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Abstract

We describe anytime search procedures that (1) find disjoint subsets of recorded variables
for which the members of each subset are d-separated by a single common unrecorded cause,
if such exists; (2) return information about the causal relations among the latent factors
so identified. We prove the procedure is point-wise consistent assuming (a) the causal
relations can be represented by a directed acyclic graph (DAG) satisfying the Markov
Assumption and the Faithfulness Assumption; (b) unrecorded variables are not caused by
recorded variables; and (c) dependencies are linear. We compare the procedure with factor
analysis over a variety of simulated structures and sample sizes, and illustrate its practical
value with brief studies of social science data sets. Finally, we consider generalizations for
non-linear systems.

Keywords: Latent variable models, causality, graphical models, structural equation
models

1. What we will show

In many empirical studies that estimate causal relationships, influential variables are un-
recorded, or “latent.” When unrecorded variables are believed to influence only one recorded
variable directly, they are commonly modeled as noise. When, however, they influence two
or more measured variables directly, the intent of such studies is to identify them and their
influences. In many cases, for example in sociology, social psychology, neuropsychology,
epidemiology, climate research, signal source studies, and elsewhere, the chief aim of in-
quiry is in fact to identify the causal relations of (often unknown) unrecorded variables that
influence multiple recorded variables. It is often assumed on good grounds that recorded
variables do not influence unrecorded variables, although in some cases recorded variables
may influence one another.
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When there is uncertainty about the number of latent variables, which measured vari-
ables they influence, or which measured variables influence other measured variables, the
investigator who aims at a causal explanation is faced with a difficult discovery problem for
which currently available methods are at best heuristic. Loehlin (2004) argues that while
there are several approaches to automatically learn causal structure, none can be seem
as competitors of exploratory factor analysis: the usual focus of automated search proce-
dures for causal Bayes nets is on relations among observed variables. Loehlin’s comment
overlooks Bayes net search procedures robust to latent variables (Spirtes et al., 2000), but
the general sense of his comment is correct. For a kind of model widely used in applied
sciences − “multiple indicator models” in which multiple observed measures are assumed
to be effects of unrecorded variables and possibly of each other − machine learning has
provided no principled alternative to factor analysis, principal components, and regression
analysis of proxy scores formed from averages or weighted averages of measured variables,
the techniques most commonly used to estimate the existence and influences of variables
that are unrecorded. The statistical properties of models produced by these methods are
well understood, but there are no proofs, under any general assumptions, of convergence to
features of the true causal structure. The few simulation studies of the accuracy of these
methods on finite samples with diverse causal structures are not reassuring (Glymour, 1997).
The use of proxy scores with regression is demonstrably not consistent, and systematically
overestimates dependencies. Better methods are needed.

We describe a two part method for this problem. The method (1) finds clusters of
measured variables that are d-separated by a single unrecorded common cause, if such
exists; and (2) finds features of the Markov Equivalence class of causal models for the latent
variables. Assuming only principles standard in Bayes net search algorithms, and satisfied
in almost all social science models, the two procedures converge, probability 1 in the large
sample limit, to correct information. The completeness of the information obtained about
latent structure depends on how thoroughly confounded the measured variables are, but
when, for each unknown latent variable, there in fact exists at least a small number of
measured variables that are influenced only by that latent variable, the method returns the
complete Markov Equivalence class of the latent structure. We show by simulation studies
for three latent structures and for a range of sample sizes that the method identifies the
number of latent variables more accurately than does factor analysis. Applying the search
procedures for latent structure to the latent variables identified (1) by factor analysis and,
alternatively, (2) by our clustering method, we again show by simulation that our clustering
procedure is more accurate. We illustrate the procedure with applications to social science
cases.

2. Illustrative principles

Consider Figure 1, where X variables are recorded and L variables (in ovals) are unrecorded
and unknown to the investigator.

The latent structure, the dependencies of measured variables on individual latent vari-
ables, and the linear dependency of the measured variables on their parents and (unrepre-
sented) independent noises in Figure 1 imply a pattern of constraints on the covariance ma-
trix among the X variables. For example, X1,X2,X3 have zero covariances with X7,X8,X9.
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Figure 1: A latent variable model which entails several constraints on the observed covari-
ance matrix. Latent variables are inside ovals.

Less obviously, for X1,X2,X3 and any one of X4,X5,X6, three quadratic constraints (tetrad
constraints) on the covariance matrix are implied: e.g., for X4

ρ12ρ34 = ρ14ρ23 = ρ13ρ24 (1)

where ρ12 is the Pearson product moment correlation between X1,X2, etc. (Note that any
two of the three vanishing tetrad differences above entails the third.) The same is true for
X7,X8,X9 and any one of X4,X5,X6; for X4,X5,X6, and any one of X1,X2,X3 or any
one of X7,X8,X9. Further, for any two of X1,X2,X3 or of X7,X8,X9 and any two of
X4,X5,X6, exactly one such quadratic constraint is implied, e.g., for X1,X2 and X4,X5,
the single constraint

ρ14ρ25 = ρ15ρ24 (2)

The constraints hold as well if covariances are substituted for correlations.

Statistical tests for vanishing tetrad differences are available for a wide family of distrib-
utions. Linear and non-linear models can imply other constraints on the correlation matrix,
but general, feasible computational procedures to determine arbitrary constraints are not
available (Geiger and Meek, 1999) nor are there any available statistical tests of good power
for higher order constraints.

Given a “pure” set of sets of measured indicators of latent variables, as in Figure 1
− informally, a measurement model specifying, for each latent variable, a set of measured
variables influenced only by that latent variable and individual, independent noises − the
causal structure among the latent variables can be estimated by any of a variety of methods.
Standard chi square tests of latent variable models can be used to compare models with and
without a specified edge, providing indirect tests of conditional independence among latent
variables. The conditional independence facts can then be input to a constraint based
Bayes net search algorithm, such as PC or FCI (Spirtes et al., 2000). Such procedures
are asymptotically consistent, but not necessarily optimal on small samples. Alternatively,
a correlation matrix among the latent variables can be estimated from the measurement
model and the correlations among the measured variables, and a Bayesian search can be
used. Score-based approaches for learning the structure of Bayesian networks, such as GES
(Chickering, 2002), are usually more accurate with small to medium sized samples than are
PC or FCI. Given an identification of the latent variables and a set of “pure” measured
effects or indicators of each latent, the correlation matrix among the latent variables can be
estimated by expectation maximization, The complete graph on the latent variables is then
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Figure 2: A latent variable model which entails several constraints on the observed covari-
ance matrix.

dispensed with and the latent structure is estimated from the estimated correlations, using
GES with the Bayes Information Criterion (BIC) score to estimate posterior probabilities.
In Figure 1 the measured variables neatly cluster into disjoint sets of variables and the
variables in any one set are influenced only by a single common cause and there are no
influences of the measured variables on one another. In many real cases the influences
on the measured variables do not separate so simply. Some of the measured variables may
influence others (as in signal leakage between channels in spectral measurements), and some
or many measured variables may be influenced by two or more latent variables.

For example, the latent structure of a linear, Gaussian system shown in Figure 2 can be
recovered by the procedures we propose. Our aim in what follows is to prove and use new
results about implied constraints on the covariance matrix of measured variables to form
measurement models that enable estimation of features of the Markov Equivalence class of
the latent structure in a wide range of cases. We will develop the theory first for linear
models with a joint Gaussian distribution on all variables, including latent variables, and
then consider possibilities for generalization. In many models of this kind in the applied
sciences, some variables are specified with unexplained correlations represented as bidirected
edges between the variables. We allow representations of this kind.

The general idea is as follows. We introduce a graphical representation of an equivalence
class of models that entail a given set of vanishing partial correlations and vanishing tetrad
differences, analogous to the familiar notion of a pattern (Pearl, 1988) used to represent a
Markov Equivalence class of directed acyclic graphs (DAGs), We provide an algorithm for
discovering features of this Measurement Pattern. Using the Measurement Pattern, further
procedures find clusters of measured variables for which the members of each cluster share a
latent common cause. A combination of expectation-maximization and the GES algorithm
scored by BIC is then used to estimate the causal relations among the latent variables.

3. Related work

The traditional framework for discovering latent variables is factor analysis and its variants
(see, e.g., Bartholomew et al., 2002). A number of factors is chosen based on some criterion
such as the minimum number of factors that fit the data at a given significance level or
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the number that maximizes a score such as BIC. After fitting the data, usually assuming a
Gaussian distribution, different transformations (rotations) to the latent covariance matrix
are applied in order to satisfy some criteria of simplicity. Latents are interpreted based on
the magnitude of the coefficients relating each observed variable to each latent.

In non-Gaussian cases, the usual methods are variations of independent component
analysis, such as independent factor analysis (Attias, 1999) and tree-based component
analysis (Bach and Jordan, 2003). These methods severely constrain dependency struc-
ture among the latent variables. That facilitates joint density estimation or blind source
separation, but it is of little use in learning causal structure.

In a similar vein, Zhang (2004) represents latent variable models for discrete variables
(both observed and latent) with a multinomial probabilistic model. The model is con-
strained to be a tree and every observed variable has one and only one (latent) parent
and no child. Zhang does not provide a search method to find variables satisfying the
assumption, but assumes a priori the variables measured satisfy it.

Elidan et al. (2000) introduces latent variables as common causes of densely connected
regions of a DAG learned through standard algorithms for learning Bayesian network struc-
tures. Once one latent is introduced as the parent of a set of nodes originally strongly
connected, the standard search is executed again. The process can be iterated to intro-
duce multiple latents. Examples are given for which this procedure increases the fit over a
latent-free graphical model are provided, but Elidan et al. provide no information about the
conditions under which the estimated causal structure is correct. In Silva et al. (2003) we
developed an approach to learning measurement models. That procedure requires that the
true underlying graph has a “pure” submodel with three measures for each latent variable,
which is a strong and generally untestable assumption. That assumption is not needed in
the procedures described here.

4. Notation, assumptions and definitions

Our work is in the framework of causal graphical models. Concepts used here without
explicit definition, such as d-separation and I-map, can be found in standard sources (Pearl,
1988; Spirtes et al., 2000; Pearl, 2000). We use “variable” and “vertex” interchangeably, and
standard kinship terminology (“parent,” “child,” “descendant,” “ancestor”) for directed
graph relationships. Sets of variables are represented in bold, individual variables and
symbols for graphs in italics. The Pearson partial correlation of X, Y controlling for Z is
denoted by ρXY.Z . We assume i.i.d. data sampled from a subset O of the variables of a
joint Normal distribution D on variables V = O∪L, subject to the following assumptions:

A1 D factors according to the local Markov assumption for a DAG G with vertex set V.
That is, any variable is independent of its non-descendants in G conditional on any
values of its parents in G.

A2 No vertex in O is an ancestor of any vertex in L. We call this property the measure-
ment assumption;

A3 Each variable in V is a linear function of its parents plus an additive error term of
positive finite variance
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A4 The Faithfulness Assumption: for all {X,Y,Z} ⊆ V, X is independent of Y condi-
tional on each assignment of values to variables in Z if and only if the Markov Assump-
tion for G entails such conditional independencies. For models satisfying A1-A3 with
Gaussian distributions, Faithfulness is equivalent to assuming that no correlations or
partial correlations vanish because of multiple pathways whose influences perfectly
cancel one another.

Definition 1 (Linear latent variable model) A model satisfying A1 − A4 is a linear
latent variable model, or for brevity, where the context makes the linearity assumption clear,
a latent variable model.

A single symbol, such as G, will be used to denote both a linear latent variable model
and the corresponding latent variable graph. Linear latent variable models are ubiquitous
in econometric, psychometric, and social scientific studies (Bollen, 1989), where they are
usually known as structural equation models.

Definition 2 (Measurement model) Given a linear latent variable model G, with vertex
set V, the subgraph containing all vertices in V, and all and only those edges directed into
vertices in O, is called the measurement model of G.

Definition 3 (Structural model) Given a linear latent variable model G, the subgraph
containing all and only its latent nodes and respective edges is the structural model of G.

Definition 4 (Linear entailment) We say that a DAG G linearly entails a constraint if
and only if the constraint holds in every distribution satisfying A1 - A4 for G with covariance
matrix parameterized by Θ, the set of linear coefficients and error variances that defines the
conditional expectation and variance of a vertex given its parents.

Definition 5 (Tetrad equivalence class) Given a set C of vanishing partial correlations
and vanishing tetrad differences, a tetrad equivalence class T (C) is the set of all latent vari-
able graphs each member of which entails all and only the tetrad constraints and vanishing
partial correlations among the measured variables entailed by C.

Definition 6 (Measurement equivalence class) An equivalence class of measurement
modelsM(C) for C is the union of the measurement models graphs in T (C). We introduce
a graphical representation of common features of all elements of M(C), analogous to the
familiar notion of a pattern representing the Markov Equivalence class of a Bayes net.

Definition 7 (Measurement pattern) A measurement pattern, denoted MP(C), is a
graph representing features of the equivalence class M(C) satisfying the following:

• there are latent and observed vertices;

• the only edges allowed in an MP are directed edges from latent variables to observed
variables, and undirected edges between observed vertices;

• every observed variable in a MP has at least one latent parent;
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Algorithm FindPattern
Input: a covariance matrix Σ

1. Start with a complete graph G over the observed variables.

2. Remove edges for pairs that are marginally uncorrelated or uncorrelated conditioned
on a third variable.

3. For every pair of nodes linked by an edge in G, test if some rule CS1, CS2 or CS3
applies. Remove an edge between every pair corresponding to a rule that applies.

4. Let H be a graph with no edges and with nodes corresponding to the observed vari-
ables.

5. For each maximal clique in G, add a new latent to H and make it a parent to all
corresponding nodes in the clique.

6. For each pair (A,B), if there is no other pair (C,D) such that σACσBD = σADσBC =
σABσCD, add an undirected edge A−B to H.

