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Abstract

Observed associations in a database may be
due in whole or part to variations in un-
recorded (“latent”) variables. Identifying
such variables and their causal relationships
with one another is a principal goal in many
scientific and practical domains. Previous
work shows that, given a partition of ob-
served variables such that members of a class
share only a single latent common cause,
standard search algorithms for causal Bayes
nets can infer structural relations between la-
tent variables. We introduce an algorithm
for discovering such partitions when they ex-
ist. Uniquely among available procedures,
the algorithm is (asymptotically) correct un-
der standard assumptions in causal Bayes net
search algorithms, requires no prior knowl-
edge of the number of latent variables, and
does not depend on the mathematical form
of the relationships among the latent vari-
ables. We evaluate the algorithm on a variety
of simulated data sets.

1 Introduction

A great deal of contemporary science has two strik-
ing features. First, its goals and results are typically
about causation or composition—what minerals com-
pose a soil sample; what mechanism regulates expres-
sion of a particular gene; what effect does low level
lead exposure have on children’s intelligence? Sec-
ond, scientific data, the measurements and observa-
tions upon which hypotheses are discovered, tested,
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and refined, are indirect. They are not measurements
of the scientifically important causal features them-
selves, but only of their more easily observed effects.
We do not measure the mineral composition of a soil
sample directly, we measure its spectra; we do not
measure gene regulation directly, we measure light in-
tensities on microarray chips; we do not measure chil-
dren’s exposure to lead, we measure the concentration
of lead in their baby teeth; and so on. These two
aspects of modern science pose a fundamental prob-
lem for computer aided data analysis. Our evidence
is a sample of values for a set of observed variables;
what we want to infer involves causation or compo-
sition among “latent” variables, i.e., variables whose
values are not recorded. Inevitably, assumptions must
be made and models built that connect evidence to
theory, but finding the right assumptions for the sci-
entific task is not obvious. Sometimes the assumptions
are too weak and radically underdetermine the under-
lying structure. Principal components methods are an
example. Sometimes the assumptions are arbitrary, as
with the choice of particular rotations in factor anal-
ysis (Bartholomew, et al., 2002). Sometimes they are
too strong for most scientific contexts, as with inde-
pendent components analysis, in which the underlying
signal sources are assumed to be independent in prob-
ability, and therefore also causally independent (Hy-
varinen, et al., 2001). For a variety of reasons it has
proved difficult to exploit Bayes nets in searching for
the causal or compositional structure among a set of
latent variables: the likelihood surface of “latent vari-
able models” is very irregular (Geiger, et al., 2001); the
models do not always have a well-defined dimension,
the space of models is infinite, etc. One important
fact is known however: if for each latent variable there
are at least three measured effects, and these measures
are otherwise suitably unconfounded — or “pure” in a
sense we make precise below — then standard Bayes net
search procedures can be correctly applied to obtain
information about the connections among the latent
variables (Spirtes, et al., 2000; ch. 12). If, therefore,



there were a correct algorithm for locating such sets
of measured variables when they exist, subject only
to the Markov and Faithfulness assumptions (Spirtes,
et al., 2000) and perhaps the assumption of particu-
lar distribution families (e.g., Gaussian, multinomial,
etc.), a principled method for discovering latent struc-
ture would be available for a class of problems. We
describe such an algorithm for cases in which observed
variables depend linearly on latent variables, assuming
nothing about the nature of the relationships among
the latents®.

2 The Set-Up

Our procedure first finds disjoint subsets of measured
variables such that members of each subset have a sin-
gle latent common cause, but may be otherwise con-
founded or impure. Each subset is refined to eliminate
confounded variables, and the procedure returns an
equivalence class of measurement models, a pure mea-
surement pattern. No a priori choice of the number of
latent factors is made. Provided the assumptions of
the algorithm are satisfied and all statistical decisions
are made correctly, it provably finds correctly specified
purified measurement models. We describe the essen-
tials of the algorithm here. Proofs are given in (Silva,
et al., 2003).

