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Abstract. This paper presents a language identification algorithm using cosine
similarity against a filtered and weighted subset of the most frequent n-grams
in training data with optional inter-string score smoothing, and its implementa-
tion in an open-source program. When applied to a collection of strings in 1100
languages containing at most 65 characters each, an average classification accu-
racy of over 99.2% is achieved with smoothing and 98.2% without. Compared
to three other open-source language identification programs, the new program is
both much more accurate and much faster at classifying short strings given such
a large collection of languages.
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1 Introduction

Language identification (and the related task of encoding identification) is a useful first
step in many natural language processing applications. Increasing numbers of languages
have significant online presence, but most prior work on language identification focuses
on only a handful of (usually European) languages. As in many language identification
techniques, the method presented here relies on n-gram statistics trained from text, but it
gains much of its accuracy from which n-grams are selected for inclusion in a language
model and how their statistics are converted into weights.

2 Method

The method used by our whatlang program is a k-nearest neighbor approach using
cosine similarity (normalized inner product) of weighted byte n-grams as the metric,
which permits each n-gram to be individually weighted according to the strength of the
evidence it provides for — or against — the hypothesis that the input is in a particular lan-
guage. One or more language models are trained for each combination of language and
character encoding one wishes to identify. The cosine similarity scores are computed
incrementally by adding the weighted score of each n-gram match between the input
and the models to the overall score for each model, and the languages (and optionally
character encodings) corresponding to a user-specified maximum of % highest-scoring
models (provided score > 0.85 x highest) are output as guesses.
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Observing that successive strings are more likely to be in the same language in most
texts, the scores for the current input string may be smoothed by adding in a portion of
the scores from the immediately prior string(s). The smoothed score is an adaptive linear
interpolation between the current string’s score vector and an exponentially-decaying
sum of all previous strings’ score vectors. The interpolation takes into account the cur-
rent string’s length and the maximal score of any model; the higher either of these two
factors is, the less weight is given to the previous scores. To avoid excessive smoothing,
the inter-string score smoothing weights were tuned on held-out data such that the error
rate matched the un-smoothed error rate when the language changed after every fourth
string, and was better if the same language occurred at least five times consecutively.

Given the task of selecting the most useful n-grams to populate a language model
of limited fixed size, one should focus on the most frequent n-grams. However, even
among the top n-grams, there are those which are clearly not indicative of a language
(e.g. strings of digits or whitespace), and some which are less informative if certain
other n-grams are already included in the model.

what lang treats the input as an untokenized stream of bytes, allowing n-grams to
capture multi-word phenomena. The baseline language model extracts from the training
data the K highest-frequency three- through N-grams which do not span a linebreak,
start with a tab character, two blanks, three digits, or three identical puncation marks. N
is set to 6, 10, or 12 for language/encoding pairs which are predominantly one, two, or
three bytes per character. Previous experiments [1] showed that 6 is the optimum fixed
length limit for K of 3000 and 9000, and the longer limits for multi-byte situations
account for the reduced information content of all but the final byte of a character where
the script for a language fits into a 256-codepoint block.

The first modification to the baseline model is to filter out n-grams which are sub-
strings of other n-grams also in the model but which contribute little additional infor-
mation about the language. For example, if the 8-gram “withhold” is in the language
model, the 7-gram “withhol” and six-gram “ithhol” would not be informative as all
three strings occur the same number of times in the data. The substring need not occur
exactly the same number of times in the training data for its removal to be useful, so the
removal threshold is a tunable parameter. A threshold of 0.62 (the optimum found for
the held-out development set described in Section 4) means that “withhold” would have
to occur at least 62% as often as “ithhol” for the latter to be excluded. Removing such
uninformative n-grams frees space in the fixed-size model for alternative n-grams.

The second modification to the baseline model is to use discriminative training to
add n-grams which provide negative evidence (what we will call “stopgrams”). To com-
pute the appropriate stopgrams for a language model, we first train baseline models for
all languages, then select those baseline models whose cosine similarity relative to the
baseline model for the language being trained is above some threshold, typically in the
range of 0.4 to 0.6. The union of the n-grams in those selected models is formed, and
the training text is scanned for occurrences; any which never appear in the training data
are added to the baseline model as stopgrams, with an appropriate weight as discussed
in the next section. Although this adds n-grams to individual models, the global set of
n-grams remains unchanged since the additions were already present in another model.