7. Return H.

Table 1: Returns a measurement pattern corresponding to the tetrad and first order van-
ishing partial correlations of Σ.

• if two observed variables X and Y in aMP(C) do not share a common latent parent,
then X and Y do not share a common latent parent in any member of M(C);

• if observed variables X and Y are not linked by an undirected edge in MP(C), then
X is not an ancestor of Y in any member of M(C).

Definition 8 (Pure measurement model) A pure measurement model is a measure-
ment model in which each observed variable has only one latent parent, and no observed
parent. That is, it is a tree beneath the latents.

5. Procedures for finding pure measurement models

Our goal is to find pure measurement models whenever possible, and use them to estimate
the structural model. To do so, we first use properties relating graphical structure and
covariance constraints to identify a measurement pattern, and then turn the measurement
pattern into a pure measurement model.

FindPattern, given in Table 1, is an algorithm to learn a measurement pattern from
an oracle for vanishing partial correlations and vanishing tetrad differences. The algorithm
uses three rules, CS1, CS2, CS3, based on Lemmas that follow, for determining graphical
structure from constraints on the correlation matrix of observed variables.

Let C be a set of linearly entailed constraints that exist in the observed covariance
matrix. The first stage of FindPattern searches for subsets of C that will guarantee
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Figure 3: Three examples with two main latents and several independent latent common
causes of two indicators (represented by double-directed edges). In (a), CS1
applies, but not CS2 nor CS3 (even when exchanging labels of the variables); In
(b), CS2 applies (assuming the conditions for X1,X2 and Y1, Y2), but not CS1
nor CS3. In (c), CS3 applies, but not CS1 nor CS2.

that two observed variables do not have any latent parent in common. Let G be the latent
variable graph for a linear latent variable model with a set of observed variables O. Let O′ =
{X1,X2,X3, Y1, Y2, Y3} ⊂ O such that for all triplets {A,B,C}, {A,B} ⊂ O′ and C ∈ O, we
have ρAB 6= 0, ρAB.C 6= 0. Let τIJKL represent the tetrad constraint σIJσKL − σIKσJL = 0
and ¬τIJKL represent the complementary constraint σIJσKL − σIKσJL 6= 0:

Lemma 9 (CS1 Test) If constraints {τX1Y1X2X3
, τX1Y1X3X2

, τY1X1Y2Y3
, τY1X1Y3Y2

, ¬τX1X2Y2Y1
}

all hold, then X1 and Y1 do not have a common parent in G.

“CS” here stands for “constraint set,” the premises of a rule that can be used to test if
two nodes do not share a common parent. Other sets of observable constraints can be used
to reach the same conclusion.

Let the predicate F1(X,Y,G) be true if and only if there exist two nodes W and Z
in latent variable graph G such that τWXY Z and τWXZY are both linearly entailed by G,
all variables in {W,X, Y,Z} are correlated, and there is no observed C in G such that
ρAB.C = 0 for {A,B} ⊂ {W,X, Y,Z}:

Lemma 10 (CS2 Test) If constraints {τX1Y1Y2X2
, τX2Y1Y3Y2

, τX1X2Y2X3
,¬τX1X2Y2Y1

} all
hold such that F1(X1,X2, G) = true, F1(Y1, Y2, G) = true, X1 is not an ancestor of X3 and
Y1 is not an ancestor of Y3, then X1 and Y1 do not have a common parent in G.

Lemma 11 (CS3 Test) If constraints {τX1Y1Y2Y3
, τX1Y1Y3Y2

, τX1Y2X2X3
, τX1Y2X3X2

, τX1Y3X2X3
,

τX1Y3X3X2
, ¬τX1X2Y2Y3

} all hold, then X1 and Y1 do not have a common parent in G.

These rules are illustrated in Figure 3. The rules are not redundant: only one can be
applied on each situation. For CS2 (Figure 3(b)), nodes X and Y are depicted as auxiliary
nodes that can be used to verify predicates F1. For instance, F1(X1,X2, G) is true because
all three tetrads in the covariance matrix of {X1,X2,X3,X} hold.

Sometime it is possible to guarantee that a node is not an ancestor of another, as
required, e.g., to apply CS2:
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Figure 4: In (a), a model that generates a covariance matrix Σ. In (b), the output of
FindPattern given Σ. Pairs in {X1,X2}× {X4, . . . ,X7} are separated by CS2.

Lemma 12 If for some set O′ = {X1,X2,X3,X4} ⊆ O, σX1X2
σX3X4

= σX1X3
σX2X4

=
σX1X4

σX2X3
and for all triplets {A,B,C}, {A,B} ⊂ O′, C ∈ O, we have ρAB.C 6= 0 and

ρAB 6= 0, then A ∈ O′ is not a descendant in G of any element of O′\{A}.

For instance, in Figure 3(b) the existence of the observed node X (linked by a dashed
edge to the parent of X1) allows the inference that X1 is not an ancestor of X3, since all
three tetrad constraints hold in the covariance matrix of {X,X1,X2,X3}.

Theorem 13 The output of FindPattern is a measurement patternMP (C) with respect
to the tetrad and zero/first order vanishing partial correlation constraints C of Σ.

The presence of an undirected edge does not mean that adjacent vertices in the pattern
are actually adjacent in the true graph. Figure 4 illustrates this: X3 and X8 share a common
parent in the true graph, but are not adjacent. Observed variables adjacent in the output
pattern always share at least one parent in the pattern, but do not always share a common
parent in the true DAG. Vertices sharing a common parent in the pattern might not share
a parent in the true graph (e.g., X1 and X8 in Figure 4 ).

The FindPattern algorithm is sound, but not necessarily complete. That is, there
might be graphical features shared by all members of the measurement model equivalence
class that are not discovered by FindPattern. Using the notion of a pure measurement
model, defined above, we can improve the results with respect to a subset of the given
variables. A pure measurement model implies a clustering of observed variables: each
cluster is a set of observed variables that share a common (latent) parent, and the set
of latents defines a partition over the observed variables. The output of FindPattern
cannot, however, reliably be turned into a pure measurement pattern in the obvious way,
by removing from H all nodes that have more than one latent parent and one of every pair
of adjacent nodes.

The procedure BuildPureClusters of Table 2 builds a pure measurement model using
FindPattern and an oracle for constraints as input. Variables are removed whenever
appropriate tetrad constraints are not satisfied. Some extra adjustments concern clusters
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with proper subsets that are not consistently correlated to another variable (Steps 6 and
7) and a final merging of clusters (Step 8). We explain the necessity of these steps in
Appendix A. As described, BuildPureClusters requires some decisions that are not
specified (Steps 2, 4, 5 and 9). We propose an implementation in Appendix C, but various
results are indifferent to how these choices are made.

The graphical properties of the output of BuildPureClusters are summarized by the
following theorem:

Theorem 14 Given a covariance matrix Σ assumed to be generated from a linear latent
variable model G with observed variables O and latent variables L, let Gout be the output
of BuildPureClusters(Σ) with observed variables Oout ⊆ O and latent variables Lout.
Then Gout is a measurement pattern, and there is an unique injective mapping M : Lout →
L with the following properties:

1. Let Lout ∈ Lout. Let X be a child of Lout in Gout. Then M(Lout) d-separates X from
Oout\X in G;

2. M(Lout) d-separates X from every latent L in G for which M−1(L) is defined;

3. Let O′ ⊆ Oout be such that each pair in O′ is correlated. At most one element in O′

has the following property: (i) it is not a descendant of its respective mapped latent
parent in G or (ii) it has a hidden common cause with its respective mapped latent
parent in G;

Informally, there is a labeling of latents in Gout according to the latents in G, and in
this relabeled output graph any d-separation between a measured node and some other
node will hold in the true graph, G. For each group of correlated observed variables, we
can guaranteee that at most one edge from a latent into an observed variable is incorrectly
directed. Notice that we cannot guarantee that an observed node X with latent parent Lout

in Gout will be d-separated from the other nodes in G given M(Lout): if X has a common
cause with M(Lout), then X will be d-connected to any ancestor of M(Lout) in G given
M(Lout).

To illustrate BuildPureClusters, suppose the true graph is the one given in Fig-
ure 5(a), with two unlabeled latents and 12 observed variables. This graph is unknown to
BuildPureClusters, which is given only the covariance matrix of variables {X1,X2, ...,X12}.
The task is to learn a measurement pattern, and then a purified measurement model.

In the first stage of BuildPureClusters, the FindPattern algorithm, we start with
a fully connected graph among the observed variables (Figure 5(b)), and then proceed to
remove edges according to rules CS1, CS2 and CS3, giving the graph shown in Figure
5(c). There are two maximal cliques in this graph: {X1,X2,X3,X7,X8,X11,X12} and
{X4,X5,X6,X8,X9,X10,X12}. They are distinguished in the figure by different edge rep-
resentations (dashed and solid - with the edge X8−X12 present in both cliques). The next
stage takes these maximal cliques and creates an intermediate graphical representation, as
depicted in Figure 5(d). In Figure 5(e), we add the undirected edges X7 −X8, X8 −X12,
X9 −X10 and X11 −X12, finalizing the measurement pattern returned by FindPattern.
Finally, Figure 5(f) represents a possible purified output of BuildPureClusters given this
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Algorithm BuildPureClusters
Input: a covariance matrix Σ

1. G←FindPattern(Σ).

2. Choose a set of latents in G. Remove all other latents and all observed nodes that are
not children of the remaining latents and all clusters of size 1.

3. Remove all nodes that have more than one latent parent in G.

4. For all pairs of nodes linked by an undirected edge, choose one element of each pair
to be removed.

5. If for some set of nodes {A,B,C}, all children of the same latent, there is a fourth
node D in G such that σABσCD = σACσBD = σADσBC is not true, remove one of
these four nodes.

6. For every latent L with at least two children, {A,B}, if there is some node C in G
such that σAC = 0 and σBC 6= 0, split L into two latents L1 and L2, where L1 becomes
the only parent of all children of L that are correlated with C, and L2 becomes the
only parent of all children of L that are not correlated with C;

7. Remove any cluster with exactly 3 variables {X1,X2,X3} such that there is no X4

where all three tetrads in the covariance matrix X = {X1,X2,X3,X4} hold, all vari-
ables of X are correlated and no partial correlation of a pair of elements of X is zero
conditioned on some observed variable;

8. While there is a pair of clusters with latents Li and Lj, such that for all subsets
{A,B,C,D} of the union of the children of Li, Lj we have σABσCD = σACσBD =
σADσBC , and no marginal independence or conditional independence in sets of size 1
are observed in this cluster, set Li = Lj (i.e., merge the clusters);

9. Again, verify all implied tetrad constraints and remove elements accordingly. Iterate
with the previous step till no changes happen;

10. Remove all latents with less than three children, and their respective measures;

11. if G has at least four observed variables, return G. Otherwise, return an empty model.

Table 2: A general strategy to find a pure MP that is also a linear measurement model of
a subset of the latents in the true graph. As explained in the body of the text,
steps 2, 4, 5 and 9 are not described algorithmically in this Section.
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Figure 5: A step-by-step demonstration of how a covariance matrix generated by graph in
Figure (a) will induce the pure measurement model in Figure (f).

pattern. Another purification with as many nodes as in the graph in Figure 5(f) substitutes
node X9 for node X10.

The following result is essential to provide an algorithm that is guaranteed to find a
Markov equivalence class for the latents in M(Lout) using the output of BuildPureClus-
ters as a starting point:
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Theorem 15 Let M(Lout) ⊆ L be the set of latents in G obtained by the mapping function
M(). Let ΣOout

be the population covariance matrix of Oout. Let the DAG Gaug
out be Gout

augmented by connecting the elements of Lout such that the structural model of Gaug
out is

an I-map of the distribution of M(Lout). Then there exists a linear latent variable model
using Gaug

out as the graphical structure such that the implied covariance matrix of Oout equals
ΣOout

.

A further reason why we do not provide details of some steps of BuildPureClusters at
this point is because there is no unique way of implementing it, and different purifications
might be of interest. For instance, one might be interested in the pure model that has
the largest possible number of latents. Another one might be interested in the model
with the largest number of observed variables. However, some of these criteria might be
computationally intractable to achieve. Consider for instance the following criterion, which
we denote as MP3: given a measurement pattern, decide if there is some choice of nodes
to be removed such that the resulting graph is a pure measurement model and each latent
has at least three children. This problem is intractable:

Theorem 16 Problem MP3 is NP-complete.

There is no need to solve a NP-hard problem in order to have the theoretical guarantees
of interpretability of the output given by Theorem 14. For example, there is a stage in
FindPattern where it appears necessary to find all maximal cliques, but, in fact, it is not.
Identifying more cliques increases the chance of having a larger output (which is good) by
the end of the algorithm, but it is not required for the algorithms correctness. Stopping at
Step 5 of FindPattern before completion will not affect Theorems 14 or 15.

Another computational concern is the O(N5) loops in Step 3 of FindPattern, where
N is the number of observed variables. Again, it is not necessary to compute this loop
entirely. One can stop Step 3 at any time at the price of losing information, but not the
theoretical guarantees of BuildPureClusters. This anytime property is summarized by
the following corollary:

Corollary 17 The output of BuildPureClusters retains its guarantees even when rules
CS1, CS2 and CS3 are applied an arbitrary number of times in FindPattern for any
arbitrary subset of nodes and an arbitrary number of maximal cliques is found.

6. Learning the structure of the unobserved

The real motivation for finding a pure measurement model is to obtain reliable statistical
access to the relations among the latent variables. Given a pure and correct measurement
model, even one involving a fairly small subset of the original measured variables, a variety
of algorithms exist for finding a Markov equivalence class of graphs over the set of latents
in the given measurement model.