2.1 Definitions

Definition 1 (Measurement model) A directed
acyclic graph (DAG) containing a set of latent vari-
ables L, a set of error variables €, a set of observed
variables O, two sets of edges Eo and E., forms a
measurement model M (L,0,¢,Eq,E.) if each latent
in L is a parent of at least one variable in O, none
of the observed variables is a parent of any variable in
L Ue, all nodes in O are children of some node in L,
any node in € is a common parent of at least two nodes
in O and is d-separated from every element of L given
the empty set. All edges in Eg are directed into O and
all edges in E. are directed from € into O.

The definition of a measurement model specifies in
which way observed variables are indicators of latent
factors but does not consider how such factors are re-
lated. Nodes in € represent dependent latent errors,
analogous to error variables in regression. Instead of
explicitly showing such error nodes in our figures, we
link any pair of observed nodes that share a common
error parent with a double-headed edge. We restrict

! Althought we are not assuming linearity among latents
for the measurement model discovery problem, we do not
know any consistent algorithm for finding causal models
among continuous latents without assuming linearity.

our discussion to measurement models in which each
observed variable is a linear function of its parents plus
additive noise: O; = > j Aij Pij + e;, where each P;
represents a parent of the observed O;, and e; is inde-
pendent of all variables in the model other than O;.

Definition 2 (Pure measurement model) A mea-
surement model M (L, O, ¢,Eo, E,) is pure if and only
if for every O; € O, O; has a single latent par-
ent L; and L; d-separates O; from every element in

(L - Lz) @] (O — Oz)

Notice that, in a pure measurement model, ¢ = () and
E.=0.

Definition 3 (Latent variable graph) Given a set
of latent variables L, a set of error variables €, a set
of observed variables O, three sets of edges Eo, Ey,
and E., a latent variable graph G(L, O, ¢,Ey,Eq, E,)
is a directed acyclic graph, oll edges in Ey, have both-
endpoints in L, and the directed acyclic graph defined
by the tuple (L,0,¢,Eq,E.) forms a measurement
model.

Given a latent wvariable graph, the tuple
(L,0,¢,Ep,E,) is its measurement model. We
will say a latent variable graph is pure if its mea-
surement model is pure, and that a linear latent
variable graph is a latent variable graph with a
linear measurement model. A purification of a latent
variable graph is a pure latent variable graph obtained
by possibly deleting some of the observed variables.

G0 seB b

Figure 1: The graph in this figure is not a pure model:
0 and O7 are d-connected given their latent parents,
O3 and Os have more than one parent.

The graph in Figure 1 has a purification containing
variables {O2, 04, Og, 07} and any subset of this set.

2.2 Assumptions

Definition 4 (Purifiable linear latent variable
graph) A purifiable linear latent wvariable graph
G(L,0,¢,EL,EqQ,E., Gs) is a graphical model such
that the tuple (L,0,¢,EL,Eq,E.) is a linear latent
variable graph and Gg is a non-empty set of purifi-
cations of G such that, in every graph Gs € Gg, all
latent nodes have at least three observed children in
Gs.



The motivation for requiring at least three observed
children per latent in purifications of G arises from
constraints on identifiability. This will be evident in
the next sections, where we introduce an algorithm for
learning families of measurement models (equivalence
classes) that fit a given covariance matrix ¥ of a set
of variables O. The assumptions under which the al-
gorithm is correct are:

¢ the observed variables O are continuous;

o Y is faithfully generated by an unknown purifiable
linear latent variable graph
G(La 07 € EL; EOJ Eea GS)7

e the distributions of O, L and € have second mo-
ments;

We assume that the measurement model is linear, but
we do not assume that the relations between the la-
tents are linear, nor do we assume anything about the
family of probability distributions over O, L or e.

3 Equivalence classes

Search algorithms should recognize in their output al-
ternative models that cannot be distinguished given
the assumptions and the marginal probability distri-
bution on the observed variables. For instance, pat-
terns (Pearl, 2000) represent d-separation equivalence
over DAGs. Analgously, our procedure ought to out-
put equivalence classes of indistinguishable measure-
ment models. Accordingly, the output of the main
algorithm introduced in the next section is a measure-
ment pattern M Mg, a graphical object with directed
and undirected edges that represents an equivalence
class of measurement models. M Mg has the following
properties:

o the graph M Mg has a set T of latent variables
and observed variables Q' C O, where O is the
original set given as input. Notice that we denote
latents in the pattern by T instead of L, because
obtaining a one-to-one mapping from one set to
the other is not guaranteed;

e every latent has at least two children;

e some pairs of observed variables may be connected
by an undirected edge. Some pairs of latents are
connected by an undirected edge. No latents have

parents;

e there are no error nodes;

Let G(L,0,¢,EL,Eq,E., Gs) be a purifiable linear
latent variable graph. Then M Mg represents possi-
ble measurement models such that the measurement
model of every G € Gg is a subgraph of M M.

