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Abstract

Learning the structure of graphical models
is an important task, but one of consider-
able difficulty when latent variables are in-
volved. Because conditional independences
using hidden variables cannot be directly ob-
served, one has to rely on alternative meth-
ods to identify the d-separations that define
the graphical structure. This paper describes
new distribution-free techniques for identify-
ing d-separations in continuous latent vari-
able models when non-linear dependencies
are allowed among hidden variables.

1. Introduction

Latent variable models are often represented as graph-
ical models such as Bayesian networks. In a broad
class of such models, sometimes called the measure-
ment/structural model class (Bollen, 1989), the only
constraint is that an observed variable cannot be a
parent of a latent variable. This is especially useful
in models where observed variables are indicators of
latent concepts, such as in many models of economics,
socials sciences and psychology. Factor analysis and
its variations are standard models of such a class.

Learning the graphical structure of such models is
of great interest. For causal analysis (Spirtes et al.,
2000; Pearl, 2000), which is in fact the main motiva-
tion behind several latent variable models, knowing the
model structure is essential. For probabilistic model-
ing (Bishop, 1998), a parsimonious structure that is
as simple as possible but not simpler than the truth
allows for more statistically efficient estimation of the
joint.

A directed acyclic graphs (DAG) G can be defined in

terms of conditional independencies among the ran-
dom variables represented as nodes in G. Those inde-
pendencies arise from the assumption that the Markov
condition holds in such graphs: each node is indepen-
dent of its non-descendants (and non-parents) condi-
tioned on its parents. Many other conditional inde-
pendencies are entailed from this local assumption. In
special, d-separation is a sound and complete criterion
for deriving conditional independencies entailed in a
DAG by the Markov condition (Pearl, 2000). There-
fore, one can also say that a DAG represents a set of
d-separations among its nodes.

The contribution of this paper is theoretical: a set of
testable statistical conditions that allows us to identify
the presence of latent variables and several unobserv-
able conditional independencies in the class of mea-
surement/structural models. Such identification con-
ditions can be used to create tests or search operators
for learning the structure of Bayesian networks with
latent variables, where non-independence constraints
have to be used (Tian & Pearl, 2002).

While we will assume that observed variables are lin-
ear functions of their parents with additive noise, we
will not assume any particular functional relationship
among latents: any arbitrary non-linear function can
link a latent to its parents. Indicators that are linear
functions of their parents are acceptable in many sit-
uations (Bollen, 1989), but models where latents are
linearly related are not as widely applicable.

In the next section we present a brief overview of pre-
vious work. Section 3 formalizes the problem and Sec-
tion 4 presents an example on how to use our results.
Section 5 provides the main theoretical results and Sec-
tion 6 provides more details concerning the application
of our results on learning the structure of latent graph-
ical models. Section 7 describes some experimental
results.
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2. Related work

Many latent variable models assume latents are mar-
ginally independent as in, e.g., the mixture of fac-
tor analyzers of Ghahramani and Hinton (1996). For
causal modeling this often makes no sense: see all ex-
amples given by Bollen (1989), for instance. For prob-
abilistic modeling, this is also an inefficient represen-
tation: allowing latents to be dependent will eliminate
many edges connecting observed variables and latents.
This can be observed by applying “rotation meth-
ods” on factor analysis models with Gaussian variables
(Bartholomew & Knott, 1999).

Nachman et al. (2004) describe computationally ef-
ficient heuristics to create continuous networks with
hidden variables for a variety of practical uses, but
with no theoretical guarantess about how close the re-
sulting structures might be compared to the unknown
true structure that generated the data. Our contri-
butions are on the theoretical aspects and extend the
work of Silva et al. (2003), one of the first principled
approaches to introduce hidden variables in continuous
networks with linear and non-linear relations. How-
ever, some extra structural assumptions were adopted
in that work. Silva and Scheines (2004) introduced
new results while removing such assumptions. How-
ever, several results in (Silva & Scheines, 2004) were
established only for linear models. This report com-
plements (Silva & Scheines, 2004) by presenting the
corresponding results in the non-linear case and sim-
plifies the description of previous results to match the
presentation of Silva et al. (2005). More related work
is discussed in the given references.

3. Approach

We assume that the latent variable model to be dis-
covered has a graphical structure and parameteriza-
tion that obey the following constraints besides the
Markov condition (Pearl, 2000; Spirtes et al., 2000):

A1. no observed variable is a parent of a latent vari-
able;

A2. any observed variable is a linear function of its
parents with additive noise of finite positive vari-
ance;

A3. all latent variables have finite positive variance,
and the correlation of any two latents lies strictly
in the open interval (-1, 1);

A4. there are no cycles that include an observed vari-
able;

This means that observed variables can have observed
parents, and that latents can be (noisy) non-linear
functions of their parents, and that cycles are al-
lowed among latents. These are more relaxed as-
sumptions than those adopted in, e.g., factor analy-
sis (Bartholomew & Knott, 1999), a standard tool in
latent variable modeling.

In classic results concerning algorithms for learning
the structure of directed acyclic graphs without hid-
den variables (Chickering, 2002; Pearl, 2000; Spirtes
et al., 2000), an essential assumption is the faithful-

ness assumption: a conditional independence holds in
the joint distribution if and only if it is entailed in
the respective graphical model by d-separation. The
movitation is that observed conditional independences
should be the result of the graphical structure, not of
an accidental choice of parameters defining the prob-
ability of a node given its parents.

Instead of assuming faithfulness, our results will have a
measure-theoretical motivation. All results presented
here have the following characteristics:

C1. they hold with probability 1 with respect to the
Lebesgue measure over the set of linear coeffi-
cients and error variances that partially parame-
terize the density function of an observed variable
given its parents;

C2. they hold for any distribution of the latent vari-
ables (that obey the given assumptions);

One can show that the Lebesgue argument is no differ-
ent from the faithfulness assumption for typical fam-
ilies of graphical models, such as multinomial and
Gaussian (Spirtes et al., 2000)1.

Our goal is not to fully identify a graphical structure.
The assumptions are too weak to reallistically accom-
plish this goal. Instead we will focus on a more re-
stricted task:

• GOAL: to identify d-separations between a pair of

observed variables, or a pair of one observed and

one latent variable, conditioned on sets of latent

1That is, in general no result concerning learning graph-
ical models can be theoretically sound for all possible mod-
els. For some choice of parameter values (that generate
constraints that are not a result of the graphical struc-
ture of the true model), several crucial results (Pearl, 2000;
Spirtes et al., 2000) fail, and so do our results. Those pa-
rameter values, however, form a set of Lebesgue measure
zero, which can be interpreted as having zero probability
according to an uniform prior. The faithfulness condition
is a way of excluding such parameter values by assumption.
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variables. These d-separations should be useful for

existing algorithms that learn latent models.

We do not aim at identifying d-separations between la-
tents: this is a topic for future research, where specific
assumptions concerning latent structure have to be
adopted according to the problem at hand. This was
accomplished for the linear case (Silva et al., 2005).

The strategy to accomplish our goal is to use con-

straints in the observed covariance matrix that will al-
low us to identify the following features of the unknown
latent variable model:

F1. which hidden variables exist;

F2. that observed variable X cannot be an ancestor
of observed variable Y ;

F3. that observed variable X cannot have a common
parent with observed variable Y ;

In the next section we describe a way of putting to-
gether these pieces of information to learn a partial
latent variable model structure, assuming features F1,
F2 and F3 can be identified. Section 5 will describe
testable methods that can in many cases identify the
above features.