6.1 Constraint-based search

Constraint based search algorithms rely on decisions about independence and conditional
independence among a set of variables to find the Markov equivalence class over these
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variables. Given a pure and correct measurement model involving at least 2 measures
per latent, we can test for independence and conditional independence among the latents,
and thus search for equivalence classes of structural models among the latents, by taking
advantage of the following theorem Spirtes et al. (2000):

Theorem 18 Let G be a pure linear latent variable model. Let L1, L2 be two latents in G,
and Q a set of latents in G. Let X1 be a measure of L1, X2 be a measure of L2, and XQ be
a set of measures of Q containing at least two measures per latent. Then L1 is d-separated
from L2 given Q in G if and only if the rank of the correlation matrix of {X1,X2} ∪XQ

is less than or equal to |Q| with probability 1 with respect to the Lebesgue measure over the
linear coefficients and error variances of G.

We can then use this constraint to test1 for conditional independencies among the la-
tents. Such conditional independence tests can then be used as an oracle for constraint-
satisfaction techniques for causality discovery in graphical models, such as the PC algorithm
(Spirtes et al., 2000) or the FCI algorithm (Spirtes et al., 2000).

We define the algorithm PC-MIMBuild2 as the algorithm that takes as input a mea-
surement model satisfying the assumption of purity mentioned above and a covariance
matrix, and returns the Markov equivalence class of the structural model among the latents
in the measurement model according to the PC algorithm. A FCI-MIMBuild algorithm
is defined analogously. In the limit of infinite data, it follows from the preceding and from
the consistency of PC and FCI algorithms (Spirtes et al., 2000) that

Corollary 19 Given a covariance matrix Σ assumed to be generated from a linear latent
variable model G, and Gout the output of BuildPureClusters given Σ, the output of
PC-MIMBuild or FCI-MIMBuild given (Σ, Gout) returns the correct Markov equivalence
class of the latents in G corresponding to latents in Gout according to the mapping implicit
in BuildPureClusters.

6.2 Score-based search

Score-based approaches for learning the structure of Bayesian networks, such as GES (Meek,
1997; Chickering, 2002) are usually more accurate than PC or FCI when there are no
omitted common causes, or in other terms, when the set of recorded variables is causally
sufficient. We know of no consistent scoring function for linear latent variable models that
can be easily computed. As a heuristic, we suggest using the Bayesian Information Criterion
(BIC) function. Using BIC with Structural EM (Friedman, 1998) and GES results in a
computationally efficient way of learning structural models, where the measurement model
is fixed and GES is restricted to modify edges among latents only. Assuming a Gaussian
distribution, the first step of our Structural EM implementation uses a fully connected
structural model in order to estimate the first expected latent covariance matrix. That
is followed by a GES search. We call this algorithm GES-MIMBuild and use it as the

1. One way to test if the rank of a covariance matrix in Gaussian models is at most q is to fit a factor
analysis model with q latents and assess its significance.

2. MIM stands for “multiple indicator model”, a term in structural equation model literature describing
latent variable models with multiple measures per latent.
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structural model search component in all of the studies of simulated and empirical data
that follow.

7. Simulation studies

In the following simulation studies, we draw samples of three different sizes from 9 different
latent variable models. We compare our algorithm against two versions of exploratory factor
analysis, and measure the success of each on the following discovery tasks:

DP1. Discover the number of latents in G.

DP2. Discover which observed variables measure each latent G.

DP3. Discover as many features as possible about the causal relationships among the latents
in G.

Since factor analysis addresses only tasks DP1 and DP2, we compare it directly to
BuildPureClusters on DP1 and DP2. For DP3, we use our procedure and factor analysis
to compute measurement models, then discover as much about the features of the structural
model among the latents as possible by applying GES-MIMBuild to the measurement
models output by BPC and factor analysis.

We hypothesized that three features of the problem would affect the performance of
the algorithms compared: sample size; the complexity of the structural model; and, the
complexity and level of impurity in the generating measurement model. We use three
different sample sizes for each study: 200, 1,000, and 10,000. We constructed nine generating
latent variable graphs by using all combinations of the three structural models and three
measurement models in Figure 6. For structural model SM3, the respective measurement
models are augmented accordingly.

MM1 is a pure measurement model with three indicators per latent. MM2 has five
indicators per latent, one of which is impure because its error is correlated with another
indicator, and another because it measures two latents directly. MM3 involves six indicators
per latent, half of which are impure.

SM1 entails one unconditional independence among the latents: L1 is independent L3.
SM2 entails one first order conditional independence: L1⊥L3|L2, and SM3 entails one first
order conditional independence: L2⊥L3|L1, and one second order conditional independence
relation: L1⊥L4|{L2, L3}. Thus the statistical complexity of the structural models increases
from SM1 to SM3 and the impurity of measurement models increases from MM1 to MM3.

For each generating latent variable graph, we used the Tetrad IV program3 with the
following procedure to draw 10 multivariate normal samples of size 200, 10 at size 1,000,
and 10 at size 10,000.

1. Pick coefficients for each edge in the model randomly from the interval [−1.5,−0.5] ∪
[0.5, 1.5].

2. Pick variances for the exogenous nodes (i.e., latents without parents and error nodes)
from the interval [1, 3].

3. Available at http://www.phil.cmu.edu/tetrad.
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Figure 6: The Structural and Measurement models used in our simulation studies.

3. Draw one pseudo-random sample of size N.

We used three algorithms in our studies:

1. BPC: BuildPureClusters + GES-MIMBuild

2. FA: Factor Analysis + GES-MIMBuild

3. P-FA: Factor Analysis + Purify + GES-MIMBuild

BPC is the implementation of BuildPureClusters and GES-MIMBuild described
in C. FA involves combining standard factor analysis to find the measurement model
with GES-MIMBuild to find the structural model. For standard factor analysis, we used
factanal from R 1.9 with the oblique rotation promax. FA and variations are still widely
used and are perhaps the most popular approach to latent variable modeling (Bartholomew
et al., 2002). We choose the number of latents by iteratively increasing its number till we
get a significant fit above 0.05, or till we have to stop due to numerical instabilities.

Factor analysis is not directly comparable to BuildPureClusters since it does not
generate pure models only. We extend our comparison of BPC and FA by including a
version of factor analysis with a post processing step to purify the output of factor analysis.
Purified Factor Analysis, or P-FA, takes the measurement model output by factor analysis
and proceeds as follows: 1. for each latent with two children only, remove the child that has
the highest number of parents. 2. remove all latents with one child only, unless this latent
is the only parent of its child. 3. removes all indicators that load significantly on more than
one latent. The measurement model output by P-FA typically contains far fewer latent
variables than the measurement model output by FA.

In order to compare the output of BPC, FA, and P-FA on discovery tasks DP1 (finding
the correct number of underlying latents) and DP2 (measuring these latents appropriately),
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we must map the latents discovered by each algorithm to the latents in the generating
model. That is, we must define a mapping of the latents in the Gout to those in the true
graph G. Although one could do this in many ways, for simplicity we used a majority voting
rule in BPC and P-FA. If a majority of the indicators of a latent Li

out in Gout are measures
of a latent node Lj in G, then we map Li

out to Lj. Ties were in fact rare, but were broken
randomly. At most one latent in Gout is mapped to a fixed latent L in G, and if a latent in
Gout had no majority, it was not mapped to any latent in G.

The mapping for FA was done slightly differently. Because the output of FA is typically
an extremely impure measurement model with many indicators loading on more than one
latent, the simple minded majority method generates too many ties. For FA we do the map-
ping not by majority voting of indicators according to their true clusters, but by verifying
which true latent corresponds to the highest sum of absolute values of factor loadings for a
given output latent. For example, let Lout be a latent node in Gout. Suppose S1 is the sum
of the absolute values of the loadings of Lout on measures of the true latent L1 only, and S2

is the sum of the absolute values of the loadings of Lout on measures of the true latent L2

only. If S2 > S1, we rename Lout as L2. If two output latents are mapped to the same true
latent, we label only one of them as the true latent by choosing the one that corresponds
to the highest sum of absolute loadings.

We compute the following scores for the output model Gout from each algorithm, where
the true graph is labelled GI , and where G is a purification of GI :

• latent omission, the number of latents in G that do not appear in Gout divided by
the total number of true latents in G;

• latent commission, the number of latents in Gout that could not be mapped to a
latent in G divided by the total number of true latents in G;

• misclustered indicators, the number of observed variables in Gout that end up in
the wrong cluster divided by the number of observed variables in G;

• indicator omission, the number of observed variables in G that do not appear in
the Gout divided by the total number of observed variables in G;

• indicator commission, the number of observed nodes in Gout that are not in G
divided by the number of nodes in G that are not in GI . These are nodes that
introduce impurities in the output model;

To be generous to factor analysis we considered only latents with at least three indicators.
Even with this help, we still found several cases in which latent commission errors were more
than 100%. Again, to be conservative, we calculate the misclustered indicators error in
the same way as in BuildPureClusters or P-FA. In this calculation, an indicator is not
counted as mistakenly clustered if it is a child of the correct latent, even if it is also a child
of a wrong latent.

Simulation results are given in Tables 3 and 4, where each number is the average error
across 10 trials with standard deviations in parentheses for sample sizes of 200, 1000, 10,000.
Notice there are at most two maximal pure measurement models for each setup (there are
two possible choices of which measures to remove from the last latent in MM2 and MM3)
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Evaluation of output measurement models
Latent omission Latent commission Misclustered indicator

Sample BPC FA P-FA BPC FA P-FA BPC FA P-FA

SM1 + MM1

200 0.10(.2) 0.00(.0) 0.10(.2) 0.00(.0) 0.00(.0) 0.00(.0) 0.01(.0) 0.00(.0) 0.00(.0)
1000 0.17(.2) 0.00(.0) 0.13(.2) 0.00(.0) 0.00(.0) 0.03(.1) 0.00(.0) 0.01(.0) 0.01(.0)

10000 0.07(.1) 0.00(.0) 0.13(.2) 0.00(.0) 0.00(.0) 0.00(.0) 0.00(.0) 0.00(.0) 0.00(.0)
SM1 + MM2

200 0.00(.0) 0.03(.1) 0.60(.3) 0.03(.1) 0.77(.2) 0.10(.2) 0.01(.0) 0.12(.1) 0.02(.0)
1000 0.00(.0) 0.00(.0) 0.17(.2) 0.00(.0) 0.47(.2) 0.27(.3) 0.00(.0) 0.08(.1) 0.10(.1)

10000 0.00(.0) 0.00(.0) 0.23(.2) 0.03(.1) 0.33(.3) 0.17(.2) 0.02(.1) 0.07(.1) 0.03(.1)
SM1 + MM3

200 0.00(.0) 0.00(.0) 0.33(.3) 0.07(.1) 1.13(.3) 0.17(.2) 0.03(.1) 0.16(.1) 0.04(.1)
1000 0.00(.0) 0.00(.0) 0.30(.2) 0.07(.1) 0.87(.3) 0.33(.3) 0.03(.1) 0.12(.1) 0.06(.1)

10000 0.03(.1) 0.00(.0) 0.27(.3) 0.00(.0) 0.70(.3) 0.37(.3) 0.00(.0) 0.12(.1) 0.09(.1)
SM2 + MM1

200 0.10(.2) 0.00(.0) 0.13(.2) 0.00(.0) 0.00(.0) 0.00(.0) 0.06(.1) 0.01(.0) 0.00(.0)
1000 0.03(.1) 0.00(.0) 0.17(.2) 0.00(.0) 0.00(.0) 0.00(.0) 0.02(.1) 0.00(.0) 0.00(.0)

10000 0.00(.0) 0.00(.0) 0.07(.1) 0.00(.0) 0.00(.0) 0.00(.0) 0.00(.0) 0.00(.0) 0.00(.0)
SM2 + MM2

200 0.03(.1) 0.00(.0) 0.33(.2) 0.07(.1) 0.80(.3) 0.17(.2) 0.06(.1) 0.15(.1) 0.04(.1)
1000 0.00(.0) 0.00(.0) 0.27(.2) 0.00(.0) 0.53(.3) 0.23(.3) 0.00(.0) 0.08(.1) 0.06(.1)

10000 0.00(.0) 0.00(.0) 0.10(.2) 0.00(.0) 0.27(.3) 0.23(.3) 0.00(.0) 0.08(.1) 0.06(.1)
SM2 + MM3

200 0.00(.0) 0.03(.1) 0.53(.2) 0.00(.0) 1.13(.3) 0.03(.1) 0.01(.0) 0.07(.1) 0.01(.0)
1000 0.00(.0) 0.00(.0) 0.27(.2) 0.00(.0) 0.73(.3) 0.13(.2) 0.00(.0) 0.08(.1) 0.03(.1)

10000 0.00(.0) 0.00(.0) 0.37(.2) 0.00(.0) 0.97(.3) 0.27(.3) 0.00(.0) 0.08(.1) 0.05(.1)
SM3 + MM1

200 0.12(.2) 0.02(.1) 0.38(.2) 0.00(.0) 0.05(.1) 0.00(.0) 0.05(.1) 0.02(.1) 0.01(.0)
1000 0.10(.2) 0.02(.1) 0.12(.2) 0.00(.0) 0.02(.1) 0.00(.0) 0.01(.0) 0.02(.1) 0.00(.0)

10000 0.05(.1) 0.00(.0) 0.20(.1) 0.00(.0) 0.00(.0) 0.00(.0) 0.00(.0) 0.00(.0) 0.00(.0)
SM3 + MM2

200 0.02(.1) 0.05(.2) 0.60(.2) 0.10(.2) 0.62(.1) 0.08(.2) 0.03(.1) 0.16(.3) 0.01(.0)
1000 0.02(.1) 0.02(.1) 0.30(.3) 0.02(.1) 0.38(.2) 0.10(.1) 0.01(.0) 0.18(.2) 0.07(.1)