Weighting the n-grams in a language model is as important as selecting them. A
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simple uniform weight would not allow an n-gram shared between multiple models to
distinguish between them, even though that n-gram is stronger evidence for a language
in which it occurs more frequently. On the other hand, using the actual probability of oc-
currence may over-state differences resulting largely from the relative small amounts of
training data. Another factor to be examined in weighting an n-gram is its length, since
longer n-grams will typically occur less frequently but are expected to be individually
more informative as they are less likely to be encountered by chance.

Empirically, the best weight for an n-gram G was determined to be

probability(G)°-27 x length(G)%-%?
where the probability is simply the frequency of occurrence in the training data divided
by the training data’s size. These parameters were tuned using the held-out development
set but their values proved not to be critical. Varying the exponent for length(G) over
the range 0.0 to 1.0 resulted in baseline error rates ranging from 2.414 to 2.421%,
a relative change of less than 0.3%. Error rates varied less than 0.5% (relative) for
probability(G) exponents ranging from 0.20 to 0.50.

When using discriminative training, stopgrams need to be weighted separately from
baseline n-grams; three additional factors contribute to a stopgram’s weight. Within the
union set of n-grams used as candidate stopgrams, each is weighted by the maximum
cosine similarity of any of the individual language models containing it times the max-
imum baseline score within those models. However, when there is only a small amount
of training data available for a language, an n-gram may fail to occur in the training data
not because it is not permitted by the language, but simply due to lack of data. Thus,
for training sizes less than 2,000,000 bytes, the weight of each stopgram is discounted
by a factor of

2000000 — 15000

The exponent of 0.7 compensates for the power-law distribution of the most frequent n-
grams by making the weight increase more rapidly for small training sizes than a simple
linear discount. Finally, an overall weight is given to stopgrams. Their occurrence in the
input is strong negative evidence; empirical tuning on the held-out set confirms this with
an optimal global weight of -9.0.

<max(0, It — 15000))0'7

3 Related Work

One of the earliest uses of n-grams for language identification, Cavnar and Trenkle’s
[2] rank-order statistics of the (usually 400) most frequent 1- through 5-grams in the
training and test data, has become quite popular; numerous implementations are avail-
able, typically including models for between 70 and 100 language/encoding pairs. On
a 14-language collection, they reported 98.6% accuracy for documents of 300 or fewer
bytes using models with 300 n-grams, trained on 20K to 120K of text.

Ljubesic et al [3] use a form of discriminative training to distinguish among Croat-
ian, Slovenian, and Slovak. The discriminative training consisted of stop-word lists for
Croatian and Serbian containing words which appear at least five times in the train-
ing data for one language but never in the training data for the other. The occurrence
of any word on a stop-word list in a document tentatively classified as that language
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Fig. 1. Average accuracy over 1100 languages when using 200 to 3500 n-grams per language
model. whatlang was tested in a baseline configuration and with discriminative training and
inter-string smoothing enabled. LangDetect averaged 5642 n-grams per model.

would switch the classification if no stop-words for the other language were present.
The authors report a final document-level accuracy among the three languages above
99%.

Ahmed et al [4] use an incremental inner product. For 50-byte test strings over a
twelve-language collection, accuracy was 88.66% for a Naive Bayes classifier, 96.56%
for rank-order statistics, and 97.59% for inner product.

Carter et al [5] use semi-supervised priors on Twitter messages to bias language
identification based on the assumption that a particular user will only post in a limited
number of languages, that conversations will remain in the same language and that
pages linked from tweets will be in the same language as the tweet. On a five-language
collection, they found that applying these priors improved overall accuracy across the
five languages from 91.0% to 93.2%.