4. Application: learning latent model

structure

Features F1, F2 and F3 compose all the information
used in an algorithm described by Silva et al. (2003)
that discovers latent variable structures. However,
that algorithm was designed under a particular strong
assumption: there is a subgraph G′ of the true graph
G where each latent has at least three unique indica-
tors (that is, observed children that are not children of
any other latent), and any two observed nodes in G′

are d-separated given the latents.

We call this assumption the “3-clustering” assump-
tion, because G′ defines a clustering over its observed
variables: each cluster is a set of observed nodes that
share an unique common parent, and each cluster has
at least three members.

The work of Silva et al. (2003) is one of the few the-
oretically sound approaches for learning latent graphs
without imposing unrealistic restrictions on how la-
tents are connected to other latents. However, it relies
on this strong and generally untestable assumption.
Our paper build on this previous result by proving
which other guarantees the approach of Silva et al.

(2003) can give when the “3-clustering” assumption is
dropped:

1. we will show that in general there is no fully au-
tomated way of identifying latents individually
(feature F1) using covariance information only,
but some data-driven methods and generally weak
prior knowledge can be combined to solve this is-
sue;

2. we will show extra ways of identifying d-
separations that were not discussed by Silva et al.
(2003);

3. we will show the existence of empirically testable
ways of discovering F3 features that are sound
under fully linear models but not sound when non-
linear relations among latents are allowed;

4. we will show how to approximate marginal dis-
tributions by using sparse latent variable models
if this marginal can be approximated well by a
mixture of Gaussians;

Our focus on using only the covariance matrix is mo-
tivated by a practical issue: since learning latent vari-
able graphs is a difficult statistical problem, using only
covariance information is desirable, since estimating
second moments is easier than estimating higher order
moments of the observed joint. Knowing the limits of
what can be done using only covariance information is
both of theoretical and practical interest.

5. Main results

Assume for now we know the true population covari-
ance matrix. Without loss of generality, assume also
that all variables have zero mean. Let G(O) be the
graph of the latent variable model with observed vari-
ables O. The following lemma by Silva et al. (2003)
illustrates a simple result that is intuitive but does not
follow immediately from correlation analysis, since ob-
served nodes can have non-linear dependencies:

Lemma 1 If for {A, B, C} ⊆ O we have ρAB = 0
or ρAB.C = 0, then A and B cannot share a common

latent parent in G.

where ρXY.Z is the partial correlation of X and Y given
Z. In general, Z can be a set.

Although vanishing partial correlations (i.e., partial
correlations constrained to be zero) can sometimes be
useful, we are mostly motivated by problems where
all observed variables have hidden common ancestors.
Bartholomew and Knott (1999) describe several of
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such problems. In this case, vanishing partial correla-
tions are useless. Instead, we will use rank constraints
on the covariance matrix of the observed variables.

The following result, also by Silva et al. (2003), al-
lows us to learn that observed variable X cannot be
an ancestor of observed variable Y in many situations:

Lemma 2 For any set O′ = {A, B, C, D} ⊆ O, if

σABσCD = σACσBD = σADσBC such that for all

triplets {X, Y, Z}, {X, Y } ⊂ O′, Z ∈ O, we have

ρXY.Z 6= 0 and ρXY 6= 0, then no element in X ∈ O′

is an ancestor of any element in O′\X in G.

Notice that this result allows us to identify the non-
existence of several ancestral relations even when no
conditional independences are observed and latents are
non-linearly related. All of the next lemmas and the-
orems in this paper are new results not previously de-
scribed by Silva et al. (2003). Detailed proofs are
given in the Appendix.

A second way of learning how two observed vari-
ables can be d-separated conditioned on a latent is
as follows: let G(O) be a latent variable graph and
{A, B} be two elements of O. Let the predicate
Factor1(A, B, G) be true if and only there exists a
set {C, D} ⊆ O such that the conditions of Lemma
2 are satisfied for O′ = {A, B, C, D}, i.e., σABσCD =
σACσBD = σADσBC with the corresponding partial
correlation constraints. The second approach for de-
tecting lack of ancestral relations between two ob-
served variables is given by the following lemma:

Lemma 3 For any set O′ = {X1, X2, Y1, Y2} ⊆ O,

if Factor1(X1, X2, G) = true, Factor1(Y1, Y2, G) =
true, σX1Y1

σX2Y2
= σX1Y2

σX2Y1
, and all elements

of {X1, X2, Y1, Y2} are correlated, then no element in

{X1, X2} is an ancestor of any element in {Y1, Y2} in

G and vice-versa.

One can verify that Lemma 2 is a special case of our
new lemma.

We define the predicate Factor2(A, B, G) to be true
if and only it is possible to learn that A is not an
ancestor of B in the unknown graph G that contains
these nodes by using Lemma 3.

We now describe two ways of detecting if two observed
variables have no (hidden) common parent in G(O).
Let first {X1, X2, X3, Y1, Y2, Y3} ⊆ O. We define two
identification conditions:

CS1. If σX1Y1
σX2X3

= σX1X2
σX3Y1

=
σX1X3

σX2Y1
, σX1Y1

σY2Y3
= σX1Y2

σY1Y3
=

σX1Y3
σY1Y2

, σX1X2
σY1Y2

6= σX1Y2
σX2Y1

and for

all triplets {X, Y, Z}, {X, Y } ⊂ {X1, X2, X3, Y1,
Y2, Y3}, Z ∈ O, we have ρXY 6= 0, ρXY.Z 6= 0,
then X1 and Y1 do not have a common parent in
G.

CS2. If Factor1(X1, X2, G), Factor1(Y1, Y2, G), X1

is not an ancestor of X3, Y1 is not an
ancestor of Y3, σX1Y1

σX2Y2
= σX1Y2

σX2Y1
,

σX2Y1
σY2Y3

= σX2Y3
σY2Y1

, σX1X2
σX3Y2

=
σX1Y2

σX3X2
, σX1X2

σY1Y2
6= σX1Y2

σX2Y1
and

for all triplets {X, Y, Z}, {X, Y } ⊂ {X1, X2,
X3, Y1, Y2, Y3}, Z ∈ O, we have ρXY 6= 0, ρXY.Z 6=
0, then X1 and Y1 do not have a common parent
in G.

“CS” here stands for “constraint set,” a set of con-
straints in the observable joint that are empirically
verifiable. In the same way, call CS0 the separation
rule of Lemma 1. The following lemmas state the cor-
rectness of CS1 and CS2:

Lemma 4 CS1 is sound.

Lemma 5 CS2 is sound.

It is clear that these identification conditions also hold
in fully linear latent variable models, since they are
just a special case of the non-linear models here de-
scribed. One might conjecture that, as far as identify-
ing ancestral relations among observed variables and
hidden common parents goes, linear and non-linear la-
tent variable models are identical (since any connec-
tion between a latent and an observed variable is al-
ways linear in our setup of non-linear models). How-
ever, this is not true.

Theorem 1 Consider the problem of learning if two

observed variables do not share a hidden common par-

ent in a latent variable graph. There are identifica-

tion rules for learning this information that are sound

in linear models, but not sound for non-linear latent

variable models.