10000 0.00(.0) 0.05(.1) 0.45(.2) 0.00(.0) 0.35(.2) 0.10(.2) 0.00(.0) 0.18(.2) 0.04(.1)
SM3 + MM3

200 0.02(.1) 0.02(.1) 0.58(.2) 0.05(.1) 0.98(.3) 0.08(.1) 0.04(.1) 0.19(.2) 0.01(.0)
1000 0.02(.1) 0.08(.2) 0.35(.2) 0.00(.0) 0.72(.3) 0.08(.1) 0.00(.0) 0.23(.3) 0.03(.0)

10000 0.00(.0) 0.08(.1) 0.30(.3) 0.00(.0) 0.60(.3) 0.08(.1) 0.00(.0) 0.27(.3) 0.02(.0)

Table 3: Results obtained with BuildPureClusters (BPC), factor analysis (FA) and
purified factor analysis (P-FA) for the problem of learning measurement models.
Each number is an average over 10 trials, with the standard deviation over these
trials in parenthesis.

and for each Gout we choose our gold standard G as a maximal pure measurement submodel
that contains the most number of nodes found in Gout.
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Evaluation of output measurement models
Indicator omission Indicator commission

Sample BPC P-FA BPC P-FA

SM1 + MM1

200 0.12(.2) 0.41(.3) −−− −−−
1000 0.18(.2) 0.19(.2) −−− −−−

10000 0.09(.2) 0.14(.2) −−− −−−
SM1 + MM2

200 0.08(.0) 0.87(.1) 0.07(.1) 0.07(.1)
1000 0.07(.1) 0.46(.2) 0.00(.0) 0.13(.2)

10000 0.06(.1) 0.38(.2) 0.03(.1) 0.10(.2)
SM1 + MM3

200 0.17(.1) 0.78(.2) 0.04(.1) 0.08(.1)
1000 0.12(.1) 0.58(.2) 0.06(.1) 0.10(.2)

10000 0.13(.1) 0.42(.3) 0.00(.0) 0.06(.1)
SM2 + MM1

200 0.10(.1) 0.43(.2) −−− −−−
1000 0.03(.1) 0.23(.2) −−− −−−

10000 0.03(.1) 0.11(.1) −−− −−−
SM2 + MM2

200 0.16(.1) 0.77(.1) 0.30(.3) 0.03(.1)
1000 0.06(.1) 0.57(.1) 0.00(.0) 0.07(.2)

10000 0.06(.1) 0.31(.2) 0.00(.0) 0.10(.2)
SM2 + MM3

200 0.16(.1) 0.85(.1) 0.18(.2) 0.04(.1)
1000 0.08(.1) 0.56(.2) 0.02(.1) 0.10(.1)

10000 0.05(.1) 0.72(.1) 0.00(.0) 0.16(.1)
SM3 + MM1

200 0.14(.1) 0.65(.2) −−− −−−
1000 0.12(.2) 0.28(.2) −−− −−−

10000 0.08(.1) 0.21(.1) −−− −−−
SM3 + MM2

200 0.14(.1) 0.84(.1) 0.10(.2) 0.02(.1)
1000 0.11(.1) 0.51(.2) 0.00(.0) 0.02(.1)

10000 0.05(.0) 0.56(.2) 0.00(.0) 0.02(.1)
SM3 + MM3

200 0.14(.1) 0.87(.1) 0.17(.1) 0.02(.1)
1000 0.13(.1) 0.66(.1) 0.03(.1) 0.07(.1)

10000 0.13(.1) 0.52(.2) 0.00(.0) 0.08(.1)

Table 4: Results obtained with BuildPureClusters (BPC) and purified factor analysis
(P-FA) for the problem of learning measurement models. Each number is an
average over 10 trials, with standard deviations in parens.

Table 3 evaluates all three procedures on the first two discovery tasks: DP1 and DP2.
As expected, all three procedures had very low error rates in rows involving MM1 and
sample sizes of 10,000. Over all conditions, FA has very low rates of latent omission, but
very high rates of latent commission, and P-FA, not surprisingly, does the opposite: very
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high rates of latent omission but very low rates of commission. In particular, FA is very
sensitive to the purity of the generating measurement model. With MM2, the rate of latent
commission for FA was moderate; with MM3 it was horrendous. BPC does reasonably well
on all measures in Tables 3 at all sample sizes and for all generating models.

Table 4 gives results regarding indicator omissions and commission, which, because FA
keeps the original set of indicators it is given, only make sense for BPC and P-FA. P-FA
omits far too many indicators, a behavior that we hypothesize will make it difficult for
GES-MIMBuild on the measurement model output by P-FA.

In the final piece of the simulation study, we applied the best causal model search algo-
rithm we know of, GES, modified for this purpose as GES-MIMbuild, to the measurement
models output by BPC, FA, and P-FA.

If the output measurement model has no errors of latent omission or commission, then
scoring the result of the structural model search is fairly easy. The GES-MIMbuild search
outputs an equivalence class, with certain adjacencies unoriented and certain adjacencies
oriented. If there is an adjacency of any sort between two latents in the output, but no
such adjacency in the true graph, then we have an error of edge commission. If there is no
adjacency of any sort between two latents in the output, but there is an edge in the true
graph, then we have an error of edge omission. For orientation, if there is an oriented edge
in the output that is not oriented in the equivalence class for the true structural model, then
we have an error of orientation commission. If there is an unoriented edge in the output
which is oriented in the equivalence class for the true model, we have an error of orientation
omission.

If the output measurement model has any errors of latent commission, then we simply
leave out the excess latents in the measurement model given to GES-MIMbuild. This
helps FA primarily, as it was the only procedure of the three that had high errors of latent
commission.

If the output measurement model has errors of latent omission, then we compare the
marginal involving the latents in the output model for the true structural model graph to
the output structural model equivalence class. For each of the structural models we selected,
SM1, SM2, and SM3, all marginals can be represented faithfully as DAGs. Our measure
of successful causal discovery, therefore, for a measurement model involving a small subset
of the latents in the true graph is very lenient. For example, if the generating model was
SM3, which involves four latents, but the output measurement model involved only two of
these latents, then a perfect search result in this case would amount to finding that the two
latents are associated. This feature of our evaluation procedure favors P-FA, which tends
to omit latents.

In summary then, our measures for assessing the ability of these algorithms to correctly
discover at least features of the causal relationships among the latents are as follows:

• edge omission (EO), the number of edges in the structural model of G that do not
appear in Gout divided by the possible number of edge omissions (2 in SM1 and SM2,
and 4 in SM3, i.e., the number of edges in the respective structural models);

• edge commission (EC), the number of edges in the structural model of Gout that
do not exist in G divided by the possible number of edge commissions (only 1 in SM1

and SM2, and 2 in SM3);
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• orientation omission (OO), the number of arrows in the structural model of G
that do not appear in Gout divided by the possible number of orientation omissions
in G (2 in SM1 and SM3, 0 in SM2);

• orientation commission (OC), the number of arrows in the structural model of
Gout that do not exist in G divided by the number of edges in the structural model
of Gout;

We have bent over, not quite backwards, to favor variations of factor analysis. Tables
5 and 5 summarize the results. Along with each average we provide the number of trials
where no errors of a specific type were made.

Although P-FA seems more reliable than FA, this is in reality an artifact of P-FA
outputting fewer latents on average than FA and BPC. Although it is clear from Tables 5
and 6 that factor analysis works well when the true models are pure, in cases in which the
generating measurement model is impure factor analysis commits high proportions of edge
commission. This in turn is because FA commits so many latents, which leads to spurious
dependence paths among the latents we scored, which leads to orientation omissions follow.

Figure 7 illustrates the trade-off each of the three procedures make between latent
omission/commission and accuracy. Each picture contains a plot of the latent omission
against the average edge error of each algorithm (i.e., the average of all four error statistics
from Tables 5 and 6), with three points plotted for each algorithm representing different
sample sizes (grouped graphically). The optimal performance is the bottom left, where
latent omission and edge error are low. The top plot shows the performance of the algorithms
on data from a pure measurement model, the middle plot on data from a slightly impure
measurement model, and the bottom plot on data from a highly impure measurement model.
It is clear that P-FA achieves relatively high accuracy solely because of high percentage
of latent omission. FAachieves high accuracy only when the true measurement model is
pure. Otherwise it makes very high errors in edge accuracy. BuildPureClusters finds
the right balance between latent omission and edge accuracy, and its performance relative
to the other procedures improves as the generating measurement model becomes more and
more complex. We take this to be the most important feature of our algorithm, as real data
is rarely generated from a pure measurement model. Although 7shows the performance of
the algorithms for SM2, the pattern of performance was similar across all structural models.

In summary, factor analysis provides little useful information out of the given datasets.
In contrast, the combination of BuildPureClusters and GES-MIMBuild largely suc-
ceeds in such a difficult task, even at small sample sizes.

8. Real data applications

We now briefly present the results for two real data sets. Data collected from such domains
may pose significant problems for exploratory data analysis since sample sizes are usually
small and noisy, nevertheless they have a very useful property for our empirical evaluation.
In particular, data obtained by questionnaires are designed to target specific latent factors
(such as “stress”, “job satisfaction”, and so on) and a theoretical measurement model is
developed by experts in the area to measure the desired latent variables. Very generally,
experts are more confident about their choice of measures than about the structural model.
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Figure 7: Comparisons of methods on measurement models of increasing complexity (from
MM1 to MM3). While BPC tends to have low error on both dimensions (latent
omission and edge error), the other two methods fail on either one.
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Evaluation of output structural models
Edge omission Edge commission

Sample BPC FA P-FA BPC FA P-FA

SM1 + MM1

200 0.05− 09 0.05− 09 0.10− 08 0.10− 09 0.30− 07 0.20− 08
1000 0.05− 09 0.10− 08 0.05− 09 0.20− 08 0.30− 07 0.10− 09

10000 0.00− 10 0.05− 09 0.15− 07 0.00− 10 0.00− 10 0.00− 10
SM1 + MM2

200 0.00− 10 0.15− 07 0.00− 10 0.00− 10 0.40− 06 0.00− 10
1000 0.00− 10 0.00− 10 0.15− 07 0.10− 09 0.40− 06 0.20− 08

10000 0.00− 10 0.05− 09 0.25− 05 0.20− 08 0.50− 05 0.20− 08
SM1 + MM3

200 0.00− 10 0.25− 05 0.05− 09 0.20− 08 0.70− 03 0.10− 09
1000 0.00− 10 0.15− 07 0.10− 08 0.10− 09 0.70− 03 0.10− 09

10000 0.00− 10 0.05− 09 0.05− 09 0.00− 10 0.40− 06 0.20− 08
SM2 + MM1

200 0.00− 10 0.00− 10 0.00− 10 0.20− 08 0.30− 07 0.10− 09
1000 0.00− 10 0.05− 09 0.00− 10 0.00− 10 0.30− 07 0.00− 10

10000 0.00− 10 0.00− 10 0.00− 10 0.20− 08 0.30− 07 0.20− 08
SM2 + MM2

200 0.00− 10 0.15− 07 0.05− 09 0.40− 06 0.30− 07 0.20− 08
1000 0.00− 10 0.10− 09 0.00− 10 0.10− 09 0.60− 04 0.10− 09

10000 0.00− 10 0.05− 09 0.00− 10 0.10− 09 0.70− 03 0.50− 05
SM2 + MM3

200 0.00− 10 0.15− 07 0.00− 10 0.20− 08 0.70− 03 0.00− 10
1000 0.00− 10 0.15− 07 0.00− 10 0.20− 08 0.40− 06 0.20− 08

10000 0.00− 10 0.10− 08 0.00− 10 0.00− 10 0.50− 05 0.20− 08
SM3 + MM1

200 0.12− 05 0.12− 06 0.08− 08 0.20− 06 0.20− 06 0.10− 09
1000 0.05− 08 0.08− 08 0.08− 07 0.15− 08 0.10− 08 0.15− 07

10000 0.05− 08 0.15− 04 0.15− 04 0.15− 08 0.15− 08 0.05− 09
SM3 + MM2

200 0.02− 09 0.28− 03 0.05− 08 0.55− 03 0.55− 02 0.00− 10
1000 0.00− 10 0.12− 07 0.05− 08 0.25− 07 0.75− 02 0.20− 07

10000 0.00− 10 0.00− 10 0.00− 10 0.10− 08 0.80− 02 0.00− 10
SM3 + MM3

200 0.02− 09 0.32− 02 0.08− 07 0.40− 05 0.50− 02 0.00− 10
1000 0.08− 07 0.02− 09 0.10− 06 0.30− 06 0.65− 02 0.00− 10

10000 0.00− 10 0.05− 08 0.02− 09 0.15− 07 0.65− 03 0.25− 07

Table 5: Results obtained with the application of GES-MIMBuild to the output of BPC,
FA, and P-FA, with the number of perfect solutions over ten trials on the right
of each result.