Our search problem can be seen as an unusual cluster-
ing problem. Clusters can overlap in general measure-
ment models. Clusters cannot overlap in pure mea-
surement models. Sometimes we will refer to the ele-
ments of Gg as solution graphs, because they can be
identified as demonstrated later, while this is not usu-
ally the case for G. Unrepresented measurement error
is implicit in the parameterization of the model.

4 An algorithm for learning
measurement patterns and models

The algorithm here described builds a measurement
pattern of a unknown purifiable linear latent variable
graph with a known observed covariance matrix ¥ by
evaluating the validity of tetrad constraints among sets
of four variables. Given the covariance matrix of four
random variables {A, B, C, D}, we have that zero, one
or three of the following constraints may hold:

OABOCD = OACOBD
OACOBD = O0ADOBC
OABOCD = O0ADOBC

Statistical tests for tetrad constraints or vanishing
tetrad differences are straightforward assuming nor-
mal covariates. The constraints can be tested for a
larger family of distributions using fourth moments
(Bollen, 1990). Their value lies in the fact that var-
ious simple Bayes net structures imply characteristic
subsets of possible tetrad constraints for systems in
which observed variables depend linearly on latents: a
single latent cause of four observed variables implies
all three vanishing tetrads; a single latent cause of
three observed variables and another latent cause of
a fourth observed variable, implies all three vanishing
tetrads, no matter how the latents are related; a sin-
gle latent cause of two observed variables and another
latent cause of two other observed variables, implies
exactly one vanishing tetrad, etc. (Glymour, et al.,
1987).

4.1 Clustering and impurity identification

The function TetradScore(Set;¥) counts the number
of tetrad constraints that hold among elements in Set,
which have a covariance matrix as a submatrix of X,
and where for no triple {X,Y, Z} C Set does pxy.z =
0 (the partial correlation of X and Y given Z vanishes).
If for some triplet we have pxy.z = 0, the TetradScore
is defined to be zero. Given the covariance matrix of



a set of variables as an input, in outline the procedure
is:

1. identify which variables are uncorrelated; such
variables cannot be in the same cluster;

2. identify which pairs of variables (X,Y) cannot
form a one-factor model with some other pair. If
it is not possible to find such a one-factor model,
X and Y cannot be part of any graph in Gg at
the same time, or otherwise we would be able to
construct such a one-factor model (for instance,
with two other elements from the cluster of X, if
X and Y are not in the same cluster);

3. decide which pairs of variables {X,Y} should not
be in the same cluster by evaluating the predicate
Unclustered({X, A, B},{Y,C, D};X), as defined
in Table 1. Here, variables {A, B, C, D} are other
variables in the covariance matrix;

4. identify cliques formed by variables where no pair
was labeled as incompatible by any of the three
criteria above.

Table 1: Returns true only if no variable in O4 has a
common parent with any variable in O2. The symbol
po,0,.0, represents the partial correlation of O, and
O, conditioned on O,.

Unclustered(O1 = {Oq, 04, 0.}, O2 = {0,, 0y, 0. },%))

if V{O1,02} € O1 x Oz, Oy is uncorrelated with Os
return true
else return
V0,0, € 01 U Oz,pozoy # 0 and
VO.,04,0, € O1 U O2,p0.0,.0. # 0 and
VV € O1,0vo0,00,0. = 0v0,00,0. = 0v0.00,0, and
VYV € O2,0v0,00,0. = 0v0,00,0. = 0v0.00,0, and
V{Ol:OJ} C Oy, {Opan} C Og,
00,0,00;0, = 00;0,00;0, # 00,0;00,0,