In other words, one gains more identification power
if one is willing to assume full linearity of the latent
variable model. We will see more of the implications
of assuming linearity later.

Another important building block in our approach is
the identification of which latents exist. Define an
immediate latent ancestor of an observed node O in
a latent variable graph G as a latent node L that
is a parent of O or the source of a directed path
L → V → · · · → O where V is an observed vari-
able. Notice that this implies that every element in
this path, with the exception of L, is an observed node.
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Lemma 6 Let S ⊆ O be any set such that, for all

{A, B, C} ⊆ S, there is a fourth variable D ∈ O where

i. σABσCD = σACσBD = σADσBD and ii. for every

set {X, Y } ⊂ {A, B, C, D}, Z ∈ O we have ρXY.Z 6= 0
and ρXY 6= 0. Then S can be partioned into two sets

S1,S2 where

1. all elements in S1 share a common immediate la-

tent ancestor, and no two elements in S1 have any

other common immediate latent ancestor;

2. no element S ∈ S2 has any common immediate

latent ancestor with any other element in S\S;

3. all elements in S are d-separated given the latents

in G;

We will see an application of our results in the next sec-
tion, where they are used to identify interesting clus-

ters of indicators, disjoint sets of observed variables
that measure disjoint sets of latents.

6. Learning a semiparametric model

Our results can be used to learn graphical and prob-
abilistical features of the true unknown model, as ex-
plained in the following subsections.

6.1. Structure learning

Given a set of observed variables O, let O′ ⊆ O, and
let C be a partition of O′ into k non-overlapping sets
{C1, . . . ,Ck} such that

SC1. for any {X1, X2, X3} ⊂ Ci, there is some X4 ∈
O′ such that σX1X2

σX3X4
= σX1X3

σX2X4
=

σX1X4
σX2X3

, 1 ≤ i ≤ k and X4 is correlated with
all elements in {X1, X2, X3};

SC2. for any X1 ∈ Ci, X2 ∈ Cj, i 6= j, we have that X1

and X2 are separated by CS0, CS1 or CS2;

SC3. for any X1, X2 ∈ Ci, Factor1(X1, X2, G) = true
or Factor2(X1, X2, G) = true;

SC4. for any {X1, X2} ⊂ Ci, X3 ∈ Cj, ρX1X3
6= 0 if

and only if ρX2X3
6= 0;

Any partition with structural conditions SC1-SC4 has
the following properties:

Theorem 2 If a partition C = {C1, . . . ,Ck} of O′

respects structural conditions SC1-SC4, then the fol-

lowing should hold in the true latent variable graph G
that generated the data:

1. for all X ∈ Ci, Y ∈ Cj, i 6= j, X and Y have no

common parents, and X is d-separated from the

latent parents of Y given the latent parents of X;

2. for all X, Y ∈ O′, X is d-separated from Y given

the latent parents of X;

3. every set Ci can be partitioned into two groups

according to Lemma 6;

An algorithm for learning such a partition is given by
Silva et al. (2003) using statistical tests for decid-
ing if the required constraints in the covariance matrix
hold in the population. Notice that algorithm does not
make use of CS2 (a less general form of CS1 is used),
but it can be naturally added, as it was done in the
algorithm for linear models introduced by Silva et al.
(2005). Unlike the algorithm by Silva et al. (2003),
we allow in principle partitions where some sets Ci

are such that |Ci| = 1 or |Ci| = 2. In those cases, the
properties established by Lemma 6 hold vacuously. A
greedy Bayesian search algorithm can also be readily
constructed by using the given identification rules. A
particular algorithm will be a topic of future research.

This algorithm cannot identify how each set Ci can be
further partitioned into two subsets, one where every
node has an unique common immediate latent ances-
tor, and one where each node has no common imme-
diate latent ancestor with any other node. It might
be the case that no two nodes in Ci have a common
immediate latent ancestor. It might be the case that
all nodes in in Ci have an unique common immedi-
ate latent ancestor. The combination of Lemma 6 and
domain knowledge can be useful to find the proper
sub-partition.

These are weaker results than the ones obtained for lin-
ear models, as described by Silva et al. (2005). There,
each set Ci is associated with an unique latent vari-
able Li from G (as long as |Ci| > 2). Furthermore,
conditioned on Li each node in Ci is d-separated from
all other nodes in O′, as well as from their respective
latent parents. There might be no latent node in the
non-linear case with these properties.

For instance, consider the graph in Figure 1, which de-
picts a latent variable graph with three latents L1, L2

and L3, and four measured variables, W, X, Y, Z. L2

does not d-separate L1 and L3, but there is no con-
straint in the assumptions that precludes the partial
correlation of L1 and L3 given L2 of being zero. If this
is the case, the trivial partition C = {{W, X, Y, Z}},
with a single element, will satisfy the structural condi-
tions SC1-SC4, and therefore the properties of The-
orem 2. However, there is no unique latent vari-
able in this system that d-separates all elements of
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W X Y Z

L LL21 3

Figure 1. It is possible that ρL1L3.L2
6= 0 even though L2

does not d-separate L1 and L3. That happens, for instance,
if L2 = λ1L1 + ǫ2, L3 = λ2L

2

1 +λ3L2 + ǫ3, where L1, ǫ2 and
ǫ3 are normally distributed with zero mean.

{W, X, Y, Z}. This would not be the case in a linear
system.

There is an even more fundamental difference between
the work presented here and the one developed by Silva
et al. (2003). There, the 3-clustering assumption was
used, i.e., each latent was assumed to have three ob-
served children that were d-separated by it. In this
way, it was possible to use a stronger version of CS1
and Lemma 2 to identify all latents and a bijective
mapping between set {Ci} and the set of latents in
the true graph2.

Although one might adopt the 3-clustering assumption
in studies where one already has a strong idea of which
latents exist, this is in general an untestable assump-
tion. This present work explores what is possible to
achieve when minimal assumptions about the graphi-
cal structure are adopted, and expands it with extra
identification rules. With the stronger assumptions
of Silva et al. (2003), all latents could be identified,
which highly simplified the problem. This is not the
case here.

6.2. Parameter learning

As in the linear case, it is still possible to para-
meterize a latent variable model using the partition
C = {C1, . . . ,Ck} of a subset O′ of the given ob-
served variables such that the first two moments of
the distribution of O′ can still be represented. Given
a graph G, a linear parameterization of G associates
a parameter with each edge and two parameters with
each node, such that each node V is functionally rep-

2That is, every latent Li in the true graph would be a
hidden common cause d-separating elements in some set
Ci, and all observed nodes in some set Cj would be d-
separated by a common hidden parent Lj in the true graph,
where Li = Lj if and only if Ci = Cj.

resented as a linear combination of its parents plus an
additive error: V = µV +ΣiλiPaVi

+ǫV , where {PaVi
}

is the set of parents of V in G, and ǫV is a random vari-
able with zero mean and variance ζV (µV and ζV are
the two extra parameters by node). Notice that this
parameterization might not be enough to represent all
moments of a given family of probability distributions.

A linear latent variable model is a latent variable graph
with a particular instance of a linear parameterization.
In general, building a model that uses a particular set
of constraints, such as the rank constraints of Section
5, might impose other constraints over the joint distri-
bution that do not necessarily hold in the population.
It is not obvious if a linear model obtained from the al-
gorithm discussed in the previous section can be used
to represent the population covariance matrix without
any bias. We show this is true.