Such data thus provide a basis for comparison with the output of our algorithm. The chance
that various observed variables are not pure measures of their theoretical latents is high.
Measures are usually discrete, but often ordinal with a Likert-scale that can be treated as
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Evaluation of output structural models
Orientation omission Orientation commission

Sample BPC FA P-FA BPC FA P-FA

SM1 + MM1

200 0.10− 09 0.15− 08 0.05− 09 0.00− 10 0.00− 10 0.00− 10
1000 0.20− 08 0.00− 10 0.00− 10 0.00− 10 0.05− 09 0.00− 10

10000 0.00− 10 0.00− 10 0.00− 10 0.00− 10 0.00− 10 0.00− 10
SM1 + MM2

200 0.00− 10 0.20− 07 0.00− 10 0.00− 10 0.05− 09 0.00− 10
1000 0.10− 09 0.20− 07 0.00− 10 0.00− 10 0.00− 10 0.00− 10

10000 0.20− 08 0.25− 05 0.00− 10 0.00− 10 0.00− 10 0.00− 10
SM1 + MM3

200 0.20− 08 0.40− 04 0.10− 09 0.00− 10 0.05− 09 0.00− 10
1000 0.10− 09 0.10− 09 0.10− 09 0.00− 10 0.10− 08 0.00− 10

10000 0.00− 10 0.30− 06 0.10− 09 0.00− 10 0.00− 10 0.00− 10
SM2 + MM1

200 −−− −−− −−− 0.00− 10 0.00− 10 0.00− 10
1000 −−− −−− −−− 0.00− 10 0.00− 10 0.00− 10

10000 −−− −−− −−− 0.00− 10 0.00− 10 0.00− 10
SM2 + MM2

200 −−− −−− −−− 0.00− 10 0.00− 10 0.00− 10
1000 −−− −−− −−− 0.00− 10 0.10− 09 0.00− 10

10000 −−− −−− −−− 0.00− 10 0.10− 09 0.00− 10
SM2 + MM3

200 −−− −−− −−− 0.00− 10 0.10− 08 0.00− 10
1000 −−− −−− −−− 0.00− 10 0.05− 09 0.00− 10

10000 −−− −−− −−− 0.00− 10 0.05− 09 0.00− 10
SM3 + MM1

200 0.15− 08 0.00− 10 0.00− 10 0.22− 07 0.35− 06 0.15− 08
1000 0.10− 09 0.00− 10 0.05− 09 0.10− 09 0.00− 10 0.04− 09

10000 0.05− 09 0.00− 10 0.00− 10 0.04− 09 0.00− 10 0.00− 10
SM3 + MM2

200 0.50− 05 0.30− 06 0.00− 10 0.08− 09 0.16− 07 0.00− 10
1000 0.30− 07 0.45− 04 0.10− 09 0.00− 10 0.05− 09 0.04− 09

10000 0.20− 08 0.40− 06 0.00− 10 0.00− 10 0.00− 10 0.00− 10
SM3 + MM3

200 0.50− 04 0.15− 08 0.00− 10 0.19− 06 0.14− 08 0.10− 09
1000 0.20− 07 0.35− 05 0.00− 10 0.15− 07 0.02− 09 0.10− 09

10000 0.00− 10 0.35− 05 0.20− 07 0.00− 10 0.00− 10 0.00− 10

Table 6: Results obtained with the application of GES-MIMBuild to the output of BPC,
FA, and P-FA, with the number of perfect solutions over ten trials on the right
of each result.

normally distributed measures with little loss (Bollen, 1989). In the examples, we compare
our procedures with models produced by domain researchers.
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Figure 9: The output of BPC and GES-MIMBuild for the coping study.

8.1 Stress Religious Coping and Depression

Bongjae Lee from the University of Pittsburgh conducted a study of religious/spiritual
coping and stress in graduate students. In December of 2003, 127 students answered a
questionnaire intended to measure three main factors: stress (measured with 21 items), de-
pression (measured with 20 items) and religious/spiritual coping (measured with 20 items).
The full questionnaire is given by Silva and Scheines (2004). Lee’s model is shown in Figure
8.

This model fails a chi square test: p = 0. The measurement model produced by Build-
PureClusters is shown in Figure 9(a). Note that the variables selected automatically are
proper subsets of Lee’s substantive clustering. The full model automatically produced with
GEM-MIMBUILD with the prior knowledge that STRESS is not an effect of other latent
variables is given in Figure 9(b). This model passes a chi square test: p= 0.28.

8.2 Test Anxiety

In the now standard text on exploratory factor analysis, Bartholomew illustrates the pro-
cedure with data from a 20 item survey of test anxiety from 12th grade males in British
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Figure 11: The output of BPC and GES-MIMBuild for the test anxiety study.

Columbia (sample size N = 335)4. Bartholomew’s exploratory factor analysis model for a
subset of the variables is shown in Figure 10. The original model is not pure. We show
a purified version by keeping only the strongest edge for each possible latent parent. The
BuildPureClusters measurement model, with our interpretation of the latents based on
the questionnaire contents, is shown in Figure 11(a).

If we correlate the latent variables of the purified factor analysis model, the result is
a model that fails a chi-square test, p = 0. Applying GEM-MIMBUILD to the BPC
measurement model of Figure 11(a) we obtain Figure 11(b). The model passes a chi square
test handily, p = 0.47.

9. Generalizations

In many social science studies, latent structure is represented by so called “non-recursive”
structure. In graphical terms, the dependency graph is cyclic. Richardson (1996) has
developed a consistent constraint based search for cyclic graphical models of linear systems,

4. The data are available online at http://multilevel.ioe.ac.uk/team/aimdss.html.

26



Learning the Structure of Linear Latent Variable Models

and our procedures for identifying measurement models can be combined with it to search
for such structure.

The procedure we have described here can, however, straightforwardly be generalized to
cases with measured variables taking a small finite range of values by treating the discrete
variables as projections from a Gaussian distribution. Much larger sample sizes are required
than for linear, Gaussian measured variables.

In a previous work (Silva et al., 2003), we developed an approach to learn measurement
models even when the functional relationships among latents are non-linear. In practice,
that generality is of limited use because there are at present no consistent search methods
available for structures with continuous, non-linear variables. Theorem 14 proved here
makes slightly weaker claims than its counterpart given by Silva et al. (2003). Theorem
15 becomes a necessary addition, since the output might not be a subgraph of the true
graph. What is needed to extend our results here to systems in which the latent structure
is non-linear are results analogous to these two theorems.

10. Conclusion

Our experiments provide evidence that our procedures can be useful in practice, but there
are certainly classes of problems where BuildPureClusters will not be of practical value.
For instance, learning the causal structure of general blind source separation problems,
where measures are usually indicators of most of the latents (i.e., sources) at the same time.

A number of open problems invite further research, including these:

• completeness of the tetrad equivalence class of measurement models: can we identify
all the common features of measurement models in the same tetrad equivalence class?

• Bayesian learning of measurement models. The given identification rules (i.e., CS1,
CS2, and CS3) already provide principled search operators that can be used to create a
GES-like algorithm for learning this type of models, although the difficulty in defining
a consistent score function might limit the theoretical guarantees of this approach;

• using the more generic rank constraints of covariance matrices to learn measurement
models, possibly identifying the nature of some impure relationships;

• better treatment of discrete variables. Bartholomew and Knott (1999) survey different
ways of integrating factor analysis and discrete variables that can be readily adapted,
but the computational cost of this procedure is high;

• finding non-linear causal relationships among latent variables given a fixed linear
measurement model, and in other families of multivariate continuous distributions
besides the Gaussian;

The fundamental point is that common and appealing heuristics (e.g., factor rotation
methods) fail when the goal is structure learning with a causal interpretation. In many cases
it is preferable to model the relationships of a subset of the given variables than trying to
force a bad model over all of them (Kano and Harada, 2000). Better methods are available
now, and further improvements will surely come from machine learning research.

27



Silva, Scheines, Glymour and Spirtes

Acknowledgments

Research for this paper was supported by NASA NCC 2-1377 to the University of West
Florida, NASA NRA A2-37143 to CMU and ONR contract N00014-03-01-0516 to the Uni-
versity of West Florida.

References

H. Attias. Independent factor analysis. Graphical Models: foundations of neural computa-
tion, pages 207–257, 1999.

F. Bach and M. Jordan. Beyond independent components: trees and clusters. Journal of
Machine Learning Research, 4:1205–1233, 2003.

D. Bartholomew and M. Knott. Latent Variable Models and Factor Analysis. Arnold
Publishers, 1999.

D. Bartholomew, F. Steele, I. Moustaki, and J. Galbraith. The Analysis and Interpretation
of Multivariate Data for Social Scientists. Arnold Publishers, 2002.

K. Bollen. Structural Equation Models with Latent Variables. John Wiley & Sons, 1989.

D. Chickering. Optimal structure identification with greedy search. Journal of Machine
Learning Research, 3:507–554, 2002.

G. Elidan, N. Lotner, N. Friedman, and D. Koller. Discovering hidden variables: a structure-
based approach. Neural Information Processing Systems, 13:479–485, 2000.

N. Friedman. The bayesian structural em algorithm. Proceedings of 14th Conference on
Uncertainty in Artificial Intelligence, 1998.

D. Geiger and C. Meek. Quantifier elimination for statistical problems. Proceedings of 15th
Conference on Uncertainty in Artificial Intelligence, 1999.

C. Glymour. Social statistics and genuine inquiry: reflections on the bell curve. Intelligence,
Genes and Sucess: Scientists Respond to The Bell Curve, 1997.

Y. Kano and A. Harada. Stepwise variable selection in factor analysis. Psychometrika, 65:
7–22, 2000.

J. Loehlin. Latent Variable Models: An Introduction to Factor, Path and Structural Equa-
tion Analysis. Lawrence Erlbaum, 2004.

C. Meek. Graphical Models: Selecting Causal and Statistical Models. PhD Thesis, Carnegie
Mellon University, 1997.

J. Pearl. Probabilistic Reasoning in Expert Systems: Networks of Plausible Inference. Mor-
gan Kaufmann, 1988.

J. Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, 2000.

28



Learning the Structure of Linear Latent Variable Models

T. Richardson. A discovery algorithm for directed cyclic graphs. Proceedings of 12th Con-
ference on Uncertainty in Artificial Intelligence, 1996.

G. Shafer, A. Kogan, and P.Spirtes. Generalization of the tetrad representation theorem.
DIMACS Technical Report, 1993.

R. Silva, R. Scheines, C. Glymour, and P. Spirtes. Learning measurement models for unob-
served variables. Proceedings of 19th Conference on Uncertainty in Artificial Intelligence,
pages 543–550, 2003.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction and Search. Cambridge
University Press, 2000.

N. Zhang. Hierarchical latent class models for cluster analysis. Journal of Machine Learning
Research, 5:697–723, 2004.

Appendix A. BuildPureClusters: refinement steps

Concerning the final steps of Table 2, it might be surprising that we merge clusters of
variables that we know cannot share a common latent parent in the true graph. However, we
are not guaranteed to find a large enough number of pure indicators for each of the original
latent parents, and as a consequence only a subset of the true latents will be represented in
the measurement pattern. It might be the case that, with respect to the variables present
in the output, the observed variables in two different clusters might be directly measuring
some ancestor common to all variables in these two clusters. As an illustration, consider the
graph in Figure 12(a), where double-directed edges represent independent hidden common
causes. Assume any sensible purification procedure will choose to eliminate all elements in
{W2,W3,X2,X3, Y2, Y3, Z2, Z3} because they are directly correlated with a large number of
other observed variables (extra edges and nodes not depicted).

Meanwhile, one can verify that all three tetrad constraints hold in the covariance matrix
of {W1,X1, Y1, Z1}, and therefore there will be no undirected edges connecting pairs of
elements in this set in the corresponding measurement pattern. Rule CS1 is able to separate
W1 and X1 into two different clusters by using {W2,W3,X2,X3} as the support nodes, and
analogously the same happens to Y1 and Z1, W1 and Y1, X1 and Z1. However, no test
can separate W1 and Z1, nor X1 and Y1. If we do not merge clusters, we will end up with
the graph seen in Figure 12(b) as part of our output pattern. Although this is a valid
measurement pattern, and in some situations we might want to output such a model, it
is also true that W1 and Z1 measure a same latent L0 (as well as X1 and Y1). It would
be problematic to learn a structural model with such a measurement model. There is a
deterministic relation between the latent measured by W1 and Z1, and the latent measured
by X1 and Y1: they are the same latent! Probability distributions with deterministic
relations are not faithful, and that causes problems for learning algorithms.

Finally, we show examples where Steps 6 and 7 of BuildPureClusters are necessary.
In Figure 13(a) we have a partial view of a latent variable graph, where two of the latents
are marginally independent. Suppose that nodes X4,X5 and X6 are correlated to many
other measured nodes not in this figure, and therefore are removed by our purification
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Figure 12: The true graph in (a) will generate at some point a purified measurement pattern
as in (b). It is desirable to merge both clusters.

procedure. If we ignore Step 6, the resulting pure submodel over {X1,X2,X3,X7,X8,X9}
will be the one depicted in Figure 13(b) ({X1,X2} are clustered apart from {X7,X8,X9}
because of marginal zero correlation, and X3 is clustered apart from {X7,X8,X9} because
of CS1 applied to {X3,X4,X5} × {X7,X8,X9}). However, no linear latent variable model
can be parameterized by this graph: if we let the two latents to be correlated, this will
imply X1 and X7 being correlated. If we make the two latents uncorrelated, X3 and X7

will be uncorrelated.

Step 7 exists to avoid rare situations where three observed variables are clustered to-
gether and are pairwise part of some foursome entailing all three tetrad constraints with
no vanishing marginal and partial correlation, but still should be removed because they are
not simultaneously in such a foursome. They might not be detected by Step 4 if, e.g., all
three of them are uncorrelated with all other remaining observed variables.

Appendix B. Proofs

Before we present the proofs of our results, we need a few more definitions:

• a path in a graph G is a sequence of nodes {X1, . . . ,Xn} such that Xi and Xi+1 are
adjacent in G, 1 ≤ i < n. Paths are assumed to be simple by definition, i.e., no node
appears more than once. Notice there is an unique set of edges associated with each
given path. A path is into X1 (or Xn) if the arrow of the edge {X1,X2} is into X1

({Xn−1,Xn} into Xn);

• a collider on a path {X1, . . . ,Xn} is a node Xi, 1 < i < n, such that Xi−1 and Xi+1

are parents of Xi;

• a trek is a path that does not contain any collider;
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Figure 13: Suppose (a) is our true model. If for some reason we need to remove nodes X4,X5

and X6 from our final pure graph, the result will be as shown in Figure (b), unless
we apply Step 6 of BuildPureClusters. There are several problems with (b),
as explained in the text.

• the source of a trek is the unique node in a trek to which no arrows are directed;

• the I side of a trek between nodes I and J with source X is the subpath directed from
X to I. It is possible that X = I, and the I side is just node I;

• a choke point CP between two sets of nodes I and J is a node that lies on every trek
between any element of I and any element of J such that CP is either (i) on the I
side of every such trek 5 or (ii) on the J side or every such trek.

