real Time Systems Concepts for Computer Music

7 © 2005, Roger B. Dannenberg and Ross Bencina

Event Buffers
Often discussed in the context of jitter, and this could be considered a special case of
Accurate Timing with Timestamps. Also called Action Buffers.

Context
Sometimes, data cannot be computed accurately at the desired time. This is usually
caused by latency when the operating system fails to run a process immediately. It may
also be caused when the application has too much to do, perhaps because work comes in
bursts. In some of these cases, data can be computed early. In other words, in some cases,
it is better to reduce timing deviations, called jitter, than to reduce overall timing delay,
or latency.

Problem
Deliver output with timing that is more accurate than can be achieved by the task that
computes the output.

Forces
This design relies on the ability to pre-compute data, which means that latency will suffer
in order to reduce jitter. Sometimes, it is better to just minimize latency. As latency
approaches zero, jitter also approaches zero, so sometimes this pattern has no advantage.
This pattern will be most useful when the computation time for output data is significant
and exhibits a lot of variation or burstiness.

Solution
Compute both data and the time at which the data should be delivered. Typically, the data
is computed using the Accurate Timing with Timestamps pattern, and the “ideal” time of
the computation is used as the time at which the data should be delivered. However, since
the computation will often be somewhat late, a constant time offset is added to the “ideal”
time to form an output time stamp. The data is then transferred through a buffer to
another process (or device driver or hardware) running at higher priority and better able
to output data accurately according to the timestamp. A trivial example is prefetching a
MIDI sequence from disk so that it can be output with lower latency than disk read
operations would otherwise allow. Another common example is the use of timestamps on
MIDI data which is delivered to a device driver.

Further Reading
D. P. Anderson and G. Homsy. “A Continuous Media I/O Server and its Synchronization
Mechanism”. IEEE Computer, 24(10):51-57, October 1991.

Roger B. Dannenberg, Thomas P. Neuendorffer, Joseph M. Newcomer, Dean Rubine,
David B. Anderson: “Tactus: Toolkit-Level Support for Synchronized Interactive
Multimedia”. Multimedia Syst. 1(2): 77-86 (1993)

 ICMC 2005 Workshop on Real Time Systems Concepts for Computer Music

8 © 2005, Roger B. Dannenberg and Ross Bencina

Synchronous Dataflow Graph
Also known as synthesis graph, Signal Graph (PD), Filter Graph (DirectShow), Ugen
Graph (SuperCollider)

Context
Multiple independent signal generation and processing modules (unit generators) need to
be dynamically interconnected at program runtime, such as when loading a new
configuration file (i.e. an orchestra) or in response to dynamic interconnection requests
from the user interface. The nature of the interconnections is not limited to sequential or
parallel topologies.

Problem
Unit generators have data dependencies: The inputs to a unit generator must be computed
before the unit generator runs. The many interconnections and their implied dependencies
require that special attention be paid to the order of unit generator execution.

Forces
Some systems are static, i.e. the graph does not change at run-time. Other systems are
dynamic, allowing the graph to be modified interactively.

Solution
Organise the modules in a directed graph which indicates the signal flow between
modules. By traversing backwards through the graph it is possible to establish the data
dependencies, and hence which modules need to be allocated first. By applying graph-
coloring techniques from the compiler literature it is possible to minimize the number of
buffers necessary to communicate intermediate data between modules.

Two major variations of this technique exist: one is to traverse the graph once to
determine evaluation order, and cache this ordering in a secondary structure. The other
alternative is to traverse the graph directly. Each alternative has its own benefits. For
example, although direct graph traversal is simpler, caching the execution order means
that the graph may be altered without needing to protect the execution list from
concurrent access.

Further Reading
Read the compiler literature on graph coloring.