Theorem 3 Given a partition C of a subset O′ of the

observed variables of a latent variable graph G such

that C satisfies structural constraints SC1-SC4, there

is a linear latent variable model for the first two mo-

ments of O′.

Consider the graph Glinear constructed by the follow-
ing algorithm:

1. initialize Glinear with a node for each element in
O′;

2. for each Ci ∈ C, add a latent Li to G, and for
each V ∈ Ci, add an edge Li → V

3. fully connect the latents in Glinear to form an ar-
bitrary directed acyclic graph;

The constructive proof of Theorem 3 shows that
Glinear can be used to parameterize a model of the first
two moments of O′. This has an important heuristic
implication: if the joint distribution of the latents and
observed variables can be reasonably approximated by
a mixture of Gaussians, where each component has
the same graphical structure, one can fit a mixture
of Glinear graphical models. This can be motivated
by assuming each mixture component represents a dif-
ferent subpopulation probabilitistic model where the
same causal structures hold, and the distributions are
close to normal (e.g., a drug might have different quan-
titative effects on different genders but with the same
qualitative causal structure). Each model will pro-
vide unbiased estimates of the mean and covariance
of the observed variables for a particular component
of the mixture: since each component has the same
graphical structure, the same required constraints in
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the component covariance matrix hold, and therefore
the same parametric formulation can be used.

Notice this is less stringent than assuming that the
causal model is fully linear. Assuming the distribu-
tion is fully linear can theoretically result in a wrong
structure that might not be approximated well (e.g., if
one applies unsound identification rules, as suggested
by Theorem 1). Here, at least in principle the struc-
ture can be correctly induced. The joint distribution
is approximated, and the quality of approximation will
be dependendent on the domain.

6.3. Final remarks

Finally, it has to be stressed that there is no guaran-
tee of how large the subset O′ will be. It can be an
empty set, for instance, if all observed variables are
children of several latents. An algorithm such as the
one described by Silva et al. (2003) is still able to
asymptotically find the largest submodel where each
latent d-separates three or more of its children.

In principle, much of the limitations here described
can be treated if one explores constraints that uses in-
formation besides the second moments of the observed
variables. Still, it is of considerable interest to know
what can be done with covariance information only,
since using higher order moments highly increases the
chance of commiting statistical mistakes. This is es-
pecially difficult concerning learning the structure of
latent variable models.

7. Experiments

The main contribution of this paper is theoretical, but
there are several aspects of our approach that can be
evaluated empirically. For instance, if the correct qual-
itative causal relations are learned from data. This
is usually accomplished through simulations, and an
exhaustive study for linear models was done by Silva
et al. (2005). For the non-linear case, some studies
are shown in Silva et al. (2003).

In this paper, we will concentrate on evaluating our
procedure as a way of finding good fitting submodels.
We run the algorithm described by Silva et al. (2003)
over some datasets from the UCI Machine Learning
Repository to obtain a graphical structure analogous
to Glinear described in the previous section. Following
Silva et al. (2005), we call this algorithm a special
version of BuildPureClusters (BPC). We then fit
the data to such a structure by using a mixture of
Gaussian latent DAGs with a standard EM algorithm.
Each component has a full parameterization: different
linear coefficients and error variances for each variable

on each mixture component. The number of mixture
components is chosen by fitting the model with 1 to up
to 7 components and choosing the one that maximizes
the BIC score (see, e.g., Chickering (2002)).

We compare this model against the mixture of factor
analyzers, MofFA (Ghahramani & Hinton, 1996). In
this case, we want to compare what can be gained by
fitting a model where latents are allowed to be de-
pendent, even when we restrict the observed variables
to be children of a single latent. Therefore, we fit
mixtures of factor analyzers using the same number
of latents we find with our algorithm. The number
of mixture components is chosen independently, using
the same BIC-based procedure. Since BPC can return
only a model for a subset of the given observed vari-
ables, we run MofFA for the same subsets given by
our algorithm.

In practice, our approach can be used in two ways.
First, as a way of decomposing the full joint of a set
O of observed variables by splitting it into two sets:
one set where variables X can be modeled as a mix-
ture of Glinear models, and another set of variables
Y = O\X whose conditional probability f(Y|X) can
be modeled by some other representation of choice.
Alternatively, if the observed variables are redundant
(i.e., many variables are intended to measure the same
latent concept), this procedure can be seen as a way of
choosing a subset whose marginal is relatively easy to
model with simple causal graphical structures. This is
sometimes called “purification” and has several appli-
cations in sciences where designing proper indicators
is of special concern, such as econometrics and psy-
chology (Spirtes et al., 2000).

As a baseline, we use a standard mixture of Gaus-
sians (MofG), where an unconstrained multivariate
Gaussian is used on each mixture component. Again,
the number of mixture components is chosen inde-
pendently by maximizing BIC. Since the number of
variables used in our experiments are relatively small,
we do not expect to perform significantly better than
MofG in the task of density estimation, but a simi-
lar performance is an indication that our highly con-
strained models provide a good fit, and therefore our
observed rank constraints can be reasonably expected
to hold in the population.

We ran a 10-fold cross-validation experiment for each
one of the following four UCI datasets: iono, specft,
water and wdbc, all of which are measured over con-
tinuous or ordinal variables. We tried also the small
dataset wine (13 variables), but we could not find any
structure using our method. The chosen datasets have
from 30 to 40 variables. The results given in Table 1
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Table 1. The difference in average test log-likelihood of
BPC and MofFA with respect to a multivariate mixture of
Gaussians. Positive values indicate that a method gives a
better fit that the mixture of Gaussians. The statistics are
the average of the results over a 10-fold cross-validation.
A standard deviation is provided. The average number of
variables used by our algorithm is also reported.

Dataset BPC MofFA % variables

iono 1.56 ± 1.10 -3.03 ± 2.55 0.37 ± 0.06

spectf -0.33 ± 0.73 -0.75 ±0.88 0.34 ± 0.07

water -0.01 ± 0.74 -0.90 ± 0.79 0.36 ± 0.04

wdbc -0.88 ± 1.40 -1.96 ± 2.11 0.24 ± 0.13

show the average log-likelihood per data point on the
respective test sets, also averaged over the 10 splits.
These results are subtracted from the baseline estab-
lished by MofG. We also show the average percentage
of variables that were selected by our algorithm. The
outcome is that we can represent the joint of a sig-
nificant portion of the observed variables as a simple
latent variable model where observed variables have a
single parent. Such models do not significantly lose in-
formation compared to the full mixture of Gaussians.
In one case (iono) we were able to significantly im-
prove over the mixture of factor analyzers when using
the same number of latent variables.

We conjecture these results can be greatly improved
by using Bayesian search algorithms (BPC is a very
simple algorithm that tests hypothesis of rank con-
straints). We intend also to expand our method to al-
low the insertion of more observed variables, and not
only those that have a single parent in a linearized
graph.

