
Selecting and Weighting N-Grams
to Identify 1100 1185 Languages

Ralf D. Brown
Language Technologies Institute

Carnegie Mellon University

2 September 2013
16th International Conference on Text, Speech, and Dialogue

2 September 2013 Ralf D. Brown @ TSD2013 2

Why Language Identification?

● Internet is becoming more multilingual
● Text processing often uses language-specific

models or techniques
– to process arbitrary data from the web, we need to

select the appropriate model/technique

2 September 2013 Ralf D. Brown @ TSD2013 3

The Approach

● vector space models
– one (or more) per language/encoding pair to be

identified

● k nearest neighbors
– cosine similarity (normalized inner product) as the

distance measure

2 September 2013 Ralf D. Brown @ TSD2013 4

Selecting N-Grams

● Use the K highest-frequency n-grams of length 3
through N which don't

– start with multiple whitespace characters

– start with multiple digits

– start with a punctuation mark repeated three times

– contain a newline

● In the original application, unigrams caused too
many false positives and bigrams only slowed
down the program

2 September 2013 Ralf D. Brown @ TSD2013 5

Weighting N-Grams

● Two main factors: probability and length
● Need to include probability factor to be able to

distinguish between multiple languages including
an n-gram

– but less than full because common n-grams will also
be common in the test input

● Want to give bonus for length because longer n-
grams are more informative but less common

– but proves to have very little impact

2 September 2013 Ralf D. Brown @ TSD2013 6

Filtering N-Grams

● Not all n-grams contribute equally
● If an n-gram occurs nearly as frequently as one of

its substrings, the substring does not help to
identify the language

– remove the substring from the model and include
another n-gram which was not in the top K

2 September 2013 Ralf D. Brown @ TSD2013 7

Effects of Filtering

2 September 2013 Ralf D. Brown @ TSD2013 8

Discriminative Training,
aka Stopgrams

● Some letter sequences are invalid in a language
– appearance in test input thus strongly suggests the

input is not in that language

● Failure to occur in the training data is a strong
indicator of invalidity

– the more training data, the stronger the indication

● Add n-grams from other language models which
don't appear in the training data, giving them
negative weight

2 September 2013 Ralf D. Brown @ TSD2013 9

Selecting Stopgrams

● Determine languages similar enough for confusion
– compute cosine similarity between models

● Combine all n-grams in similar-enough models
– weight by max frequency, max similarity, and

amount of training data

● Scan training data for n-grams in combined set
– add any that don't appear with the negative of the

previously computed weight

● Scale stopgram weights by a further factor of 9

2 September 2013 Ralf D. Brown @ TSD2013 10

Stopgram Weighting

2 September 2013 Ralf D. Brown @ TSD2013 11

Scoring Input

● Naive method
– convert input into a feature vector of term frequencies

– multiply f.v. by each model's term vector

● Far faster method – direct incremental computation
– for each n-gram in input, increment the score for each

model containing that term by its weight in the
model

– normalize by length of input

● Apply optional inter-string score smoothing

2 September 2013 Ralf D. Brown @ TSD2013 12

Score Smoothing

● In running text, consecutive strings are likely to be
in the same language

● Add a portion of the previous string's scores for
each model to the current string's scores

– greatly reduces errors

– but too much smoothing will cause actual language
change to be missed

2 September 2013 Ralf D. Brown @ TSD2013 13

How Many N-Grams to Use?

● Unlike some methods, vector-space cosine
similarity always benefits from more n-grams in
the models

– accuracy asymptotically approaches an optimum

● Thus, the choice is a simple trade-off between
resource requirements and accuracy

2 September 2013 Ralf D. Brown @ TSD2013 14

Experiments

● Compared whatlang against four other open-
source programs

– libtextcat (rank-order statistics)

– mguesser (hashed vector space)

– LangDetect (Naive Bayes)

– langid.py (NB with information-gain selection)

● Modified libtextcat, mguesser, and LangDetect to
provide per-line identifications