When all relationships are linear, there is a fairly intu-
itive explanation for the Unclustered test: if all three
tetrads hold among elements in {V1, V2, V3, Vs}, then
there is some common ancestor d-separating such el-
ements (assume for purpose of illustration that such
common cause is not in {Vq, Vs, V3,V4}). Assume all
three tetrads hold in {X, 4, B,Y} and {X,Y,C,D},
but oxyoac # oxaoyc. If X and Y had a com-
mon parent, then this common parent would have to
d-separate every member of {X,Y,A,B,C,D}, and
therefore all tetrad constraints would hold in this set,
which means ocxyoac = oxa0yc. Contradiction. A
full proof for the non-linear latent structure case is
given in (Silva et al., 2003). We illustrate the essential

features of the procedure above outlined, which we will
call FindMeasurementPattern, in Figure 2.

Figure 2a shows the true graph that is unknown to
the algorithm. Initially, in (2b) we create a complete
graph where all observed variables are vertices. In
2¢, all edges in {1,2,3,4} x {9,10,11} are removed
because such sets are uncorrelated. In Figure 2d,
other edges are removed because of the Unclustered
test. For example, Unclustered({1,2,3},{6,7,8}; %)
will hold. Since the pair {3,5} could not satisfy the
second criterion of the sketch given above, we repre-
sent this failure by a dotted edge in Figure 2d. Next,
we first separate the graph into components consist-
ing of solid edges only, as in Figure 2e. All max-
imal cliques are generated for each of these compo-
nents, generating three clusters in our example. An-
other graph is generated using these clusters (Fig-
ure 2f), and the dotted edge from the previous step
is added back forming the undirected edge between
{3,5}. It remains to decide which latents in this
graph should be linked. For each pair of latents,
this is done by finding three indicators {01,032, 03}
of the first latent, three indicators {O4,Os5, Og} from
second, and adding the edge between latents if
Unclustered({0O1,02,03},{04,05,06}; X) holds. If
there is no such pair, then these latent will not be
linked. In our example, all latents are linked. The
resulting theorem follows with probability 1 (Silva et
al., 2003):

Theorem 1 Let G(L, O,¢,EL, Eq, E., Gs) be the pu-
riftable linear latent variable graph that generates the
covariance matric X of a set of observed random
variables O. Then, G will be in the measurement
equivalence class MM (0,X), and such class will be
given by the measurement pattern obtained throught
FindMeasurementPattern(O, X).

4.2 Purification

A measurement pattern is not a measurement model.
but it is possible to find all pure measurement models
of the unknown true graph from the measurement
pattern. Let LEZ(T) = L if and only if all children
of node T in graph G are children of node H in
graph G (i.e., such children have the same name).
We define the relationship =psps for two latent
variable graphs Gi(L1,01,€1,EL,,Eo,,E,,) and
G2(L2,02,¢2,E1,,E0,,E,) as Gi =ym G2 if
and only if O; = O2 and for each L; € Lj there
exists an unique Ly € Lo such that Lgf(Ll) = Lo
and Lg;(Lg) = L;. For two sets of latent variable
graphs Gi and Gg, we have G; =, Go if for
every G1 € G1 there is an unique Gy € G2 such that
G1 =mm G2 and |G1| = |Gz|. We define purifica-
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Figure 2: A step-by-step demonstration of how the graph in Figure (a) will generate the measurement pattern

in Figure (f).

tions of a measurement pattern in an analogous way
purifications of latent variable graphs were defined,
but only with respect to a subset of latents that
should form a maximum clique within the set of
latents. The following results hold with probability 1:

Theorem 2 Let G(L,0,¢,Er,Eq,E., Gs) be the
purifiable linear latent variable graph that generates
the covariance matriz ¥ of a set of observed random
variables O. Let M Mg be the measurement pattern
corresponding to the equivalence class MM(O,X).
Let MMpyre be the set of all purifications of M Mg.
Then MMPure =MM Gs.

