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Interests

I am interested in automated knowledge discovery, in particular statistical and causal models with
hidden, or unmeasured variables. I consider graphical models with hidden variables a key framework
for machine learning. Such models are flexible enough to encompass large classes of probability
distributions through mixture models, provide valuable tools for decomposing complex problems
into simpler ones via hierarchical models, and are essential in causal analysis in representing hidden
common causes, i.e. confounders.

Recent Work

My current research has been in automatically discovering the existence of hidden variables and in
automatically discovering how to measure them accurately, especially when the goal is to examine
the relationships among hidden variables.

During the past few years as a PhD student at Carnegie Mellon University, I have studied how
to identify features of a latent variable model under weak structural assumptions. That is, how
can one provide consistent criteria to decide which hidden variables exist? How can one decide
if an observed variable measures a hidden variable, if one cannot directly evaluate conditional
independencies that involve unmeasured variables?

One can accomplish this task by searching among models that predict certain features of the
purely observable marginal distribution. Consider the following assumption: assume that certain
constraints on the marginal are not a result of an accidental choice of parameters, but a consequence
of the unknown graphical structure that has to be learned from data. For instance, assume that
observed conditional independencies are not due to specific conditional probability tables, but hold
if and only if they are entailed in the unknown graphical structure by d-separation (this is sometimes
called the faithfulness, or stability assumption [SGS00, Pea00]).

We adopted similar assumptions with respect to rank constraints on the observed covariance
matrix. Some combinations of rank constraints that are judged to hold in the population according
to the data can only be generated by specific structures, and by searching among different structures
that predict these constraints we can learn several features of the unknown graphical model. Results
can be obtained even when non-linear relations among latents are allowed [SSGS03]. We are able
to provide stronger guarantees in the fully linear case [SSGS04].

There are two questions that might arise at this point: why is this important? And how reliable
is this procedure?



The importance of these results are two-fold: first, in many situations the structure of graphical
models can be given a causal interpretation, and it is important to provide some guarantees about a
structure generated by any learning procedure. It is not enough to fit the data: it is also important
to report all other structures that fit it. The set of features common to all models that predict the
observed constraints will form our causal model, and with the right structure and extra assump-
tions it is possible to predict the effect of interventions [SGS00, Pea00]. Sometimes directionality
of causality can be learned from data. Sometimes the directionality is given by background knowl-
edge, and latent variable models are used to learn regression functions when measurement error
is present [CRS95]. Our method can also be seen as a way of finding instrumental variables to
learn regression functions under measurement error. In simulation studies [SSGS04], our method
worked particularly well, while factor analysis was of very limited value even considering that the
simulations respected all the assumptions adopted by factor analysis. Even though causal models
are difficult to evaluate when experimental data is not available, learning them from observational
data is still of great importance: for instance, learning regulatory networks of gene expression is
mostly meaningless without causal assumptions or massive experiments.

Another important application of our results is in probabilistic modeling: although several
latent variable models and algorithms are generic enough to provide reasonable density estimation,
those are usually either based on ad-hoc search procedures [ELFKO00], or are constrained to have
very few degrees of structural freedom such as no more than the number of latents and number of
mixture components [GB99]. A more principle set of structural identification conditions can help
the design of search procedures to achieve better density estimation. In [Sil04] we provide our first
empirical results for this task. Much remains to be done, such as using our theoretical results as a
guideline for more complex Bayesian search methods.

My interest in graphical models and latent variables has also influenced my work during a Sum-
mer internship at Clairvoyance corporation, Pittsburgh. My project was a graphical representation
of models of work, such as modeling the flow of activities in a large organization with the goal of
designing policies to increase productivity. Based on the literature of workflow mining [vdAWO04],
we developed a coherent probabilistic model and an interesting class of workflow graphs that obey
structural constraints that are believed to hold in such processes, such as the nesting of activities.
Latent variables are indirectly used to model measurement error. The first results are given in
[SZS04].

Suggested future work

Currently I am looking at latent variable models with discrete observed variables and continuous
latents, and how my framework can be used under this scenario. I am also developing a different
search algorithm based on Bayesian scoring and on the identification conditions for latent variables
developed in my previous work.

For the immediate future, I foresee some very interesting possibilities. Since I have always been
interested in learning large knowledge bases, the idea of statistical matching [Ras02], a framework
which goal is to make inferences about a joint distribution without any direct observations of the
joint, is particularly attractive. There are already some results in graphical models concerning data
fusion. For instance, David Danks at CMU has some theoretical results on building single Bayesian
networks from multiple data sources [Dan02]. [Cud00] describes approaches for estimating the
covariance of two variables that are not jointly observed by fitting latent variables models (factor
analysis, in this case). Notice this is not the same as learning from relational data, since different
data sources are not necessarily measured over the same individuals.



I will also continue to pursue the topic of consistent identification of latent structure. The work
of [TP02] and [GM99] might provide new ideas in this area. In particular, a natural extension of
my work is in how to adapt it to deal with time-series data. Under the assumption that the latent
model has a fixed structure over a finite window of time as in a dynamic Bayesian network, several
of the constraints that we have been using so far can be carried to the dynamic case.

I am also very interested in nonparametric Bayesian methods applied to latent variable models.
Carrol et al. [CRCT04] present new identification results in Bayesian nonparametric regression
with measurement error and instrumental variables, a problem whose goals that are closely related
to my previous work. How much of such techniques could be adapted to the problem of learning
the structure of latent variable models is a relevant topic.

Bayesian analysis can also contribute to causal analysis in case if one is willing to put priors
on how weak an empirical dependency should be (e.g., a sample correlation coefficient) in order to
imply a structural independence (e.g., no causal connection). The “strong faithfulness” family of
assumptions of [ZS03] is a formal non-Bayesian way of incorporating these priors.

Finally, I have a variety of interests in other areas of graphical models. Although my interests in
latent variable models concern primarily causality discovery and density estimation, dimensionality
reduction and approximate inference are also topics I consider of great relevance. I am particularly
curious about a new family of multinomial models currently in development by Thomas Richardson
and Mathias Drton (personal communication) based on the independence models of [RS02], which
generalizes directed and undirected graphs. I would like to explore the possibility of developing
approximate inference algorithms for these types of graphical models.
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