8. Conclusion

We presented empirically testable conditions that al-
lows one to learn structural features of latent variable
models where latents are non-linearly related. These
results can be used in an algorithm for learning the
graphical structure of a subset of the observed vari-
ables without making any assumptions about the true
graphical structure, besides the fairly general assump-
tion by which observed variables cannot be parents
of latent variables. We intend to extend this work in
the future by exploring kernel methods to learn prob-
abilistic models (Bach & Jordan, 2002) based on the
discovered structures, to evaluate it as a technique to
discover instrumental variables in non-linear regres-

sion problems with measurement error (Carroll et al.,
1995) and, finally, as a fundamental step on discover-
ing the causal structure among latent variables when
non-linear relations are allowed.
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A. Appendix

All of the following proofs hold with probability 1 with
respect to the Lebesgue measure taken over the set
of linear coefficients and error variances that partially
parameterize the density function of an observed vari-
able given its parents. The main idea used across most
proofs is that some covariance constraints boil down to
polynomial identities with probability 1. These identi-
ties will imply other identities that in many cases will
be used to prove results by contradiction. A few of
these proofs have appeared before in (Silva & Scheines,
2004).

The term “immediate latent ancestor,” used in several
points of this document, is defined in the paper. The
symbol ρXY.Z is the partial correlation of X and Y
given Z.

In all of the following proofs, G is a latent variable
graph with a set O of observable variables. In some
of these proofs, we use the term “edge label” as a
synonym of the coefficient associated with an edge
that is into an observed node (e.g., as in linear
Gaussian networks). Without loss of generality, we
will also assume that all variables have zero mean,
unless specified otherwise. The symbol {Xt} will
stand for a finitely indexed set of variables.

The following lemma will be useful to prove Lemma 3:

Lemma 7 For any set {A, B, C, D} = O′ ⊆ O, if

σABσCD = σACσBD = σADσBD such that for every

set {X, Y } ⊂ O′, Z ∈ O we have ρXY.Z 6= 0 and

ρXY 6= 0, then no pair of elements in O′ has an ob-

served common ancestor.

Proof: Assume for the sake of contradiction that some
pair in O′ has an observed common ancestor. Let K be
a common ancestor of some pair of elements in O′ such
that no descendant of K is also a common ancestor of
some pair in O′.

Without loss of generality, assume K is a common an-
cestor of A and B. Let α be the concatenation of
edge labels in some directed path from K to A, and β
the concatenation of edge labels in some directed path
from K to B. That is,

A = αK + RA

B = βK + RB

where RX is the remainder of the polynomial expres-
sion that describes node X as a function of its imme-
diate latent ancestors and K.

By the given constraint σABσCD = σACσBD, it follows
αβ(σ2

KσCD − σCKσDK) + f(G) = 0, where

f(G) = (ασKRB
+βσKRA

+σRARB
)σCD−σCRA

−σDRB

However, no term in f(G) can contain the symbol αβ:
by Lemma 2 no element X in O′ can be an ancestor
of any element in O′\X ; also, by construction no de-
scendant of K (with the possible exception of K) can
be an ancestor of C or D and therefore no sequence α
or β can be generated from the polynomial f that is a
function of σKRB

, σKRA
, σRARB

, σCD, σCRA
or σDRB

.

It follows that with probability 1 we have
αβ(σ2

KσCD − σCKσDK) = 0, and since αβ 6= 0
by assumption, this implies σ2

KσCD − σCKσDK =
0⇒ ρCD.K = 0. Contradiction. �

Lemma 3 For any set O′ = {X1, X2, Y1, Y2} ⊆ O,

if Factor1(X1, X2, G) = true, Factor1(Y1, Y2, G) =
true, σX1Y1

σX2Y2
= σX1Y2

σX2Y1
, and all elements of

{X1, X2, Y1, Y2} are correlated, then no element in

{X1, X2} is an ancestor of any element in {Y1, Y2} in

G and vice-versa.

Proof: Assume for the sake of contradiction that X1

is an ancestor of Y1. Let P be an arbitrary directed
path from X1 to Y1 of K edges such that the edge co-
efficients on this path are α1 . . . αK . One can write the
covariance of X1 and Y1 as σX1Y1

= cα1σ
2

X1
+ F (G),

where F (G) is a polynomial (in terms of edge coeffi-
cients and error variances) that does not contain any
term that includes the symbol α1, and c = α2 . . . αK .
Also, the polynomial corresponding to σ2

X1
cannot con-

tain any term that includes the symbol α1.

Also analogously, σX2Y1
can be written as cα1σX1X2

+
F ′(G), where F ′(G) does not contain α1, since X1

cannot be an ancestor of X2 by the given hypothesis
and Lemma 2.

By Lemma 2 and the given conditions, Y2 cannot be
an ancestor of Y1 and therefore, not an ancestor of X1.
X1 cannot be an ancestor of Y2, by Lemma 7 applied to
pair {Y1, Y2}. This implies that σX1Y2

cannot contain
any term that includes α1. By the same reason, the
polynomial corresponding to σX2Y2

cannot contain any
term that includes α1.

This means that the constraint σX1Y1
σX2Y2

=
σX1Y2

σX2Y1
corresponds to the polynomial identity

α1(σ
2

X1
σX2Y2

− σX1Y2
σX1X2

) + F ′′(G) = 0, where the
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polynomial F ′′(G) does not contain any term that in-
cludes α1, and neither does any term in the factor
(σ2

X1
σX2Y2

−σX1Y2
σX1X2

). This will imply with prob-
ability 1 that σ2

X1
σX2Y2

− σX1Y2
σX1X2

= 0 (which is
the same of saying that the partial correlation of X2

and Y2 given X1 is zero).

The expression σ2

X1
σX2Y2

contains a term that include
ζX1

, the error variance for X1, while σX1Y2
σX1X2

cannot contain such a term, since X1 is not an
ancestor of either X2 or Y2. That will then imply the
term ζX1

σX2Y2
should vanish, which is a contradiction

since ζX1
6= 0 by assumption and σX2Y2

6= 0 by
hypothesis. �

Lemma 4 CS1 is sound.

Proof: Analogous to a result given by Silva et al.
(2003). �

Lemma 5 CS2 is sound.

Proof: Suppose X1 and Y1 have a common parent L in
G. Let X1 = aL+

∑
p apAp and Y1 = bL+

∑
p biBi. To

simplify the presentation, we will represent
∑

p apAp

by random variable Px and
∑

p biBi by Py, such
that X1 = aL + Px and Y1 = bL + Py. We will
assume that E[PxP ] and E[PyP ] are not zero, for
P ∈ {X1, X2, Y1, Y2} to shorten the proof. The case
where these expectations are zero can be derived in an
analogous (and simpler) proof.