● Speed-optimized LangDetect and langid.py

2 September 2013 Ralf D. Brown @ TSD2013 15

A Caveat

● langid.py accuracy can most likely be improved,
but

– training is very slow

– there are multiple parameters to tune

– setttings expected to improve accuracy require more
than 16 GB for training

2 September 2013 Ralf D. Brown @ TSD2013 16

Data

● Training
– 1278 files in 1190 languages

– some converted into multiple encodings for 1297
models total

● Testing
– 1225 files, 3 omitted because fewer than 50 strings

● also no test files for Northern Uzbek (accidental
omission) or Klingon

– 1185 languages in test set

2 September 2013 Ralf D. Brown @ TSD2013 17

Data Sources

● GigaWord corpora
– English, French, Spanish, Arabic, Chinese

● European Parliament
– Danish, Dutch, Finnish, German, Greek, Italian, Swedish

● Wikipedia
– used over 100 languages, ~200 have useful amounts

– requires cleaning

● Bible
– and some Bible school text

2 September 2013 Ralf D. Brown @ TSD2013 18

Data Size

● Mean amount of available training data: 1.4
million bytes per model

– amount used limited to 1.0, 1.1, 1.5, or 2.0 million
bytes, depending on program

● Test strings range from 25 bytes to 65 characters
(potentially up to 195 bytes)

● Test sets contain 50 to 1000 strings per
language/script pair

– mean is 710.8, median is 713

2 September 2013 Ralf D. Brown @ TSD2013 19

Training Performance

Program Time RAM (MB) Model Size (MiB)

whatlang 698s (115s elapsed) @ 500
1671s (296s elapsed) @ 3500
2173s (396 s elapsed) @ 5600

~100 @500
~380 @3500
~630 @5600

 16.6 @ 500
101.6 @ 3500
158.5 @ 5600

libtextcat 481s 25 5.2

mguesser 166s <1 21

LangDetect 1061s (756s elapsed) 90 43

langid.py 115548s
(6 threads,19856s elapsed)

~10000 260.5

2 September 2013 Ralf D. Brown @ TSD2013 20

Model Size vs. Accuracy

2 September 2013 Ralf D. Brown @ TSD2013 21

Model Size vs. Accuracy (2)

2 September 2013 Ralf D. Brown @ TSD2013 22

Evaluation Performance

Program N-Grams Time RAM Error Rate

whatlang 500 32s 19 MB 4.735% / 4.632%

libtextcat 500 2269s 20 MB 6.440% / 6.130%

whatlang 3500 59s 97 MB 1.876% / 1.772%

mguesser 1500 17,129s 81 MB 15.365% / 15.429%

langid.py 800 522s 2.7 GB * 2.781% / 2.445%

whatlang 5600 66s 143 MB 1.615% / 1.522%

LangDetect 5634 1141s (1590s CPU) 9.1 GB 3.435% / 3.108%

whatlang scored without inter-string smoothing

all elapsed times include ~6 seconds scoring overhead

langid.py momentarily requires nearly twice as much RAM at startup

2 September 2013 Ralf D. Brown @ TSD2013 23

Conclusions

● whatlang is faster (on short strings) and more
accurate than four other open-source language
identification programs

● filtering out less-useful n-grams improves accuracy
● adding negative weights for “impossible” n-grams

improves accuracy
● assuming successive strings are likely to be in the

same language greatly improves accuracy

2 September 2013 Ralf D. Brown @ TSD2013 24

Questions?

2 September 2013 Ralf D. Brown @ TSD2013 25

Obtaining the Programs

● whatlang

– http://la-strings.sourceforge.net/
● libtextcat

– https://github.com/scientific-coder/libtextcat
● LangDetect

– https://code.google.com/p/language-detection/
● langid.py

– https://github.com/saffsd/langid.py [“ralfbrown” branch]
● mguesser

– http://www.mnogosearch.org/guesser

2 September 2013 Ralf D. Brown @ TSD2013 26

Obtaining the Data

● Europarl
– http://www.statmt.org/europarl/

● Wikipedia
– http://sourceforge.net/projects/la-strings/files/Language-Data/

● Bibles
– Creative Commons-licensed Bibles from above URL

– others from http://bible.is, http://bibles.org,
http://youversion.com, http://www.gospelgo.com

2 September 2013 Ralf D. Brown @ TSD2013 27

Characteristics of the Models

Program N-Gram Size Encoding Model Format

whatlang 3-6 bytes
(configurable)

don't care single binary file

libtextcat 1-5 bytes don't care one text file per model

mguesser 1-5 bytes don't care one text file per model

LangDetect 1-3 characters requires UTF-8 one JSON file per model

langid.py 1-5 bytes
(configurable)

presumes UTF-8 single binary file

2 September 2013 Ralf D. Brown @ TSD2013 28

Similarity Computation

● For each byte position in input

– Start at root node of trie (compacted 256-ary tree)

– While node has children and more input available

● descend according to next byte of input
● advance input pointer
● look up weighting factor for current match length
● For each match record associated with new node

– add weight in record times length factor to score for model#
in record