Given these definitions, we state the Tetrad Representation Theorem as follows:

Theorem 20 (The Tetrad Representation Theorem) Let G be a linear latent vari-
able model, and let I1, I2, J1, J2 be four variables in G. Then σI1J1

σI2J2
= σI1J2

σI2J1
if and

only if there is a choke point between {I1, I2} and {J1, J2}.

Proof: The original proof was given by Spirtes et al. (2000). Shafer et al. (1993) provide
an alternative and simplied proof. �

We will use the Tetrad Representation Theorem to prove most of our results. Shafer
et al. (1993) also provide more details on the definitions and several examples.

In the following proofs, we will frequently use the symbol G(O) to represent a linear
latent variable model with a set of observed nodes O. A choke point between sets I and J
will be denoted as I×J. We will first introduce a lemma that is going to be useful to prove
several other results:

Lemma 21 Let G(O) be a linear latent variable model, and let {X1,X2,X3,X4} ⊂ O
be such that σX1X2

σX3X4
= σX1X3

σX2X4
= σX1X4

σX2X3
. If ρAB 6= 0 for all {A,B} ⊂

{X1,X2,X3,X4}, then an unique choke point P entails all the given tetrad constraints, and
P d-separates all elements in {X1,X2,X3,X4}.

5. That is, for every {I, J} ∈ I × J, CP is on the I side of every trek T = {I, . . . , X, . . . , J}, X being the
source of T .
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Proof: Let P be a choke point for pairs {X1,X2} × {X3,X4}. Let Q be a choke point for
pairs {X1,X3} × {X2,X4}. We will show that P = Q by contradiction.

Assume P 6= Q. Because there is a trek that links X1 and X4 throught P (since
ρX1X4

6= 0), we have that Q should also be on that trek. Suppose T is a trek connecting X1

to X4 through P and Q, and without loss of generality assume this trek follows an order
that defines three subtreks: T0, from X1 to P ; T1, from P to Q; and T2, from Q to X4,
as illustrated by Figure 14(a). In principle, T0 and T2 might be empty, i.e., we are not
excluding the possibility that X1 = P or X4 = Q.

There must be at least one trek TQ2 connecting X2 and Q, since Q is on every trek
between X1 and X2 and there is at least one such trek (since ρX1X2

6= 0). We have the
following cases:

Case 1: TQ2 includes P . TQ2 has to be into P , and P 6= X1, or otherwise there will be
a trek connecting X2 to X1 through a (possibly empty) trek T0 that does not include Q,
contrary to our hypothesis. For the same reason, T0 has to be into P . This will imply that
T1 is a directed path from P to Q, and T2 is a directed path from Q to X4 (Figure 14(b)).

Because there is at least one trek connecting X1 and X2 (since ρX1X2
6= 0), and because

Q is on every such trek, Q has to be an ancestor of at least one member of {X1,X2}. With-
out loss of generality, assume Q is an ancestor of X1. No directed path from Q to X1 can
include P , since P is an ancestor of Q and the graph is acyclic. Therefore, there is a trek con-
necting X1 and X4 with Q as the source that does not include P , contrary to our hypothesis.

Case 2: TQ2 does not include P . This is case is similar to Case 1. TQ2 has to be into Q, and
Q 6= X4, or otherwise there will be a trek connecting X2 to X4 through a (possible empty)
trek T2 that does not include P , contrary to our hypothesis. For the same reason, T2 has
to be into P . This will imply that T1 is a directed path from Q to P , and T0 is a directed
path from P to X1. An argument analogous to Case 1 will follow.

We will now show by contradiction that P d-separates all nodes in {X1,X2,X3,X4}.
From the P = Q result, we know that P lies on every trek between any pair of elements in
{X1,X2,X3,X4}. First consider the case where at most one element of {X1,X2,X3,X4} is
linked to P through a trek that is into P . By the Tetrad Representation Theorem, any trek
connecting two elements of {X1,X2,X3,X4} goes through P . Since P cannot be a collider
on any trek, then P d-separates these two elements.

Without loss of generality, assume there is a trek connecting X1 and P that is into P ,
and a trek connecting X2 and P that is into P . If there is no trek connecting X1 and P
that is out of P neither any trek connecting X2 and P that is out of P , then there is no trek
connecting X1 and X2, since P is on every trek connecting these two elements according
to the Tetrad Representation Theorem. But this implies ρX1X2

= 0, a contradiction, as
illustrated by Figure 14(c).

Consider the case where there is also a trek out of P and into X2. Then there is a trek
connecting X1 to X2 through P that is not on the {X1,X3} side of pair {X1,X3}×{X2,X4}
to which P is a choke point. Therefore, P should be on the {X2,X4} of every trek connect-
ing elements pairs in {X1,X3} × {X2,X4}. Without loss of generality, assume there is a
trek out of P and into X3 (because if there is no such trek for either X3 and X4, we fall in
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Figure 14: In (a), a depiction of a trek T linking X1 and X4 through P and Q, creating three
subtreks labeled as T0, T1 and T2. Directions in such treks are left unspecified.
In (b), the existence of a trek TQ2 linking X2 and Q through P will compel
the directions depicted as a consequence of the given tetrad and correlation
constraints (the dotted path represents any possible continuation of TQ2 that
does not coincide with T ). The configuration in (c) cannot happen if P is
a choke point entailing all three tetrads among marginally dependent nodes
{X1,X2,X3,X4}. The configuration in (d) cannot happen if P is a choke point
for {X1,X3} × {X2,X4}, since there is a trek X1 − P −X2 such that P is not
on the {X1,X3} side of it, and another trek X2−S−P −X3 such that P is not
on the {X2,X4} side of it.

the previous case by symmetry). Let S be the source of a trek into P and X2, which should
exist since X2 is not an ancestor of P . Then there is a trek of source S connecting X3 and
X2 such that P is not on the {X2,X4} side of it as shown in Figure 14(d). Therefore P
cannot be a choke point for {X1,X3} × {X2,X4}. Contradiction. �

Lemma 12 Let G(O) be a linear latent variable model. If for some set O′ = {X1,X2,X3,
X4} ⊆ O, σX1X2

σX3X4
= σX1X3

σX2X4
= σX1X4

σX2X3
and for all triplets {A,B,C},

{A,B} ⊂ O′, C ∈ O, we have ρAB.C 6= 0 and ρAB 6= 0, then no element A ∈ O′ is a
descendant of an element of O′\{A} in G.

Proof: Without loss of generality, assume for the sake of contradiction that X1 is an ances-
tor of X2. From the given tetrad and correlation constraints and Lemma 21, there is a node
P that lies on every trek between X1 and X2 and d-separates these two nodes. Since P lies
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on the directed path from X1 to X2, P is a descendant of X1, and therefore an observed
node. However, this implies ρX1X2.P = 0, contrary to our hypothesis. �

Lemma 9 Let G(O) be a linear latent variable model. Assume O′ = {X1,X2,X3, Y1, Y2, Y3}
⊆ O. If constraints {τX1Y1X2X3

, τX1Y1X3X2
, τY1X1Y2Y3

, τY1X1Y3Y2
, ¬τX1X2Y2Y1

} all hold, and
that for all triplets {A,B,C}, {A,B} ⊂ O′, C ∈ O, we have ρAB 6= 0, ρAB.C 6= 0, then X1

and Y1 do not have a common parent in G.

Proof: We will prove this result by contradiction. Suppose that X1 and Y1 have a common
parent L in G. Suppose L is not a choke point for {X1,X2} × {Y1,X3} corresponding to
one of the tetrad constraints given by hypothesis. Because of the trek X1 ← L→ Y1, then
either X1 or Y1 is a choke point. Without loss of generality, assume X1 is a choke point in
this case. By Lemma 12 and the given constraints, X1 cannot be an ancestor of either X2

or X3, and by Lemma 21 it is also the choke point for {X1, Y1} × {X2,X3}. That means
that all treks connecting X1 and X2, and X1 and X3 should be into X1. Since there are no
treks between X2 and X3 that do not include X1, and all paths between X2 and X3 that
include X1 collide at X1, that implies ρX2X3

= 0, contrary to our hypothesis. By symmetry,
Y1 cannot be a choke point. Therefore, L is a choke point for {X1, Y1} × {X2,X3} and by
Lemma 21, it also lies on every trek for any pair in S1 = {X1,X2,X3, Y1}.

Analogously, L is on every trek connecting any pair from the set S2 = {X1, Y1, Y2, Y3}.
It follows that L is on every trek connecting any pair from the set S3 = {X1,X2, Y1, Y2},
and it is on the {X1, Y1} side of {X1, Y1} × {X2, Y2}, i.e., L is a choke point that implies
τX1X2Y2Y1

. Contradiction. �

Remember that predicate F1(X,Y,G) is true if and only if there exist two nodes W
and Z in G such that τWXY Z and τWXZY are both entailed, all nodes in {W,X, Y,Z} are
correlated, and there is no observed C in G such that ρAB.C = 0 for {A,B} ⊂ {W,X, Y,Z}.

Lemma 10 Let G(O) be a linear latent variable model. Assume O′ = {X1,X2,X3, Y1, Y2, Y3}
⊆ O, such that F1(X1,X2, G) and F1(Y1, Y2, G) hold, Y1 is not an ancestor of Y3 and X1

is not an ancestor of X3. If constraints {τX1Y1Y2X2
, τX2Y1Y3Y2

, τX1X2Y2X3
,¬τX1X2Y2Y1

} all
hold, and that for all triplets {A,B,C}, {A,B} ⊂ O′, C ∈ O, we have ρAB 6= 0, ρAB.C 6= 0,
then X1 and Y1 do not have a common parent in G.

Proof: We will prove this result by contradiction. Assume X1 and Y1 have a common
parent L. Because of the tetrad constraints given by hypothesis and the existence of
the trek X1 ← L → Y1, one node in {X1, L, Y1} should be a choke point for the pair
{X1,X2} × {Y1, Y2}. We will first show that L has to be such a choke point, and therefore
lies on every trek connecting X1 and Y2, as well as X2 and Y1. We then show that L lies on
every trek connecting Y1 and Y2, as well as X1 and X2. Finally, we show that L is a choke
point for {X1, Y1} × {X2, Y2}, contrary to our hypothesis.

Step 1: If there is a common parent L to X1 and Y1, then L is a {X1,X2}×{Y1, Y2} choke
point. For the sake of contradiction, assume X1 is a choke point in this case. By Lemma
12 and assumption F1(X1,X2, G), we have that X1 is not an ancestor of X2, and therefore
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Figure 15: Figure (a) illustrates necessary treks among elements of {X1,X2, Y1, Y2, L} ac-
cording to the assumptions of Lemma 10 if we further assume that X1 is a
choke point for pairs {X1,X2} × {Y1, Y2} (other treks might exist). Figure (b)
rearranges (a) by emphasizing that Y1 and Y2 cannot be d-separated by a single
node.

all treks connecting X1 and X2 should be into X1. Since ρX2Y2
6= 0 by assumption and X1

is on all treks connecting X2 and Y2, there must be a directed path out of X1 and into Y2.
Since ρX2Y2.X1

6= 0 by assumption and X1 is on all treks connecting X2 and Y2, there must
be a trek into X1 and Y2. Because ρX2Y1

6= 0, there must be a trek out of X1 and into Y1.
Figure 15(a) illustrates the configuration.

Since F1(Y1, Y2, G) is true, by Lemma 21 there must be a node d-separating Y1 and Y2

(neither Y1 nor Y2 can be the choke point in F1(Y1, Y2, G) because this choke point has to
be latent, according to the partial correlation conditions of F1). However, by Figure 15(b),
treks T2−T3 and T1−T4 cannot both be blocked by a single node. Contradiction. Therefore
X1 cannot be a choke point for {X1,X2} × {Y1, Y2} and, by symmetry, neither can Y1.

Step 2: L is on every trek connecting Y1 and Y2 and on every trek connecting X1 and X2.
Let L be the choke point for pairs {X1,X2}×{Y1, Y2}. As a consequence, all treks between
Y2 and X1 go through L. All treks between X2 and Y1 go through L. All treks between X2

and Y2 go through L. Such treks exist, since no respective correlation vanishes.

Consider the given hypothesis σX2Y1
σY2Y3

= σX2Y3
σY2Y1

, corresponding to a choke point
{X2, Y2} × {Y1, Y3}. From the previous paragraph, we know there is a trek linking Y2 and
L. L is a parent of Y1 by construction. That means Y2 and Y1 are connected by a trek
through L.

We will show by contradiction that L is on every trek connecting Y1 and Y2. Assume
there is a trek TY connecting Y2 and Y1 that does not contain L. Let P be the first point
of intersection of TY and a trek TX connecting X2 to Y1, starting from X2. If TY exists,
such point should exist, since TY should contain a choke point {X2, Y2} × {Y1, Y3}, and all
treks connecting X2 and Y1 (including TX) contain the same choke point.
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Figure 16: In (a), a depiction of TY and TX , where edges represent treks (TX can be seen
more generally as the combination of the solid edge between X2 and P concate-
nated with a dashed edge between P and Y1 representing the possibility that
TY and TX might intersect multiple times in TPY , but in principle do not need
to coincide in TPY if P is not a choke point.) In (b), a possible configurations
of edges < X−1, P > and < P, Y+1 > that do not collide in P , and P is a choke
point (and Y+1 6= Y ). In (c), the edge < Y−1, P > is compelled to be directed
away from P because of the collider with the other two neighbors of P .

Let TPY be the subtrek of TY starting on P and ending one node before Y1. Any
choke point {X2, Y2} × {Y1, Y3} should lie on TPY (Figure 16(a)). (Y1 cannot be such a
choke point, since all treks connecting Y1 and Y2 are into Y1, and by hypothesis all treks
connecting Y1 and Y3 are into Y1. Since all treks connecting Y2 and Y3 would need to go
through Y1 by definition, then there would be no such trek, implying ρY2Y3

= 0, contrary
to our hypothesis.)