With probability 1 with respect to a Lebesgue measure
over the linear coefficients parameterizing the graph,
the constraint σX1Y1

σX2Y2
− σX1Y2

σX2Y1
= 0 corre-

sponds to a polynomial identity where some terms con-
tain the product ab, some contain only a, some contain
only b, and some contain none of such symbols. Since
this is a polynomial identity, all terms containing ab
should sum to zero. The same holds for terms con-
taining only a, only b and not containing a or b. This
constraint can be rewritten as

ab(E[L2]σX2Y2
− E[LY2]E[LX2]) +

a(E[LPy]σX2Y2
− E[LY2]E[X2Py]) +

b(E[LPx]σX2Y2
− E[Y2Px]E[LX2]) +

(E[PxPy]σX2Y2
− E[PxY2]E[PyX2])

From Lemmas 2 and 3 and the given hypothesis, X1

cannot be an ancestor of any element of {X2, Y1, Y2}
and Y1 cannot be an ancestor of any element in
{X1, X2, Y2}. Therefore, the symbols a and b can-
not appear inside any of the polynomial expressions
obtained when terms such as σX2Y2

or E[Y2Px] are

expressed as functions of the latent covariance ma-
trix and the linear coefficients and error variances
of the measurement model. All symbols a and b of
σX1Y1

σX2Y2
− σX1Y2

σX2Y1
were therefore factorized as

above. Therefore, with probability 1 we have:

E[L2]σX2Y2
= E[LX2]E[LY2] (1)

E[LPy]σX2Y2
= E[LY2]E[X2Py] (2)

E[LPx]σX2Y2
= E[Y2Px]E[LX2] (3)

E[PxPy]σX2Y2
= E[Y2Px]E[X2PY ] (4)

Analogously, the constraint σX2Y1
σY2Y3

−
σX2Y3

σY2Y1
= 0 will force other identities. Since Y1 is

also not an ancestor of Y3, we can split the polynomial
expression derived from σX2Y1

σY2Y3
− σX2Y3

σY2Y1
= 0

into two parts

b{E[LX2]σY2Y3
− E[LY2]σX2Y3

}+
{E[X2PY ]σY2Y3

− E[Y2PY ]σX2Y3
} = 0

where the second component, E[X2PY ]σY2Y3
−

E[Y2PY ]σX2Y3
, cannot contain any term that includes

the symbol b, and neither can the second factor of the
first component, E[LX2]σY2Y3

− E[LY2]σX2Y3
. With

probability 1, it follows that:

E[LX2]σY2Y3
= E[LY2]σX2Y3

E[X2PY ]σY2Y3
= E[Y2PY ]σX2Y3

Since we have that σY2Y3
6= 0 and σX2Y3

6= 0, from the
two equations above, we get:

E[LX2]E[Y2PY ] = E[LY2]E[X2PY ] (5)

From the constraint σX1X2
σX3Y2

= σX1Y2
σX3X2

and a
similar reasoning, we get

E[LX2]E[Y2PX ] = E[LY2]E[X2PX ] (6)

from which follows

E[X2PX ]E[Y2PY ] = E[X2PY ]E[Y2PX ] (7)

Combining (2) and (5), we have

aE[LPy]σX2Y2
= aE[LX2]E[Y2PY ] (8)

Combining (3) and (6), we have

bE[LPx]σX2Y2
= bE[X2PX ]E[LY2] (9)



New D-separation Identification Results for Learning Continuous Latent Variable Models

Combining (4) and (7), we have

E[PxPy]σX2Y2
= E[X2PX ]E[Y2PY ] (10)

From (1), (8), (9) and (10) and the given constraints:

σX1X2
σY1Y2

= abE[LX2]E[LY2] + aE[LX2]E[Y2Px] +
bE[X2Px]E[LY2] + E[X2PX ]E[Y2PY ] =
abE[L2]σX2Y2

+ E[LPy]σX2Y2
+ E[LPy]σX2Y2

+
E[PxPy]σX2Y2

= σX1Y1
σX2Y2

= σX1Y2
σX2Y1

Contradiction. �

Theorem 1 Consider the problem of learning if two

observed variables do not share a hidden common

parent in a latent variable graph. There are identifica-

tion rules for learning this information that are sound

in linear models, but not sound for non-linear latent

variable models.

Proof: Consider first the following test:
let G(O) be a linear latent variable model.
Assume {X1, X2, X3, Y1, Y2, Y3} ⊆ O and
σX1Y1

σY2Y3
= σX1Y2

σY1Y3
= σX1Y3

σY1Y2
,

σX1Y2
σX2X3

= σX1X2
σY2X3

= σX1X3
σX2Y2

,
σX1Y3

σX2X3
= σX1X2

σY3X3
= σX1X3

σX2Y3
,

σX1X2
σY2Y3

6= σX1Y2
σX2Y3

and that for all triplets
{A, B, C}, {A, B} ⊂ {X1, X2, X3, Y1, Y2, Y3}, C ∈ O,
we have ρAB 6= 0, ρAB.C 6= 0. Then X1 and Y1 do not
have a common parent in G.

Call this test CS3. Test CS3 is sound for linear mod-
els: if its conditions are true, then X1 and Y1 do not
have a common parent in G. The proof of this result
is given by Silva et al. (2005). However, this is not
a sound rule for the non-linear case. To show this,
it is enough to come up with a latent variable model
where X1 and Y1 have a common parent, and a latent
covariance matrix such that, for any choice of linear
coefficients and error variances, this test applies. No-
tice that the definition of a sound identification rule
in non-linear models allows us to choose specific latent
covariance matrices but the constraints should hold for
any choice of linear coefficients and error variances (or,
more precisely, with probability 1 with respect to the
Lebesgue measure).

Consider the graph G with five latent variables Li, 1 ≤
i ≤ 5, where L1 has X1 and Y1 as its only children, X2

is the only child of L2, X3 is the only child of L3, Y2

is the only child of L4 and Y3 is the only child of L5.
Also, {X1, X2, X3, Y1, Y2, Y3}, as defined in CS3, are
the only observed variables, and each observed vari-

able has only one parent besides its error term. Error
variables are independent.

The following simple randomized algorithm will choose
a covariance matrix ΣL for {L1, L2, L3, L4, L5} that
entails CS3. The symbol σij will denote the covariance
of Li and Lj.

1. Choose positive random values for all σii, 1 ≤ i ≤
5

2. Choose random values for σ12 and σ13

3. σ23 ← σ12σ13/σ11

4. Choose random values for σ45, σ25 and σ24

5. σ14 ← σ12σ45/σ25

6. σ15 ← σ12σ45/σ24

7. σ35 ← σ13σ45/σ14

8. σ34 ← σ12σ45/σ15

9. Repeat from the beginning if ΣL is not positive
definite or if σ14σ23 = σ12σ34

Notice that the intuition behind this example is
to set the covariance matrix of the latent variables
to have some vanishing partial correlations, even
though one does not necessarily have any conditional
independence. For linear models, both conditions are
identical, and therefore this identification rule holds
in such a case. �.

Lemma 8 For any set {A, B, C, D} = O′ ⊆ O, if

σABσCD = σACσBD = σADσBD such that for every

set {X, Y } ⊂ O′, Z ∈ O we have ρXY.Z 6= 0 and

ρXY 6= 0, then A and B do not have more than one

common immediate latent ancestor in G.

Proof: Assume for the sake of contradiction that L1

and L2 are two common immediate latent ancestors of
A and B in G. Let the structural equations for A, B, C
and D be:

A = α1L1 + α2L2 + RA

B = β1L1 + β2L2 + RB

C =
∑

j cjCj

D =
∑

k dkDk

where α1 is a sequence of labels of edges corresponding
to some directed path connecting L1 and A. Symbols
α2, β1, β2 are defined analogously. RX is the remain-
der of the polynomial expression that describes node
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X as a function of its parents and the immediate latent
ancestors L1 and L2.