Corollary 1  For every possible pair of
purifiable linear latent variable graphs
Gl(LlaoaelaELlanlaEelyGsl) and GZ(L2;O7€27
E1,,Eo0,,E.,,Gs,) faithfully generating %, the
covariance matriz of O, we have Gs, =ym Gs, -

5 Complexity

The algorithms we have discussed for learning mea-
surement patterns and pure measurement models are
exponential in the worst case, since they require find-
ing maximal and maximum cliques. The Unclustered
test itself may require O(n®) steps, n the number of
variables. Such costs may limit the application of our
procedure for larger problems, but in practice it will
work in reasonable time if the true graph is not very
impure: if the true graph contains no impurity, the
procedures will run in polynomial time. In the case
of the Unclustered test, the actual number of steps in
a given problem can be much lower than n® if true
clusters are relatively small with respect to the to-
tal number of variables, which can be expected as the
number of nodes increases. In the same way that junc-
tion trees contributed to the development of approx-
imate inference algorithms by providing a principled,
but worst-case exponential, solution to the inference



problem, the procedure outline here could be used as
a starting point for creating principled approximate
solutions. The sequential testing of many vanishing
tetrad hypotheses may limit the confidence in the ac-
tual output. In pratice, the measurement pattern can
have many errors, but still induce a correct purified
solution, as our examples will illustrate.

6 Empirical evaluation

In Silva et al., (2003), we analyze a real-world example
involving a battery of indicators of “student anxiety”,
and our results seem to provide further insight than
those derived from different variations of factor anal-
ysis. Here we report on several simulation studies in-
volving models with 5 to 10 latent variables and 3 to 5
indicators for each latent. We investigate true models
with 1) linear relations among the latents and a pure
measurement model with normal variates, 2) linear
relations among the latents and an impure measure-
ment model with normal variates, and 3) non-linear
relations among the latents and an impure measure-
ment model with non-normal variates. In studies 1
and 2 we generated the graph among the latents ran-
domly, and samples of 1,000 and 5,000 were drawn
psuedo-randomly with the Tetrad IV program?. Lin-
ear coefficients were uniformly sampled from the inter-
val [-1.5,—0.5] U [0.5,1.5] and the variance of the ex-
ogenous nodes were uniformly sampled from the inter-
val [1,3]. The average number of neighbors for latent
variables was set to 2 (in the cases of up to 5 latents)
and 4 (in the case of 10 latents). The algorithm’s suc-
cess is evaluated by comparing the pure model output
with with respect to the maximal purified true graph
(unique in the examples we generated) with the fol-
lowing desiderata:

e proportion of missing latents, the number of
latents in the true graph that do not appear in
the estimated pure graph, divided by the number
of latents in the true graph;

e proportion of missing measurements, the
number of indicators in the true purified graph
that do not appear in the estimated pure graph,
divided by the number of indicators in the true
purified graph;

e proportion of misplaced measurements, the
number of indicators in the estimated pure graph
that end up in the the wrong cluster, divided by
the number of indicators in the estimated pure
graph;

% Available at http://www.phil.cmu.edu/tetrad.

e proportion of impurities, the number of impu-
rities in the estimated pure graph divided by the
number of impurities in the true (non-purified)
graph. 3

We decide which latent found by the algorithm corre-
sponds to which of the original latents by comparing
the majority of the indicators in a given estimated clus-
ter to those in the true model: for example, suppose
we have an estimated latent Lg. If, for instance, 70%
of the measures in Lg are measures of the true latent
Lo, we label Lg as Ls in the estimated graph and cal-
culate the statistics of comparison as described above.
A few ties occur, but labeling the latent in one way or
another did not change the final statistics.

In study 1, for a given number m of latents (with ran-
dom relations among them), we add n pure indicators
to each latent, where m = 5,10 and n = 3,4,5. We
used two different sample sizes: 1000 and 5000 obser-
vations. The results (Table 2), make it clear that the
number of indicators contributes more to the sucess
of the algorithm than the sample size. With exactly
three indicators per latent, there is little margin for re-
dundancy and any statistical mistake when evaluating
a constraint may be enough to eliminate a whole clus-
ter. There is a huge leap of quality when latents have
four indicators: in this case, results are extremely good
and adding more samples do not change them much.
A similar pattern follows for the case with 5 and 10
latents, althought the case for 10 latents, 3 indicators
per latent and 5000 examples deserves further study.

In study 2, we added impure indicators to the models
from study 1 prior to generating data, but the results
are largely unchanged (Table 3.