Assume first that X2 6= P and Y2 6= P . Let X−1 be the node before P in TX starting
from X2. Let Y−1 be the node before P in TY starting from Y2. Let Y+1 be the node after
P in TY starting from Y2 (notice that it is possible that Y+1 = Y1). If X−1 and Y+1 do
not collide on P (i.e., there is no structure X−1 → P ← Y+1), then there will be a trek
connecting X2 to Y1 through TPY after P . Since L is not in TPY , L should be before P in
TX . But then there will be a trek connecting X2 and Y1 that does not intersect TPY , which
is a contradiction (Figure 16(b)). If the collider does exist, we have the edge P ← Y+1.
Since no collider Y−1 → P ← Y+1 can exist because TY is a trek, the edge between Y−1 and
P is out of P . But that forms a trek connecting X2 and Y2 (Figure 16(c)), and since L is in
every trek between X2 and Y2 and TY does not contain L, then TX should contain L before
P , which again creates a trek between X2 and Y1 that does not intersect TPY .

If X2 = P , then TPY has to contain L, because every trek between X2 and Y1 contains
L. Therefore, X2 6= P . If Y2 = P , then because every trek between X2 and Y2 should
contain L, we again have that L lies in TX before P , which creates a trek between X2 and
Y1 that does not intersect TPY . Therefore, we showed by contradiction that L lies on every
trek between Y2 and Y1.
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Figure 17: In (a), Y2 and X1 cannot share a parent, and because of the given tetrad con-
straints, L should d-separate M and Y3. Y3 is not a child of L either, but there
will be a trek linking L and Y3. In (b), an (invalid) configuration for X2 and
X3, where they share an ancestor between M and L.

Consider now the given hypothesis σX1X2
σX3Y2

= σX1Y2
σX3X2

, corresponding to a choke
point {X2, Y2} × {X1,X3}. By symmetry with the previous case, all treks between X1 and
X2 go through L.

Step 3: If L exists, so does a choke point {X1, Y1} × {X2, Y2}. By the previous steps, L
intermediates all treks between elements of the pair {X1, Y1} × {X2, Y2}. Because L is a
common parent of {X1, Y1}, it lies on the {X1, Y1} side of every trek connecting pairs of
elements in {X1, Y1} × {X2, Y2}. L is a choke point for this pair. This implies τX1X2Y2Y1

.
Contradiction. �

Lemma 11 Let G(O) be a linear latent variable model. Let O′ = {X1,X2,X3, Y1, Y2, Y3}
⊆ O. If constraints {τX1Y1Y2Y3

, τX1Y1Y3Y2
, τX1Y2X2X3

, τX1Y2X3X2
, τX1Y3X2X3

, τX1Y3X3X2
,

¬τX1X2Y2Y3
} all hold, and that for all triplets {A,B,C}, {A,B} ⊂ O′, C ∈ O, we have

ρAB 6= 0, ρAB.C 6= 0, then X1 and Y1 do not have a common parent in G.

Proof: We will prove this result by contradiction. Suppose X1 and Y1 have a common
parent L in G. Since all three tetrads hold in the covariance matrix of {X1, Y1, Y2, Y3},
by Lemma 21 the choke point that entails these constraints d-separates the elements of
{X1, Y1, Y2, Y3}. The choke point should be in the trek X1 ← L→ Y1, and since it cannot
be an observed node because by hypothesis no d-separation conditioned on a single node
holds among elements of {X1, Y1, Y2, Y3}, L has to be a latent choke point for all pairs of
pairs in {X1, Y1, Y2, Y3}.

It is also given that {τX1Y2X2X3
, τX1Y2X3X2

, τX1Y1Y2Y3
, τX1Y1Y3Y2

} holds. Since it is the
case that ¬τX1X2Y2Y3

, by Lemma 9 X1 and Y2 cannot share a parent. Let TML be a trek
connecting some parent M of Y2 and L. Such a trek exists because ρX1Y2

6= 0.

We will show by contradiction that there is no node in TML\L that is connected to Y3

by a trek that does not go through L. Suppose there is such a node, and call it V . If
the trek connecting V and Y3 is into V , and since V is not a collider in TML, then V is
either an ancestor of M or an ancestor of L. If V is an ancestor of M , then there will be
a trek connecting Y2 and Y3 that is not through L, which is a contradiction. If V is an
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ancestor of L but not M , then both Y2 and Y3 are d-connected to a node V is a collider at
the intersection of such d-connecting treks. However, V is an ancestor of L, which means
L cannot d-separate Y2 and Y3, a contradiction. Finally, if the trek connecting V and Y3

is out of V , then Y2 and Y3 will be connected by a trek that does not include L, which
again is not allowed. We therefore showed there is no node with the properties of V . This
configuration is illustrated by Figure 17(a).

Since all three tetrads hold among elements of {X1,X2,X3, Y2}, then by Lemma 21,
there is a single choke point P that entails such tetrads and d-separates elements of this set.
Since TML is a trek connecting Y2 to X1 through L, then there are three possible locations
for P in G:

Case 1: P = M . We have all treks between X3 and X2 go through M but not through
L, and some trek from X1 to Y3 goes through L but not through M . No choke point can
exist for pairs {X1,X3} × {X2, Y3}, which by the Tetrad Representation Theorem means
that the tetrad σX1Y3

σX2X3
= σX1X2

σY3X3
cannot hold, contrary to our hypothesis.

Case 2: P lies between M and L in TML. This configuration is illustrated by Figure 17(b).
As before, no choke point exists for pairs {X1,X3} × {X2, Y3}, contrary to our hypothesis.

Case 3: P = L. Because all three tetrads hold in {X1,X2,X3, Y3} and L d-separates all
pairs in {X1,X2,X3}, one can verify that L d-separates all pairs in {X1,X2,X3, Y3}. This
will imply a {X1, Y3} × {X2, Y2} choke point, contrary to our hypothesis. �

Theorem 13 The output of FindPattern is a measurement pattern with respect to the
tetrad and vanishing partial correlation constraints of Σ

Proof: Two nodes will not share a common latent parent in a measurement pattern if and
only if they are not linked by an edge in graph C constructed by algorithm FindPattern
and that happens if and only if some partial correlation vanishes or if any of rules CS1,
CS2 or CS3 applies. But then by Lemmas 9, 10, 11 and the equivalence of vanishing partial
correlations and conditional independence in linearly faithful distributions (Spirtes et al.,
2000) the claim is proved. The claim about undirected edges follows from Lemma 12. �

Theorem 14 Given a covariance matrix Σ assumed to be generated from a linear latent vari-
able model G(O) with latent variables L, let Gout be the output of BuildPureClusters(Σ)
with observed variables Oout ⊆ O and latent variables Lout. Then Gout is a measurement
pattern, and there is an injective mapping M : Lout → L with the following properties:

1. Let Lout ∈ Lout. Let X be the children of Lout in Gout. Then M(Lout) d-separates
any element X ∈ X from Oout\X in G;

2. M(Lout) d-separates X from every latent in G for which M−1(.) exists;

3. Let O′ ⊆ Oout be such that each pair in O′ is correlated. At most one element in O′

with latent parent Lout in Gout is not a descendant of M(Lout) in G, or has a hidden
common cause with it;
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Proof: We will start by showing that for each cluster Cli in Gout, there exists an unique
latent Li in G that d-separates all elements of Cli. This shows the existance of an unique
function from latents in Gout to latents in G. We then proceed to prove the three claims
given in the theorem, and finish by proving that the given function is injective.

Let Cli be a cluster in a non-empty Gout. Cli has three elements X,Y and Z, and there
is at least some W in Gout such that all three tetrad constraints hold in the covariance
matrix of {W,X, Y,Z}, where no pair of elements in {X,Y,Z} is marginally d-separated
or d-separated by an observable variable. By Lemma 21, it follows that there is an unique
latent Li d-separating X, Y and Z. If Cli has more than three elements, it follows that
since no node other than Li can d-separate all three elements in {X,Y,Z}, and any choke
point for {W ′,X, Y, Z}, W ′ ∈ Cli, will d-separate all elements in {W ′,X, Y, Z}, then there
is an unique latent Li d-separating all elements in Ci. An analogous argument concerns the
d-separation of any element of Cli and observed nodes in other clusters.

Now we will show that each Li d-separates each X in Cli from all other mapped latents.
As a byproduct, we will also show the validity of the third claim of the theorem. Consider
{Y,Z}, two other elements of Cli besides X, and {A,B,C}, three elements of Clj. Since
Li and Lj each d-separate all pairs in {X,Y }×{A,B}, and no pair in {X,Y }×{A,B} has
both of its elements connected to Li (Lj) through a trek that is into Li (Lj) (since Li, or
Lj, d-separates then), then both Li and Lj are choke points for {X,Y }×{A,B}. According
to Lemma 2.5 given by Shafer et al. (1993), any trek connecting an element from {X,Y }
to an element in {A,B} passes through both choke points in the same order. Without loss
of generality, assume the order is first Li, then Lj.

If there is no trek connecting X to Li that is into Li, then Li d-separates X and Lj .
The same holds for Lj and A with respect to Li. If there is a trek T connecting X and
Li that is into Li, and since all three tetrad constraints hold in the covariance matrix of
{X,Y,Z,A} by construction, then there is no trek connecting A and Li that is into Li

(Lemma 21). Since there are treks connecting Li and Lj , they should be all out of Li and
into Lj . This means that Li d-separates X and Lj. But this also creates a trek connecting
X and Lj that is into Lj. Since all three tetrad constraints hold in the covariance matrix of
{X,A,B,C} by construction, then there is no trek connecting A and Lj that is into Lj (by
the d-separation implied by Lemma 21). This means that Lj d-separates A from Li. This
also means that the existance of such a trek T out of X and into Li forbids the existance
of any trek connecting a variable correlated to X that is into Li (since all treks connecting
Li and some Lj are out of Li), which proves the third claim of the theorem.

We will conclude by showing that given two clusters Cli and Clj with respective latents
Li and Lj, where each cluster is of size at least three, if they are not merged, then Li 6= Lj .
That is, the mapping from latents in Gout to latents in G, as defined at the beginning of
the proof, is injective.

Assume Li = Lj . We will show that these clusters will be merged by the algorithm,
proving the counterpositive argument. Let X and Y be elements of Cli and W , Z elements
of Clj. It immediately follows that Li is a choke point for all pairs in {W,X, Y,Z}, since
Li d-separates any pair of elements of {W,X, Y,Z}, which means all three tetrads will hold
in the covariance matrix of any subset of size four from Cli ∪ Clj. These two clusters will
then be merged by BuildPureClusters. �
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Theorem 15 Given a covariance matrix Σ assumed to be generated from a linear latent vari-
able model G(O) with latent variables L, let Gout be the output of BuildPureClusters(Σ)
with observed variables Oout ⊆ O and latent variables Lout. Let M(Lout) ⊆ L be the set of
latents in G obtained by the mapping function M(). Let ΣOout

be the population covariance
matrix of Oout, i.e., the corresponding marginal of Σ. Let the DAG Gaug

out be Gout augmented
by connecting the elements of Lout such that the structural model of Gaug

out is an I-map of
the distribution of M(Lout). Then there exists a linear latent variable model using Gaug

out as
the graphical structure such that the implied covariance matrix of Oout equals ΣOout

.

Proof: If a linear model is an I-map DAG of the true distribution of its variables, then there
is a well-known natural instantiation of the parameters of this model that will represent the
true covariance matrix (Spirtes et al., 2000). We will assume such parametrization for the
structural model, and denote as ΣL(Θ) the parameterized latent covariance matrix. Instead
of showing that Gaug

out is an I-map of the respective set of latents and observed variables and
using the same argument, we will show a valid instantion of its parameters directly.

Assume without loss of generality that all variables have zero mean. To each observed
node X with latent ancestor LX in G such that M−1(LX) is a parent of X in Gout, the
linear model representation is:

X = λXLX + ǫX

For this equation, we have two associated parameters, λX and σ2
ǫX

, where σ2
ǫX

is the
variance of ǫX . We instantiate them by the linear regression values, i.e., λX = σXLX

/σ2
LX

,

and σ2
ǫX

is the respective residual variance. The set {λX} ∪ {σ
2
ǫX
} of all λX and σ2

ǫX
, along

with the parameters used in ΣL(Θ), is our full set of parameters Θ.

Our definition of linear latent variable model requires σǫXǫY
= 0, σǫXLX

= 0 and σǫXLY
=

0, for all X 6= Y . This corresponds to a covariance matrix Σ(Θ) of the observed variables
with entries defined as:

E[X2](Θ) = σ2
X(Θ) = λ2

Xσ2
LX

+ σ2
ǫX

E[XY ](Θ) = σXY (Θ) = λXλT σLXLY

To prove the theorem, we have to show that ΣOout
= Σ(Θ) by showing that correlations

between different residuals, and residuals and latent variables, are actually zero.

The relation σǫXLX
= 0 follows directly from the fact that λX is defined by the regression

coefficient of X on LX . Notice that if X and LX do not have a common ancestor, λX is
the direct effect of LX in X with respect to Gout. As we know, by Theorem 14, at most
one variable in any set of correlated variables will not fulfill this condition.

We have to show also that σXY = σXY (Θ) for any pair X,Y in Gout. Residuals ǫX and
ǫY are uncorrelated due to the fact that X and Y are independent given their latent ances-
tors in Gout, and therefore σǫXǫY

= 0. To verify that σǫXLY
= 0 is less straightforward, but

one can appeal to the graphical formulation of the problem. In a linear model, the residual
ǫX is a function only of the variables that are not independent of X given LX . None of this
variables can be nodes in Gout, since LX d-separates X from all such variables. Therefore,
given LX none of the variables that define ǫX can be dependent on LY , implying σǫXLY

= 0.
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�

Theorem 16 Problem MP3 is NP-complete.

