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Why Language Identification?

● Internet is becoming more multilingual
● Text processing often uses language-specific 

models or techniques
– to process arbitrary data from the web, we need to 

select the appropriate model/technique
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The Approach

● vector space models
– one (or more) per language/encoding pair to be 

identified

● k nearest neighbors
– cosine similarity (normalized inner product) as the 

distance measure
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Selecting N-Grams

● Use the K highest-frequency n-grams of length 3 
through N which don't

– start with multiple whitespace characters

– start with multiple digits

– start with a punctuation mark repeated three times

– contain a newline

● In the original application, unigrams caused too 
many false positives and bigrams only slowed 
down the program
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Weighting N-Grams

● Two main factors: probability and length
● Need to include probability factor to be able to 

distinguish between multiple languages including 
an n-gram

– but less than full because common n-grams will also 
be common in the test input

● Want to give bonus for length because longer n-
grams are more informative but less common

– but proves to have very little impact
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Filtering N-Grams

● Not all n-grams contribute equally
● If an n-gram occurs nearly as frequently as one of 

its substrings, the substring does not help to 
identify the language

– remove the substring from the model and include 
another n-gram which was not in the top K 
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Effects of Filtering
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Discriminative Training,
aka Stopgrams

● Some letter sequences are invalid in a language
– appearance in test input thus strongly suggests the 

input is not in that language

● Failure to occur in the training data is a strong 
indicator of invalidity

– the more training data, the stronger the indication

● Add n-grams from other language models which 
don't appear in the training data, giving them 
negative weight
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Selecting Stopgrams

● Determine languages similar enough for confusion
– compute cosine similarity between models

● Combine all n-grams in similar-enough models
– weight by max frequency, max similarity, and 

amount of training data

● Scan training data for n-grams in combined set
– add any that don't appear with the negative of the 

previously computed weight

● Scale stopgram weights by a further factor of 9
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Stopgram Weighting
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Scoring Input

● Naive method
– convert input into a feature vector of term frequencies

– multiply f.v. by each model's term vector

● Far faster method – direct incremental computation
– for each n-gram in input, increment the score for each 

model containing that term by its weight in the 
model

– normalize by length of input

● Apply optional inter-string score smoothing
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Score Smoothing

● In running text, consecutive strings are likely to be 
in the same language

● Add a portion of the previous string's scores for 
each model to the current string's scores

– greatly reduces errors

– but too much smoothing will cause actual language 
change to be missed
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How Many N-Grams to Use?

● Unlike some methods, vector-space cosine 
similarity always benefits from more n-grams in 
the models

– accuracy asymptotically approaches an optimum

● Thus, the choice is a simple trade-off between 
resource requirements and accuracy
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Experiments

● Compared whatlang against four other open-
source programs

– libtextcat (rank-order statistics)

– mguesser (hashed vector space)

– LangDetect (Naive Bayes)

– langid.py (NB with information-gain selection)

● Modified libtextcat, mguesser, and LangDetect to 
provide per-line identifications

● Speed-optimized LangDetect and langid.py
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A Caveat

● langid.py accuracy can most likely be improved, 
but

– training is very slow

– there are multiple parameters to tune

– setttings expected to improve accuracy require more 
than 16 GB for training
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Data

● Training
– 1278 files in 1190 languages

– some converted into multiple encodings for 1297 
models total

● Testing
– 1225 files, 3 omitted because fewer than 50 strings

● also no test files for Northern Uzbek (accidental 
omission) or Klingon

– 1185 languages in test set
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Data Sources

● GigaWord corpora
– English, French, Spanish, Arabic, Chinese

● European Parliament
– Danish, Dutch, Finnish, German, Greek, Italian, Swedish

● Wikipedia
– used over 100 languages, ~200 have useful amounts

– requires cleaning

● Bible
– and some Bible school text
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Data Size

● Mean amount of available training data: 1.4 
million bytes per model

– amount used limited to 1.0, 1.1, 1.5, or 2.0 million 
bytes, depending on program

● Test strings range from 25 bytes to 65 characters 
(potentially up to 195 bytes)

● Test sets contain 50 to 1000 strings per 
language/script pair

– mean is 710.8, median is 713
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Training Performance

Program Time RAM (MB) Model Size (MiB)

whatlang 698s (115s elapsed) @ 500
1671s (296s elapsed) @ 3500
2173s (396 s elapsed) @ 5600

~100 @500
~380 @3500
~630 @5600

  16.6 @ 500
101.6 @ 3500
158.5 @ 5600

libtextcat 481s 25     5.2

mguesser 166s <1   21

LangDetect 1061s (756s elapsed) 90   43

langid.py 115548s
(6 threads,19856s elapsed)

~10000 260.5
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Model Size vs. Accuracy
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Model Size vs. Accuracy (2)
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Evaluation Performance

Program N-Grams Time RAM Error Rate

whatlang 500 32s 19 MB 4.735% / 4.632%

libtextcat 500 2269s 20 MB 6.440% / 6.130%

whatlang 3500 59s 97 MB 1.876% / 1.772%

mguesser 1500 17,129s 81 MB 15.365% / 15.429%

langid.py 800 522s 2.7 GB * 2.781% / 2.445%

whatlang 5600 66s 143 MB 1.615% / 1.522%

LangDetect 5634 1141s (1590s CPU) 9.1 GB 3.435% / 3.108%

whatlang scored without inter-string smoothing

all elapsed times include ~6 seconds scoring overhead

langid.py momentarily requires nearly twice as much RAM at startup
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Conclusions

● whatlang is faster (on short strings) and more 
accurate than four other open-source language 
identification programs

● filtering out less-useful n-grams improves accuracy
● adding negative weights for “impossible” n-grams 

improves accuracy
● assuming successive strings are likely to be in the 

same language greatly improves accuracy
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Questions?
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Obtaining the Programs

● whatlang

– http://la-strings.sourceforge.net/
● libtextcat

– https://github.com/scientific-coder/libtextcat
● LangDetect

– https://code.google.com/p/language-detection/
● langid.py

– https://github.com/saffsd/langid.py [“ralfbrown” branch]
● mguesser

– http://www.mnogosearch.org/guesser
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Obtaining the Data

● Europarl
– http://www.statmt.org/europarl/

● Wikipedia
– http://sourceforge.net/projects/la-strings/files/Language-Data/

● Bibles
– Creative Commons-licensed Bibles from above URL

– others from http://bible.is, http://bibles.org, 
http://youversion.com, http://www.gospelgo.com
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Characteristics of the Models

Program N-Gram Size Encoding Model Format

whatlang 3-6 bytes
(configurable)

don't care single binary file

libtextcat 1-5 bytes don't care one text file per model

mguesser 1-5 bytes don't care one text file per model

LangDetect 1-3 characters requires UTF-8 one JSON file per model

langid.py 1-5 bytes 
(configurable)

presumes UTF-8 single binary file
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Similarity Computation

● For each byte position in input

– Start at root node of trie (compacted 256-ary tree)

– While node has children and more input available

● descend according to next byte of input
● advance input pointer
● look up weighting factor for current match length
● For each match record associated with new node

– add weight in record times length factor to score for model# 
in record