The third experiment uses the graph in Figure 3 to
generate data, parameterized by the following set of
nonlinear structural equations among the latents:

Ly, = L% + €12
Ly = +/Li+e¢€p3
Ly = sin(La/L3)+ €4

3Notice that a node that is impure in the measurement
pattern may not be impure with respect to the other nodes
in the purified estimated graph. In this case, we do not
count them. For each pair of nodes that forms a localized
impurity (e.g., indicators with correlated errors, or an in-
dicator that is a direct cause of another, while both are
children of a same and single latent), we count this pair
as one impurity, since removing one of them will elimi-
nate that impurity. Each indicator that has more than one
immediate latent ancestor (i.e., a latent ancestor with a
directed path to that indicator that does not include any
other element in the latent set) is counted as one impurity,
since it has to be removed from all purified graphs.



Table 2: Study 1. Each number is an average over
10 trials, with an indication of the standard deviation
over these trials. The two columns represent the cases
with 5 latents/1000 observations and 5 latents/5000
observerations, 10 latents/1000 observations and 10 la-
tents/5000 observations, respectively.

L3

L4

A

12 13 14 15 I¢
~_ 7

1234

56 7 8

9 10 11

Figure 3: An impure model with a diamond-like latent
structure. Notice there are two ways to purify this
graph: by removing 6 and 13 or removing 6 and 15.

Evaluation of estimated purified models
| 5L/1000 | 5L/5000
3 indicators, pure
missing latents | 0.42 +0.15 | 0.28 £ 0.10
missing indicators | 0.36 £0.16 | 0.26 £ 0.10
misplaced indicators | 0.11 £0.12 | 0.03 £ 0.08
4 indicators, pure
missing latents 0.0+0.0 0.02 £0.06
missing indicators | 0.08 £0.05 | 0.06 +0.07
misplaced indicators 0.0£0.0 0.0£+0.0
5 indicators, pure
missing latents 0.0£0.0 0.02 +0.06
missing indicators | 0.03 +£0.03 | 0.06 £ 0.08
misplaced indicators 0.0+0.0 0.0+0.0
[ 10L/1000 | 10L/5000
3 indicators, pure
missing latents | 0.40 £0.08 | 0.45 £+ 0.08
missing indicators | 0.37 £0.09 | 0.43 £0.11
misplaced indicators | 0.05+0.08 | 0.03 £ 0.06
4 indicators, pure
missing latents | 0.07 +£0.08 | 0.05 £+ 0.07
missing indicators | 0.11 +£0.09 | 0.10 £ 0.06
misplaced indicators | 0.02 +0.04 0.0£+0.0
5 indicators, pure
missing latents | 0.02 £ 0.04 0.0+0.0
missing indicators | 0.09 £0.07 | 0.06 £ 0.05
misplaced indicators 0.0£0.0 0.0+0.0

Table 3: Results for Study 2.

Evaluation of estimated purified models
[ 56L/1000E | 5L/5000E
3 indicators + impurities
missing latents | 0.40 £0.13 | 0.34 £0.16
missing indicators | 0.40 £0.15 | 0.37 £0.20
misplaced indicators 0.0+0.0 0.01 +0.03
impurities | 0.06 +0.08 | 0.03 +0.07
4 indicators + impurities
missing latents 0.0+0.0 0.04 £0.08
missing indicators | 0.05 £0.08 | 0.14 £0.13
misplaced indicators | 0.01 £ 0.01 0.0£0.0
tmpurities | 0.03 +0.09 0.0+0.0
5 indicators 4+ impurities
missing latents 0.0+0.0 0.0+0.0
missing indicators | 0.05 £0.04 | 0.03 £0.03
misplaced indicators 0.0+0.0 0.0+0.0
tmpurities | 0.03 +=0.09 0.0+0.0

Evaluation of estimated purified models
| 1000 | 5000 | 50000
Wishart test
miss. latents | 0.20£0.11 | 0.20 £0.11 | 0.18 £0.12
miss. ind. | 0.21+0.11 | 0.22 £0.08 | 0.10 £0.13
mispl. ind. | 0.01 £ 0.02 0.0 +0.0 0.0+ 0.0
impurities 0.0+0.0 0.0+0.0 0.1+0.21
Bollen test
miss. latents | 0.18 £0.12 | 0.13£0.13 | 0.10 £ 0.13
miss. ind. | 0.15+0.09 | 0.16 £0.14 | 0.14 £0.11
miaspl. ind. | 0.02 £+ 0.05 0.0 +0.0 0.1+0.03
impurities | 0.15+0.24 | 0.10 £0.21 0.0£+0.0

Table 4: Results obtained for the non-linear model.

where L, is distributed as a mixture of two beta dis-
tributions, Beta(2,4) and Beta(4,2), where each one
has prior probability of 0.5. Each error term e is
distributed as a mixture of a Beta(4,2) and the sym-
metric of a Beta(2,4), where each component in the
mixture has a prior probability that is uniformly dis-
tributed in [0,1], and the mixture priors are drawn
individually for each latent in {Ls, L3, Ls4}. The error
terms for the indicators also follow a mixture of betas
(2,4) and (4,2), each one with a mixing proportion in-
dividually chosen according to a uniform distribution
in [0,1]. In principle, the asymptotic distribution free
test of tetrad constraints from (Bollen, 1990) should
be the method of choice if the data does not pass a
normality test. However, such test uses the fourth
moments of the empirical distribution, which can take
a long time to compute if the number of variables is
large (since it takes O(mn*) steps, where m is the num-
ber of data points and n is the number of variables).
Caching a large matrix of fourth moments may re-
quire secondary memory storage, unless one is willing
to pay for multiple passes through the data set every
time a test is demanded or if a large amount of RAM
is available. In practice, researchers may be unwilling
or unable to go to the trouble. We have therefore used
the Wishart test (see Spirtes et al., 2000 for details),
which assumes multivariate normality. Samples of size
1000, 5000 and 50000 were used. The results (Table
4) are reasonable, and are not substantially improved
by using Bollen’s distribution free test.



6.1 Factor Analysis

For comparison, we generated factor analysis models
for each of the data sets in these experiments using
the PROC FACTOR procedure from SAS v.8e, and
two criteria for choosing the number of latents: the
default SAS criterion that chooses the number of la-
tents by a threshold on the amount of variance ex-
plained, and an iterative procedure that chooses the
number of latents by the first statistically significant
model starting with 1 latent and increasing the num-
ber of latents by 1 at each iteration. Both chi-square
tests and BIC scoring were used. We performed an
oblique rotation (we used the oblimin rotation). We
then heuristically cluster the indicators by associating
each one with the latent with the respective highest
loading (in absolute value). The default criterion of
choosing the number of latents badly underestimated
the true number. The chi-square criterion worked ex-
tremely well for the experiments with entirely linear
models. The combination of the chi-square criterion
and the heuristic clustering criterion acheived nearly
zero error by all our evaluation measures. But in the
last experiment, with a non-linear system, using sam-
ples from Figure 3, SAS worked reasonably with the
default procedure, but with chi-square iteration failed
to find a statistically significant model before having
convergence problems with maximum likelihood esti-
mation in 10 trials. In an actual case, we would be
uncertain as to which factor analysis rotation crite-
rion to use, and we know of no theoretical guarantees
for either criterion.

7 Future Work

Once something can be done, it can be done in many
ways. Despite a number of theoretical and practi-
cal problems, Bayesian or other score based meth-
ods could perhaps be applied, although our attempt
at such an algorithm (Silva, 2002) did not perform as
well. Unlike DAGs over observed variables, latent vari-
able models cannot be decomposed (as, for instance,
in Chickering (2002)), and current asymptotic approx-
imations to the posterior distribution, such as the BIC
score, are known to be inconsistent for latent vari-
able models. One step towards solving this problem
is given in Rusakov and Geiger, 2002. Factor analysis
criteria could be more systematically explored, both
by simulation and by theory. There are, besides, a
number of possible improvements on the procedures
we have described. First, we might use approximation
algorithms that can handle problems with larger num-
bers of variables. Second, we might explore solutions
for discrete variables. For instance, Bartholomew and
Knott (1999) present generalizations of factor anal-

ysis to exponential family distributions, which could
be used as a starting point for dealing with multi-
nomial data under our framework. Finally, we need
to do more extensive experimental evaluation, includ-
ing more tests with non-Gaussian data and real-world
data, as well as simulations where assumptions do not
hold.
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