Very few published results for language identification involve more than 20 lan-
guages. Damashek [6] reported an experiment visualizing the similarities of 31 lan-
guages, and Shuyo [7] reported 99.8% average accuracy at the document level for news
articles in 49 languages. Xia et al [8] used information from the containing document
(primarily the occurrence of the language name) to help classify Interlinear Glossed
Text examples in 638 languages with an accuracy of 84.7 to 85.1%. Some closed-source
offerings now provide identification for large numbers of languages; the most compre-
hensive we have found to date is Likasoft’s Polyglot 3000 [9], which claims to support
more than 400 languages.
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4 Training and Test Data

The greatest difficulty in performing language identification for more than 1000 lan-
guages is in actually obtaining text in that many languages, properly labeled by lan-
guage. Wikipedia is available in 285 language versions as of this writing, of which
some 200 have sufficient text to be useful for our purposes. Translations of the full
Christian Bible have been made into at least 475 languages and the New Testament
has been translated into a further 1240 [10]; hundreds of them have become available
as e-texts since early 2010. The New Testament is large enough at around one million
characters to be useful as training data. Bible translations were obtained from web sites
such as bible.is, ScriptureEarth.org, PNGScriptures.org, and GospelGo.com; they in-
clude languages from all continents except Antarctica, ranging from millions of speak-
ers to nearly extinct. Scripts used by these languages include, among others, Arabic,
Cyrillic, Canadian Aboriginal Syllabics, Devanagari, Han, Khmer, Lao, Sinhala, Tamil,
Telugu, Thai, and Tibetan.
Wikipedia data was obtained by downloading pages linked via the
{langcode } .wikipedia.org/Special:PrefixIndex

search page and extracting the main entry from each such page. The resulting lines
of text were sorted, removing duplicates and lines which were unambigously English,
French, or German as well as long sequences of ASCII in non-Latin scripts, and given
some manual cleaning such as eliminating most occurrences of templates like “X is a
city in Y with a population of Z” to avoid skewing the statistics. Despite this cleaning,
there is still a fair amount of pollution from other languages in each language’s data.

The available data for each language was split into training and test sets in one of
two ways. For Bible translations organized as one file per chapter, the first verse of each
chapter was held out as test data and the remainder used for training. In all other cases,
a uniform sample of every 30th line was held out as test data. The held-out text was
converted into test strings by word-wrapping the lines to 65 characters or less and then
filtering out any wrapped lines containing fewer than 25 bytes as well as any resulting
lines in excess of 1000 (using a New Testament as training data results in approximately
700 test strings).

For the 153 languages for which the above train/test split produced more than 4
million bytes of training data, the training file was split again, reserving a uniform
sample of every 30th line as a development set for parameter tuning.

The final collection of languages for what 1ang contains a total of 1119 languages.
Nineteen of the languages (kept as potential confounders) do not have enough data to
form a useful test set of at least 100 test strings, leaving 1100 languages for testing. Be-
cause a number of languages use multiple scripts, there were 1129 test files containing
a total of 824,171 lines.

S Experiments and Results

Multiple sets of language models were trained with differing numbers of n-grams per
model, differing amounts of training data per model, varying substring filtering thresh-
olds, and varying stopgram weights. We evaluated what 1ang by identifying the lan-
guage of each of the test strings in each of the 1100 languages using each set of models,
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Fig.2. Average accuracy over the 184 languages with at least 3 million bytes of training data
when trained with 15,000 to 1,500,000 bytes of text per language model.

and computing micro-average and macro-average classification error rates (total errors
divided by total classifications, and average of per-language error rates, respectively)
under multiple conditions, including with and without substring filtering applied to the
language models and with and without inter-string score smoothing.

Three other open-source language identification programs were trained and run on
the same data. 1 ibtextcat, version 2.2-9 [11], is a C reimplementation of the Cavnar
and Trenkle approach. mguesser version 0.4 [12] is part of the mnoGoSearch search
engine; its similarity computation is an inner product between 4096-element hash arrays
for the input and each trained language, where the elements are normalized to a mean
of zero and standard deviation of 1.0. LangDetect [13] version 2011-09-13 is a Java
library using the Naive Bayes approach. All three packages’ identification programs
were modified to optionally provide language identification on each line of their input
rather than on the entire file, and 1ibtextcat and LangDetect were modified
to process the entire input rather than a small initial segment in whole-file mode to
match whatlang. LangDetect’s limitation of one model per language code was
worked around by adding disambiguating digits to the language code during training
and removing them from its output prior to scoring.