Since the constraint σABσCD = σACσBD is observed,
we have σABσCD − σACσBD = 0 ⇒ (α1β1σ

2

L1
+

α1β2σL1L2
+ α2β1σL1L2

+ α2β2σ
2

L2
+ α1σL1RB

+
α2σL2RB

+ β1σL1RA
+ β2σL2RA

+ σRARB
)σCD −

(α1

∑
j cjσCjL1

+ α2

∑
j cjσCjL2

+
∑

j cjσCjRA
)

(β1

∑
k dkσDkL1

+ β2

∑
k dkσDkL2

+
∑

k dkσDkRB
)) =

0⇒ α1β1(σ
2

L1
σCD − (

∑
j cjσCjL1

)(
∑

k dkσDkL1
)) +

f(G) = 0, where

f(G) =
(α1β2σL1L2

+ α2β1σL1L2
+ α2β2σ

2

L2
+ α1σL1RB

+
α2σL2RB

+ β1σL1RA
+ β2σL2RA

+ σRARB
)σCD−

α1

∑
j cjσCjL1

(β2

∑
k dkσDkL2

+
∑

k dkσDkRB
))−

α2

∑
j cjσCjL2

(β1

∑
k dkσDkL1

+ β2

∑
k dkσDkL2

+∑
k dkσDkRB

))−
∑

j cjσCjRA
(β1

∑
k dkσDkL1

+

β2

∑
k dkσDkL2

+
∑

k dkσDkRB
))

No element in O′ is an ancestor of any other element
in this set (Lemma 2) and no observed node in any
directed path from Li ∈ {L1, L2} to X ∈ {A, B} can
be an ancestor of any node in O′\X (Lemma 7). That
is, when fully expanding f(G) as a function of the lin-
ear parameters of G, the product α1β1 cannot possibly
appear.

Therefore, since with probability 1 the polynomial con-
straint is identically zero and nothing in f(G) can can-
cel the term α1β1, we have:

σ2

L1
σCD =

∑

j

cjσCjL1

∑

k

dkσDkL1
(11)

Using a similar argument for the coefficients of α1β2,
α2β1 and α2β2, we get:

σL1L2
σCD =

∑

j

cjσCjL1

∑

k

dkσDkL2
(12)

σL1L2
σCD =

∑

j

cjσCjL2

∑

k

dkσDkL1
(13)

σ2

L2
σCD =

∑

j

cjσCjL2

∑

k

dkσDkL2
(14)

From (11),(12), (13), (14), it follows: σACσAD =

= [α1

∑
j cjσCjL1

+ α2

∑
j cjσCjL2

]×

[α1

∑
k dkσDkL1

+ α2

∑
k dkσDkL2

]
= α2

1

∑
j cgσCjL1

∑
k dkσDkL1

+

α1α2

∑
j cjσCjL1

∑
k dkσDkL2

+

α1α2

∑
j cjσCjL2

∑
k dkσDkL1

+

α2

2

∑
j cjσCjL2

∑
k dkσDkL2

= [α2

1σ
2

L1
+ 2α1α2σL1L2

+ α2

2σ
2

L2
]σCD

= σ2

AσCD

which implies σCD − σACσAD(σ2

A)−1 = 0⇒ ρCD.A =
0. Contradiction. �

Lemma 9 For any set {A, B, C, D} = O′ ⊆ O, if

σABσCD = σACσBD = σADσBD such that for every

set {X, Y } ⊂ O′, Z ∈ O we have ρXY.Z 6= 0 and

ρXY 6= 0, then if A and B have a common immedi-

ate latent ancestor L1 in G, B and C have a common

immediate latent ancestor L2 in G, we have L1 = L2.

Proof: Assume A, B and C are parameterized as fol-
lows:

A = aL1 +
∑

p apAp

B = b1L1 + b2L2 +
∑

i biBi

C = cL2 +
∑

j cjCj

where as before {Ap}∪{Bi}∪{Cj} represents the possi-
ble other parents of A, B and C, respectively. Assume
L1 6= L2. We will show that ρL1L2

= 1, which con-
tradicts our assumptions. From the given constraint
σABσCD = σADσBC , and the fact that from Lemma
2 we have that, for no pair {X, Y } ⊂ O′, X is an an-
cestor of Y , if we factorize the constraint according to
which terms include ab1c as a factor, we obtain with
probability 1:

ab1c[σ
2

L1
σL2D − σL1DσL1L2

] (15)

If we factorize such constraint according to ab2c, it
follows:

ab2c[σL1L2
σL2D − σL1Dσ2

L2
] (16)

From (15) and (16), it follows that σ2

L1
σ2

L2
=

(σL1L2
)2 ⇒ ρL1L2

= 1. Contradiction. �

Lemma 10 For any set {A, B, C, D} = O′ ⊆ O, if

σABσCD = σACσBD = σADσBD such that for every

set {X, Y } ⊂ O′, Z ∈ O we have ρXY.Z 6= 0 and

ρXY 6= 0, then if A and B have a common immedi-

ate latent ancestor L1 in G, C and D have a common

immediate latent ancestor L2 in G, we have L1 = L2.

Proof: Assume for the sake of contradiction that L1 6=
L2. Let PA be a directed path from L1 to A, and α1

the sequence of edge labels in this path. Analogously,
define α2 as the sequence of edge labels from L1 to B
by some arbitrary path PB , β1 a sequence from L2 to
C according to some path PC and β2 a sequence from
L2 to D according to some path PD.

PA and PB cannot intersect, since it would imply
the existance of an observed common cause for A
and B, which is ruled out by the given assump-
tions and Lemma 7. Similarly, no pair of paths in
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{PA, PB, PC , PD} can intersect. By Lemma 9, L1 can-
not be an ancestor of either C or D, or otherwise
L1 = L2. Analogously, L2 cannot be an ancestor of
either A or B.

By Lemma 2 and the given constraints, no element X
in O′ can be ancestor of an element in O′\X .

It means that when expanding the given constraint
σABσCD − σADσBC = 0, and keeping all and only the
terms that include the sequence of symbols α1α2β1β2,
we obtain α1α2β1β2σ

2

L1
σ2

L2
− α1α2β1β2σ

2

L1L2
= 0,

which implies ρL1L2
= 1 with probability 1. Contra-

diction. �

Lemma 6 Let S ⊆ O be any set such that, for all

{A, B, C} ⊆ S, there is a fourth variable D ∈ O where

i. σABσCD = σACσBD = σADσBD and ii. for every

set {X, Y } ⊂ {A, B, C, D}, Z ∈ O we have ρXY.Z 6= 0
and ρXY 6= 0. Then S can be partioned into two sets

S1,S2 where

1. all elements in S1 share a common immediate la-

tent ancestor, and no two elements in S1 have any

other common immediate latent ancestor;

2. no element S ∈ S2 has any common immediate

latent ancestor with any other element in S\S

3. all elements in S are d-separated given the latents

in G;

Proof: Follows immediately from the given con-
straints and Lemmas 2, 9 and 10. �

Theorem 2 If a partition {C1, . . . ,Ck} of O′ respects

structural conditions SC1, SC2 and SC3, then the fol-

lowing should hold in the true latent variable graph G
that generated the data:

1. for all X ∈ Ci, Y ∈ Cj, i 6= j, X and Y have no

common parents, and X is d-separated from the

latent parents of Y given the latent parents of X;

2. for all X, Y ∈ O′, X is d-separated from Y given

the latent parents of X;

3. every set Ci can be partitioned into two groups

according to Lemma 6;

Proof: Follows immediately from the given con-
straints and Lemmas 1, 4, 5 and 6. �

Before showing the proof of Theorem 3, the next two
lemmas will be useful:

Lemma 11 Let set {A, B, C, D} = O′ ⊆ O be such

that σABσCD = σACσBD = σADσBD and for every set

{X, Y } ⊂ O′, Z ∈ O we have ρXY.Z 6= 0 and ρXY 6= 0.
If an immediate latent ancestor LX of X ∈ O′ is un-

correlated with some immediate latent ancestor LY of

Y ∈ O′, then LX is uncorrelated with all immediate

latent ancestors of all elements in O′\X or LY is un-

correlated with all immediate latent ancestors of all

elements in O′\Y .