Proof: Direct reduction from the 3-SAT problem: let S be a 3-CNF formula from which
we want to decide if there is an assignment for its variables that makes the expression true.
Define G as a latent variable graph with a latent node Li for each clause Ci in M , with
an arbitrary fully connected structural model. For each latent in G, add five pure children.
Choose three arbitrary children of each latent Li, naming them {C1

i , C2
i , C3

i }. Add a bi-
directed edge Cp

i ↔ Cq
j for each pair Cp

i , Cq
j , i 6= j, if and only that they represent literals

over the same variable but of opposite values. As in the maximum clique problem, one can
verify that there is a pure submodel of G with at least three indicators per latent if and
only if S is satisfiable. �

The next corollay suggests that even an invalid measurement pattern could be used
in BuildPureClusters instead of the output of FindPattern. However, an arbitrary
(invalid) measurement pattern is unlikely to be informative at all after being purified. In
constrast, FindPattern can be highly informative.

Corollary 17 The output of BuildPureClusters retains its guarantees even when rules
CS1, CS2 and CS3 are applied an arbitrary number of times in FindPattern for any ar-
bitrary subset of nodes and an arbitrary number of maximal cliques is found.

Proof: Independently of the choice made on Step 2 of BuildPureClusters and which
nodes are not separated into different cliques in FindPattern, the exhaustive verification
of tetrad constraints by BuildPureClusters provides all the necessary conditions for the
proof of Theorem 14. �

Corollary 19 Given a covariance matrix Σ assumed to be generated from a linear latent
variable model G, and Gout the output of BuildPureClusters given Σ, the output of
PC-MIMBuild or FCI-MIMBuild given (Σ, Gout) returns the correct Markov equiva-
lence class of the latents in G corresponding to latents in Gout according to the mapping
implicit in BuildPureClusters

Proof: By Theorem 14, each observed variable is d-separated from all other variables in
Gout given its latent parent. By Theorem 15, one can parameterize Gout as a linear model
such that the observed covariance matrix as a function of the parameterized Gout equals its
corresponding marginal of Σ. By Theorem 18, the rank test using the measurement model
of Gout is therefore a consistent independence test of latent variables. The rest follows im-
mediately from the consistency property of PC and FCI given a valid oracle for conditional
independencies. �

41



Silva, Scheines, Glymour and Spirtes

Appendix C. Implementation

Statistical tests for tetrad constraints are described by Spirtes et al. (2000). Although it is
known that in practice constraint-based approaches for learning graphical model structure
are outperformed on accuracy by score-based algorithms such as GES (Chickering, 2002),
we favor a constraint-based approach due mostly to computational efficiency. Moreover, a
smart implementation of can avoid many statistical shortcomings.

C.1 Robust purification

We do avoid a constraint-satisfaction approach for purification. At least for a fixed p-value
and using false discovery rates to control for multiplicity of tests, purification by testing
tetrad constraints often throws away many more nodes than necessary when the number
of variables is relative small, and does not eliminate many impurities when the number of
variables is too large. We suggest a robust purification approach as follows.

Suppose we are given a clustering of variables (not necessarily disjoint clusters) and a
undirect graph indicating which variables might be ancestors of each other, analogous to
the undirect edges generated in FindPattern. We purify this clustering not by testing
multiple tetrad constraints, but through a greedy search that eliminates nodes from a linear
measurement model that entails tetrad constraints. This is iterated till the current model fits
the data according to a chi-square test of significance (Bollen, 1989) and a given acceptance
level. Details are given in Table 7.

This implementation is used as a subroutine for a more robust implementation of Build-
PureClusters described in the next section. However, it can be considerably slow. An
alternative is using the approximation derived by Kano and Harada (2000) to rapidly calcu-
late the fitness of a factor analysis model when a variable is removed. Another alternative
is a greedy search over the initial measurement model, freeing correlations of pairs of mea-
sured variables. Once we found which variables are directly connected, we eliminate some
of them till no pair is impure. In our experiments with synthetic data, it did not work
as well as the iterative removal of variables described in Table 7. However, we do apply
this variation in the last experiment described in Section 6, because it is computationally
cheaper. If the model search in RobustPurify does not fit the data after we eliminate too
many variables (i.e., when we cannot statistically test the model) we just return an empty
model.

C.2 Finding a robust initial clustering

The main problem of applying FindPattern directly by using statistical tests of tetrad
constraints is the number of false positives: accepting a rule (CS1, CS2, or CS3) as true
when it does not hold in the population. One can see that might happen relatively often
when there are large groups of observed variables that are pure indicators of some latent: for
instance, assume there is a latent L0 with 10 pure indicators. Consider applying CS1 to a
group of six pure indicators of L0. The first two constraints of CS1 hold in the population,
and so assume they are correctly identified by the statistical test. The last constraint,
σX1X2

σY1Y2
6= σX1Y2

σX2Y1
, should not hold in the population, but will not be rejected by
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the test with some probability. Since there are 10!/(6!4!) = 210 ways of CS1 being wrongly
applied due to a statistical mistake, we will get many false positives in all certainty.

We can highly minimize this problem by separating groups of variables instead of pairs.
Consider the test DisjointGroup(Xi,Xj ,Xk, Ya, Yb, Yc; Σ):

• DisjointGroup(Xi,Xj ,Xk, Ya, Yb, Yc; Σ) = true if and only if CS1 returns true for
all sets {X1,X2,X3, Y1, Y2, Y3}, where {X1,X2,X3} is a permutation of {Xi,Xj ,Xk}
and {Y1, Y2, Y3} is a permutation of {Ya, Yb, Yc}. Also, we test an extra redundant con-
straint: for every pair {X1,X2} ⊂ {Xi,Xj ,Xk} and every pair {Y1, Y2} ⊂ {Ya, Yb, Yc}
we also require that σX1Y1

σX2Y2
= σX1Y2

σX2Y1
.

Notice it is much harder to obtain a false positive with DisjointGroup than, say, with
CS1 applied to a single pair. This test can be implemented in steps: for instance, if for no
four foursome including Xi and Ya we have that all tetrad constraints hold, then we do not
consider Xi and Ya in DisjoingGroup.

Based on DisjointGroup, we propose here a modification to increase the robustness
of BuildPureClusters, the RobustBuildPureClusters algorithm, as given in Table
8. It starts with a first step called FindInitialSelection (Table 9). The goal of FindIni-
tialSelection is to find a pure model using only DisjointGroup instead of CS1, CS2 or
CS3. This pure model is then used as an starting point for learning a more complete model
in the remaining stages of RobustBuildPureClusters.

In FindInitialSelection, if a pair {X,Y } cannot be separated into different clusters,
but also does not participate in any successful application of DisjointGroup, then this
pair will be connected by a GRAY or YELLOW edge: this indicates that these two nodes
cannot be in a pure submodel with three indicators per latent. Otherwise, these nodes are
“compatible”, meaning that they might be in such a pure model. This is indicated by a
BLUE edge.

In FindInitialSelection we then find cliques of compatible nodes (Step 8)6. Each
clique is a candidate for a one-factor model (a latent model with one latent only). We purify
every clique found to create pure one-factor models (Step 9). This avoids using clusters that
are large not because they are all unique children of the same latent, but because there was
no way of separating its elements. This adds considerably more computational cost to the
whole procedure.

After we find pure one-factor models Mi, we search for a combination of compatible
groups. Step 10 first indicates which pairs of one-factor models cannot be part of a pure
model with three indicators each: if Mi and Mj are not pairwise a two-factor model with
three pure indicators (as tested by DisjointGroup), they cannot be both part of a valid
solution.

ChooseClusteringClique is a heuristic designed to find a large set of one-factor
models (nodes of H) that can be grouped into a pure model with three indicators per latent
(we need a heuristic since finding a maximum clique in H is NP-hard). First, we define
the size of a clustering Hcandidate (a set of nodes from H) as the number of variables that
remain according to the following elimination criteria: 1. eliminate all variables that appear

6. Any algorithm can be used to find maximal cliques. Notice that, by the anytime properties of our
approach, one does not need to find all maximal cliques
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Algorithm RobustPurify
Inputs: Clusters, a set of subsets of some set O;

C, an undirect graph over O;
Σ, a sample covariance matrix of O.

1. Remove all nodes that have appear in more than one set in Clusters.

2. For all pairs of nodes that belong to two different sets in Clusters and are adjacent in C,
remove the one from the largest cluster or the one from the smallest cluster if this has less
than three elements.

3. Let G be a graph. For each set S ∈ Clusters, add all nodes in S to G and a new latent as
the only common parent of all nodes in S. Create an arbitrary full DAG among latents.

4. For each variable V in G, fit a graph G′(V ) obtained from G by removing V . Update G by
choosing the graph G′(V ) with the smallest chi-square score. If some latent ends up with less
than two children, remove it. Iterate till a significance level is achieved.

5. Do mergings if that increases the fitness. Iterate 4 and 5 till no improvement can be done.

6. Eliminate all clusters with less than three variables and return G.

Table 7: A score-based purification.

Algorithm RobustBuildPureClusters
Input: Σ, a sample covariance matrix of a set of variables O

1. (Selection, C, C0)←FindInitialSelection(Σ).

2. For every pair of nonadjacent nodes {N1, N2} in C where at least one of them is not in
Selection and an edge N1 −N2 exists in C0, add a RED edge N1 −N2 to C.

3. For every pair of nodes linked by a RED edge in C, apply successively rules CS1, CS2 and
CS3. Remove an edge between every pair corresponding to a rule that applies.

4. Let H be a complete graph where each node corresponds to a maximal clique in C.

5. FinalClustering← ChooseClusteringClique(H).

6. Return RobustPurify(FinalClustering, C, Σ).

Table 8: A modified BuildPureClusters algorithm.
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in more than one one-factor model inside Hcandidate; 2. for each pair of variables {X1,X2}
such that X1 and X2 belong to different one-factor models in Hcandidate, if there is an edge
X1−X2 in C, then we remove one element {X1,X2} from Hcandidate (i.e., guarantee that no
pair of variables from different clusters which were not shown to have any common latent
parent will exist in Hcandidate). We eliminate the one that belongs to the largest cluster,
unless the smallest cluster has less than three elements to avoid extra fragmentation; 3.
eliminate clusters that have less than three variables.

The heuristic motivation is that we expected that a model with a large size will have
a large number of variables after purification. Our suggested heuristic to be implemented
as ChooseClusteringClique is trying to find a good model using a very simple hill-
climbing algorithm that starts from an arbitrary node in H and add new clusters to the
current candidate according to the one that will increase its size mostly while still forming
a maximal clique in H. We stop when we cannot increase the size of the candidate. This is
calculated using each node in H as a starting point, and the largest candidate is returned
by ChooseClusteringClique.

C.3 Clustering refinement

The next steps in RobustBuildPureClusters are basically the FindPattern algorithm
of Table 1 with a final purification. The main difference is that we do not check anymore if
pairs of nodes in the initial clustering given by Selection should be separated. The intuition
explaining the usefulness of this implementation is as follows: if there is a group of latents
forming a pure subgraph of the true graph with a large number of pure indicators for each
latent, then the initial step should identify such group. The consecutive steps will refine this
solution without the risk of splitting the large clusters of variables, which are exactly the
ones most likely to produce false positive decisions. RobustBuildPureClusters has the
power of identifying the latents with large sets of pure indicators and refining this solution
with more flexible rules, covering also cases where DisjointGroup fails.

Notice that the order by which tests are applied might influence the outcome of the
algorithms, since if we remove an edge X − Y in C at some point, then we are excluding
the possibility of using some tests where X and Y are required. Imposing such restriction
reduces the overall computational cost and statistical mistakes. To minimize the ordering
effect, an option is to run the algorithm multiple times and select the output with the
highest number of nodes.
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Algorithm FindInitialSelection
Input: Σ, a sample covariance matrix of a set of variables O

1. Start with a complete graph C over O.

2. Remove edges of pairs that are marginally uncorrelated or uncorrelated conditioned on a third
variable.

3. C0 ← C.

4. Color every edge of C as BLUE.

5. For all edges N1 − N2 in C, if there is no other pair {N3, N4} such that all three tetrads
constraints hold in the covariance matrix of {N1, N2, N3, N4}, change the color of the edge
N1 −N2 to GRAY.

6. For all pairs of variables {N1, N2} linked by a BLUE edge in C

If there exists a pair {N3, N4} that forms a BLUE clique with N1 in C, and a pair
{N5, N6} that forms a BLUE clique with N2 in C, all six nodes form a clique in C0 and
DisjointGroup(N1, N3, N4, N2, N5, N6; Σ) = true, then remove all edges linking elements
in {N1, N3, N4} to {N2, N5, N6}.

Otherwise, if there is no node N3 that forms a BLUE clique with {N1, N2} in C,
and no BLUE clique in {N4, N5, N6} such that all six nodes form a clique in C0 and
DisjointGroup(N1, N2, N3, N4, N5, N6; Σ) = true, then change the color of the edge
N1 −N2 to YELLOW.

7. Remove all GRAY and YELLOW edges from C.

8. ListC ←FindMaximalCliques(C).

9. Let H be a graph where each node corresponds to an element of ListC and with no edges.
Let Mi denote both a node in H and the respective set of nodes in ListC . Let Mi ←
RobustPurify(Mi, C, Σ);

10. Add an edge M1 −M2 to H only if there exists {N1, N2, N3} ⊆ M1 and {N4, N5, N6} ⊆ M2

such that DisjointGroup(N1, N2, N3, N4, N5, N6; Σ) = true.

11. Hchoice ←ChooseClusteringClique(H).

12. Let Hclusters be the corresponding set of clusters, i.e., the set of sets of observed variables,
where each set in Hclusters correspond to some Mi in Hchoice.

13. Selection←RobustPurify(Hclusters, C, Σ).

14. Return (Selection, C, C0).

Table 9: Selects an initial pure model.
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