Figure 1 compares the accuracies of the programs as the size of the language mod-
els is varied from 200 n-grams per model to 3500; 1ibtextcat was not evaluated
beyond 1100, and LangDetect does not provide control over the model size (average
5642 n-grams per model for 1 million bytes training data, with 23 models containing
more than 15,000 n-grams). The weighted cosine-similarity approach clearly dominates
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Program  |Model|Training| Error Evaluation Evaluation | Disk | Memory
Size | Time Rate by line by file Space
whatlang 500 763s| 1.743% 38s (25s)| 35s (21s)| 16 MB| 16 MB
whatlang 3500{ 1622s| 0.754% 67s (51s)| 63s (47s)| 97 MB| 94 MB
libtextcat 500 583s| 5.950%| 2138s (1975s)| 125s (4s)|4.9MB| 18 MB
mguesser 1500 166s|14.783%(15482s (15218s)| 268s (26s)| 19 MB| 76 MB
LangDetect| 5642 699s| 3.035%| 9491s (1158s)(8275s (7s)| 40 MB|8250 MB

Table 1. Comparison of run times in seconds and memory requirements for the programs. Times
in parentheses exclude program startup (one invocation per test file) and scoring overhead.

at a given model size even without the addition of discriminative training and inter-
string smoothing. As it appears to asymptotically approach its optimal performance [1],
the choice of model size is a compromise between accuracy and size/speed.

Figure 2 shows how the classification error rate varies with the amount of training
data. Only the 184 languages for which models could be built from at least 3 million
bytes were used. Accuracy improves rapidly up to 300,000 bytes; the slight “jitter” in
error rates for larger training sizes is likely due to the selection of different lines of
text when subsampling. The lowest error rate of 1.832/0.662% (raw/smoothed micro-
average) is achieved at 1.1 million bytes, compared to libtextcat’s 6.065% error
rate using 500-element models trained on 2.0 million bytes of data and LangDetect’s
3.193% on 1.0 million bytes. Substring filtering reduces the micro-average raw error
rate on the development set from 2.459% to 2.330% (-5.2% relative), and the micro-
average error rate with smoothing is reduced from 1.231% to 1.141% (-7.3%), both
at a threshold of 0.62. On the full 1100-language set, discriminative training reduces
the micro-average raw error rate from 2.035% to 1.722% (-15.3%) compared to the
baseline, while the error rate with inter-string smoothing is reduced to 0.754% (-62.9/-
56.2% relative to baseline/discriminative).

Table 1 compares the four programs for training time, evaluation time, and memory
requirements on a hex-core Intel i7 processor at 4.3 GHz. Due to the incremental scoring
used by what lang, it runs much faster than 1ibtextcat and mguesser on small
inputs such as the 65-character lines used in these experiments; decreasing model sizes
further increases its speed. For large inputs, such as the entire test file for each language
(e.g. 1129 language identifications instead of 824,171), there is much less disparity in
overall speed. Times are compared both with and without startup and scoring overhead,
since LangDetect has a very long startup time (over seven seconds), but it evaluates
large inputs very quickly as a result of randomly sampling a fixed number of n-grams
from the input. The given training times are for single-threaded training and include the
discriminative training second pass for what lang. Since individual language models
can be built independently of each other, training is highly parallelizable.

6 Conclusions

We have shown that a cosine-similarity approach to language identification scales to
large numbers of languages and outperforms the popular rank-order method of Cavnar
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and Trenkle as well as two other programs in both accuracy and speed on short strings.
Removing redundant high-frequency n-grams from the language models reduces over-
all classification error by 5.2 to 7.3%. Adding negative n-grams to the language models
results in a further error rate reduction of 15.3% over the basic filtered model, and
smoothing model scores reduces errors by more than a factor of two. The resulting er-
ror rate of 0.754% across 1100 languages is an accuracy of over 99.2%, and could be
further improved (at the cost of greater resource use) by increasing the model size.

The what lang program is a separately-compilable module within the Language-
Aware String Extractor package, available under the terms of the GNU General Pub-
lic License at http://la-strings.sourceforge.net/. Training data for ap-
proximately half of the languages used is redistributable under Creative Commons li-
censes and may be downloaded from the above URL.

The author thanks the reviewers for their feedback, which improved this paper.
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