Proof: Since the immediate latent ancestors of O′

are linked to O′ in that set by directed paths that do
not intersect (Lemma 7) other than at the sources,
and the model is linear below the latents, we can treat
them as parents of O′ without loss of generality. We
will prove the lemma in two steps.

Step 1: let X, Y ∈ O′. If a parent LX of X is uncor-

related with all parents of Y , then LX is uncorrelated

with all parents of all elements in O′\X. To see this,
without loss of generality let A = aLA +

∑
p apAp,

and let LA be uncorrelated with all parents of B. Let
C = cLC +

∑
j cjCj . This means that when expanding

the polynomial σABσCD − σACσBD = 0, the only
terms containing the symbol ac will be acσLALC

σBD.
Since ac 6= 0, σBD 6= 0, this will force σLALC

= 0 with
probability 1. By symmetry, LA will be uncorrelated
with all parents of C and D.

Step 2: now we show the result stated by the lemma.
Without loss of generality let A = aLA +

∑
p apAp,

B = bLB +
∑

i biBi and let LA be uncorrelated with
LB. Then no term in the polynomial corresponding
to σABσCD can contain a term with the symbol
ab, since σLALB

= 0. If LB is uncorrelated with
all parents of D, then LB is uncorrelated will all
parents of all elements in O′\B, and we are done.
Otherwise, assume LB is correlated with at least one
parent of D. Then at least one term in σACσBD

will contain the symbol ab if there is some parent
of C that is correlated with LA (because σBD will
contain some term with b). It follows that LA has to
be uncorrelated with every parent of D, and by the
result in Step 1, with all parents of all elements in
O′\A. �

Lemma 12 Let set {A, B, C, D} = O′ ⊆ O be such

that σABσCD = σACσBD = σADσBD and for every set

{X, Y } ⊂ O′, Z ∈ O we have ρXY.Z 6= 0 and ρXY 6= 0.
Let {Ap} be the set of immediate latent ancestors of

A, {Bi} be the set of immediate latent ancestors of B,

{Cj} be the set of immediate latent ancestors of C,
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{Dk} be the set of immediate latent ancestors of D.

Then σApBi
σCjDk

= σApCj
σBiDk

= σApDk
σBiCj

for

all {Ap, Bi, Cj , Dk} ∈ {Ap} × {Bi} × {Cj} × {Dk}.

Proof: Since the immediate latent ancestors of O′

are linked to O′ in that set by directed paths that do
not intersect (Lemma 7) other than at the sources,
and the model is linear below the latents, we can treat
them as parents of O′ without loss of generality. Let
ap be the coefficient linking A and Ap. Define bi, cj , dk

analogously. The lemma follows immediately by the
same measure theoretical arguments of previous
lemmas applied to the terms that include apbicjdk. �

Theorem 3 Given a partition C of a subset O′ of

the observed variables of a latent variable graph G
such that C satisfies structural constraints SC1-SC4,

there is a linear latent variable model for the first two

moments of O′.

Proof: We will assume that all elements of all sets
in C are correlated. Otherwise, C can be partitioned
into subsets with this property (because of the SC4
condition), and the parameterization given below can
be applied independently to each member of the par-
tition without loss of generality.

Let Ani be the set of immediate latent ancestors of the
elements in Ci ∈ C = {C1, . . . ,Ck}. Split every Ani

into two disjoint sets An0
i and An1

i , such that An0
i

contains all and only the those elements of An0
i that

are uncorrelated with all elements in An1∪· · ·∪Ank.
This implies that all elements in An1

1 ∪ · · · ∪An1
k are

pairwise correlated by Lemma 11.

Construct the graph GL
linear as follows. For each set

Ani, add a latent LAni
to GL

linear , as well as all ele-
ments of An1

i . Add a directed edge from LAni
to each

element in An1
i . Let GL

linear be also a linear latent
variable model. We will define values for each para-
meter in this model.

Fully connected all elements in {LAni
} as an arbi-

trary directed acyclic graph (DAG). Instead of defin-
ing the parameters for the edges and error variances
in the subgraph of GL

linear induced by {LAni
}, we will

directly define a covariance matrix ΣL among these
nodes. Standard results in linear models can be used
to translate this covariance matrix to the parameters
of an arbitrary fully connected DAG (Spirtes et al.,
2000). Set the diagonal of ΣL to be 1.

Define the intercept parameters µx of all elements in
GL

linear to be zero. For each V in An1
i we have a set of

parameters for the local equations V = λV LAni
+ ǫV ,

where ǫV is a random variable with zero mean and
variance ζV .

Choose any three arbitrary elements {X, Y, Z} ⊆ An1
i .

Since the subgraph LAni
→ X, LAni

→ Y, LAni
→

Z has six parameters (λX , λY , λZ , ζX , ζY , ζZ) and the
population covariance matrix of X, Y and Z has six
entries, these parameters can be assigned an unique
value (Bollen, 1989) such that σXY = λXλY and ζX =
λ2

X − σ2

X . Let W be any other element of An1
i : set

λW = σWX/λX , ζW = σ2

W − λ2

W . From Lemma 12,
we have the constraint σWY σXZ−σWXσY Z = 0, from
which one can verify that σWY = λW λY does hold in
the population. By symmetry and induction, for every
pair P, Q in An1

i , we have σPQ = λP λQ.

Let T be some element in An1
j , i 6= j: set the en-

try σij of ΣL to be σTX/(λT λX). Let R and S be
another elements in An1

j . From Lemma 12, we have
the constraint σXT σRS − σXRσST = 0, from which
one can verify that σXR = λXλRσij . Let Y and Z be
another elements in An1

i . From Lemma 12, we have
the constraint σXT σY Z−σXY σZT = 0 from which one
can verify that σZT = λZλtσij . By symmetry and in-
duction, for every pair P, Q in An1

i × An1
j , we have

σPQ = λP λQσij .

Finally, let Glinear be a graph constructed as follows:

1. start Glinear with a node for each element in O′;

2. for each Ci ∈ C, add a latent Li to G, and for
each V ∈ Ci, add an edge Li → V

3. fully connect the latents in Glinear to form an ar-
bitrary directed acyclic graph

Parameterize a linear latent model based on G as fol-
lows: let V ∈ Ci such that V has immediate la-
tent ancestors {LVi

}. In the true model, let V =
µG

V +Σiλ
G
iV LVi

+ǫG
V , where every latent has zero mean.

Construct the equation V = µV + λV Li + ǫV by in-
stantiating µV = µG

V and λV = Σiλ
G
iV λLVi

, where

λLVi
is the respective parameter for LVi

in GL
linear if

LVi
∈ An1

i , and 0 otherwise. The variance for ǫV is
defined as σ2

V − λ2

V . The Li variables have covariance
matrix ΣL as defined above. One can then verify that
the covariance matrix generated by this model equals
the true covariance matrix of O′. �


