A Modified Burrows-Wheeler Transform for
Highly Scalable Example-Based Translation

Ralf D. Brown

Carnegie Mellon University Language Technologies Institute
5000 Forbes Avenue
Pittsburgh, PA 15213-3890 USA

ralf+@cs.cmu.edu

Abstract. The Burrows-Wheeler Transform (BWT) was originally de-
veloped for data compression, but can also be applied to indexing text.
In this paper, an adaptation of the BWT to word-based indexing of
the training corpus for an example-based machine translation (EBMT)
system is presented. The adapted BWT embeds the necessary informa-
tion to retrieve matched training instances without requiring any addi-
tional space and can be instantiated in a compressed form which reduces
disk space and memory requirements by about 40% while still remaining
searchable without decompression.

Both the speed advantage from O(log N) lookups compared to the O(N)
lookups in the inverted-file index which had previously been used and the
structure of the index itself act as enablers for additional capabilities and
run-time speed. Because the BWT groups all instances of any n-gram
together, it can be used to quickly enumerate the most-frequent n-grams,
for which translations can be precomputed and stored, resulting in an
order-of-magnitude speedup at run time.

1 Introduction

A key component of any example-based or case-based machine translation system
is a good index of the training instances. For shallow EBMT systems such as
Gaijin [1], Brown’s Generalized EBMT [2], EDGAR [3], or Cicekli and Giivenir’s
Generalized EBMT [4], this index is formed from either the original training
text’s source-language half, or some lightly-transformed version thereof. This
paper addresses such a textual index and discusses how it impacts not only the
speed of the system, but can act as an enabler for additional capabilities which
may improve the quality of translations.

Until recently, our EBMT system used an index based on an inverted file
— a listing, for each distinct word (type) of all its occurences (tokens) in the
corpus. While such an index has several nice properties, including fast incre-
mental updates that permit on-line training with additional examples, it scales
poorly. Lookups not only take time linear in the amount of training text, they
also require O(NN) additional working memory, as maximal matches are built by
finding adjacent instances of a pair of words and then extended one word at a

time. Although the code had been heavily optimized (including a five-instruction
hand-coded inner scanning loop), the system’s overall performance was not ad-
equate for interactive applications with corpora exceeding about five million
words.

The new index format which was selected as a replacement for the existing
code is based on the Burrows-Wheeler Transform, a transformation of textual
data first described in the context of data compression a decade ago [5], and
now the underlying algorithm in many of the best-performing compression pro-
grams such as bzip2 [6]. The following sections give a brief overview of the
BWT, how it was adapted for use in Carnegie Mellon University’s EBMT sys-
tem, the performance improvements that resulted from replacing the index, and
new capabilities enabled by the BWT-based index.

2 The Burrows-Wheeler Transform

The Burrows-Wheeler Transform is a block-sorting transformation which groups
elements of its input lexically.
The BWT operates as follows:

1. Take the input text T (of length N) and make it row 0 of an N-byN matrix
M.

2. For i = 1to N — 1, form row ¢ of M by rotating T left by ¢ places as in
Figure 1.

3. Sort the rows of M lexically, remembering where each row of the sorted
result originated, to form M' (Figure 2).

4. Due to the manner in which M was constructed, columns 1 through N —1
of M' can be reconstructed from column 0 by providing a pointer from each
row to the row which had been immediately below it prior to sorting. This
vector of successor pointers is conventionally called V.

5. Since the first column of M’ now consists entirely of runs of equal elements
in lexicographic order (at most one run per member of the alphabet X),
one can discard column 0 and represent it by an array C of size || which
contains the first row in M’ containing each member of the alphabet.

In practice, neither M nor M’ are ever explicitly constructed. Instead, an
auxiliary array of pointers into T is sorted, with M; ; determined by retrieving
T(i+j) moa n- T is usually a sequence of bytes, but for EBMT, a sequence of
32-bit word IDs was used.

Together, C and V are the output of the Burrows-Wheeler Transform. These
two arrays lend themselves to highly-effective data compression because the el-
ements of C' are monotonically increasing, as are the elements of V' within each
range C; to Ciy1 — 1 (see Figure 3. The transform is also reversible by starting
at the position of V' to which row 0 of M was sorted and following the succes-
sor links until all elements of V' have been visited; this is the final step in the
decompression phase of BWT-based compression algorithms. For this example,

mis s i s s ipwpi $
i s s is s ippi$m
s s i s s ippi $mi
s i s s ippi $mi s
i s s ippi$mis s
s s i ppi$mi s s i
s i ppi $mis s i s
i ppi$mis s is s
ppi$mis s is s i
pi$mis s is s ip
i $mis s is s i pop
$mi s s is s ipwpi

Fig. 1. Constructing the rotated matrix

b e e Y %»—-mmmm"cg
AT T T B ow

e 0 =T AT B owow

m"UE'-'-'--m —_ RS AW
T oeepm B wowm ;D e ke e e
T EB o ern kD e ow

nong e B e D
NS AT BB B! e e e e

n oD T A B B o e e e

. e e Tn RS ;—.%mamm*c

R B = R
BEw o rrd reoan nd

Fig. 2. The sorted matrix M’

Mipoli i i i mp p $
Vi |16 910 11 2 3 5 4

S s s s
0178

Fig. 3. The array of successors

starting at Vy, following the pointers to V5, Vig, Vg, etc. will reconstruct the
original text.

The output of the BWT also lends itself to language modeling, as all occur-
rences of any given n-gram are adjacent in the V' array — thus one can count the
number of occurrences simply by subtracting the position of the first occurrence
from the position of the last. Further, all n + 1-grams beginning with the given
n-gram have their occurrences as a sub-range of the range for the n-gram. For
example, in Figure 2, the instances of unigram ’s’ occupy rows 7 through 10,
while bigrams ’si’ occupy rows 7 and 8 and trigram ’sis’ occupies row 8. The
ends of the subrange for an n + 1-gram can be located using two binary searches

within the larger range. This leads to O(k log N) lookups for the number of
occurrences of any particular k-gram.

To deal with ambiguous lookups, the search is split as necessary. One common
operation in our EBMT system is generalization via equivalence classes (e.g. days
of the week, colors, or various types of proper names). When a member of an
equivalence class is encountered in the source-language text while indexing the
training corpus, it is replaced by the class marker if a known translation listed in
the equivalence class occurs in the target-language half of the training instance,
and left unchanged otherwise. When translating, the system should match the
training example in either case, so both the original word and the corresponding
class marker(s)! form an ambiguous lookup at that position in the input.

At every word position in the input, an extension of each currently-active
partial match by each alternative term is attempted; those extensions that re-
sult in a non-zero number of occurrences become active matches for the next
word position. Further, a new match is started for each alternative term at that
position which actually occurs in the training data, and the unextended active
matches are added to the set of all phrasal matches to be processed further in
the retrieval and alignment phases of translation. While this splitting of BWT
matches on ambiguity could theoretically result in an exponential increase in
memory and run time, in practice most alternatives peter out very quickly —
usually, the bulk of the corpus matches that are found are two or three words in
length. Slowdowns from ambiguous lookups have not been an issue.

3 DModifications for Use in Indexing

Burrows-Wheeler-transformed data is very good at showing relative positions,
but in order to determine an absolute position in the original text without com-
pletely reconstructing it, some auxiliary information is required. Neither the C
nor the V' array provide any information about the location of an n-gram in the
original input, only its surrounding context.

A considerable number of approaches to anchoring a BWT-based index to
the text it indexes have been proposed [7], but these typically involve additional
time and/or space proportional to the alphabet size. While this is acceptable
when the text is considered to be a stream of bytes (|X| = 256), the alphabet
size for our word-based index quickly reaches into the hundreds of thousands.
We thus decided to take advantage of the line-oriented nature of the example
base.

Because the EBMT system has no interest in finding phrases which span the
boundaries between training examples, an end-of-line or end-of-record (EOR)
marker can be inserted after each example. By reserving an entire range of
values as EOR markers, the record number can be encoded within the marker
itself. Given that the 32-bit IDs we used to represent both words and successor
pointers in the V' array provide more than 4,200 million possibilities, 1/4 of

! A source-language word can belong to multiple equivalence classes provided the
translations are disjoint.

the possible values were reserved as EOR markers. This sets the limits on the
training corpus size at some 3,200 million words in over 1,000 million examples.

Further (precisely because the EBMT system does not operate on text span-
ning a sentence boundary, though it allows for overlapping partial translations
to be merged in generating the final translation [8]), there is no need in this
application to determine what text from the next training example follows an
EOR marker, and it is thus possible omit the portion of V corresponding to
EOR. As a result, the index is no larger than it would have been had the entire
training corpus been treated as a single example. There is also no processing
overhead on finding matching n-grams resulting from the EOR markers.

In addition to inserting the EOR markers, the order of words in each training
instance is reversed before adding them to the index. This allows matches to be
extended from left to right even though lookups in the index can only be effi-
ciently extended from right to left. (While the input sentence could be processed
from right to left for EBMT, we also wished to use the same code to compute
conditional probabilities for language modeling.)

To retrieve the training examples containing n-grams matching the input to
be translated, iterate over the range of V' corresponding to the n-gram. For each
instance of the n-gram, follow the pointers in V until reaching an EOR, then
extract the record number from the EOR and retrieve the appropriate training
example from the corpus. The offset of the matched phrase within the example
is determined by simply counting the number of pointers which were followed
before reaching an EOR. The original source-language text is not included in
the stored example since it can be reconstructed from the index if required. We
opted not to store a pointer to the start position of the line in the V' array, since
the only use our system has for the unmatched portion of the source text is for
display to the user in error messages, and we can forego display of the entire
source sentence in such cases. For applications which must be able to reconstruct
the entire source sentence or access adjacent sentences, separately-stored start
pointers will be required. Even without a line-start pointer, we are still able to
reconstruct the word sequence from the beginning of a training example to the
end of the matched portion when we need to display an error message; this is
typically the most useful part of the sentence for the user, anyway.

One drawback of the BWT-based index compared to the old inverted file is
that quick incremental updates are not possible, since the entire index needs
to be re-written, rather than chaining new records onto the existing occurrence
lists. Because on-line incremental updates in practice are performed only a small
number of times before there is an opportunity for an off-line update, we have
addressed the issue by using two indices — the large main index which was built
off-line when the system was trained, and a much smaller index containing only
the incremental updates. Although the entire auxiliary index must be re-written
on each incremental update, this can be done quickly due to its small size.

4 Compressing the Index

For applications where space is more critical than time, the index may be stored
in a compressed form which is around 40% smaller than the uncompressed form
(38-46% for the corpora on which this feature was tested). Because the index
comprises nearly half the total disk space consumed by the processed corpus,
this results in a reduction of disk usage by nearly 20% at a cost of 20% greater
CPU time. This capability has already been used to good effect on a training
corpus which was slightly too large to fit completely in the machine’s RAM —
the reduced index size eliminated disk thrashing and thereby actually resulted
in faster translations.

As mentioned above, the V' array consists of runs of monotonically increasing
values, typically with fairly small differences between adjacent values. Thus, we
opted to represent the compressed V' array as an array of bytes encoding either
the difference from the previous element or an index into an auxiliary table of
full 32-bit values.

Out of the 256 possible 8-bit values, values 1 through 191 are used to en-
code the actual difference from the previous entry and values 192 through 255
to encode an index within a bucket of full addresses. Value 0 was reserved to
encode EOR in applications such as language modeling which do not need to
encode record numbers. The V array is split into buckets of 64 entries and a
32-bit pointer into a pool of full addresses is allocated for each bucket. Thus the
value 192 represents the address pointed at by the current bucket’s pool pointer,
the value 193 represents the address following that one, etc. The best-case com-
pression with this scheme would store 64 entries of V' using just 68 bytes, while
the worst case is 324 bytes for those same 64 entries (8.5 and 40.5 bits per entry,
respectively). On average, this method achieves a size of 18-19 bits per entry
and an overall size for C' plus V' of 20-21 bits per word indexed.

The representation just described allows random access to any element of the
index without decompressing any portion of the index. One simply retrieves the
ith byte of the V' array and examines it. If the value corresponds to a pointer to
the auxiliary array of absolute addresses, that value is retrieved; if not, scan left
and accumulate the difference values until an absolute address is reached, then
return the sum of that address and the accumulated difference. The number
of bytes which need to be processed is typically quite small, and is bounded
by deliberately forcing at least one element of each 64-entry bucket to be an
absolute address (increasing the best-case compressed size to 9 bits per entry,
but having negligible effect on real-world average compression). Without such
deliberate breaks in the runs of difference values, common trigrams in the corpus
would cause runs of difference 1 equal in length to the frequency of the trigram.

5 Pre-Computing Phrasal Translations

One of the interesting new capabilities enabled by the BWT index is the straight-
forward enumeration — directly from the index — of all distinct n-grams of a given

length k together with their frequencies in time O(kN) (more sophisticated ap-
proaches can no doubt reduce this time bound) using O(k) space. Thus, we
decided to precompute the most common phrasal translations in order to speed
up the overall translation process. Doing so required very little code — 65 lines of
C++ to enumerate all the n-grams and 150 lines more to determine the trans-
lations of the most frequent n-grams and add them back to the indexed corpus.

Precomputing the candidate translations for a common phrase improves
translation speed because it becomes unnecessary to retrieve and align a large
number of matches to determine translation probabilities. Instead, only a sin-
gle instance of each of the best-scoring translations is retrieved and the stored
frequency count is extracted from that instance.

6 Performance and Scalability

Performance was evaluated on three different corpora. The first corpus is a
100,000-sentence pair subset of the IBM Hansard corpus [9] for French-English,
coupled with a 77,000-translation pair part-of-speech-tagged dictionary and some
500 context-free rewrite rules for generalization (about 2.2 million words of En-
glish). The second corpus consists of the Hindi-English parallel text collected
during the June 2003 DARPA TIDES Surprise Language Exercise, less some
held out sentences for testing (about 2.1 million words of Hindi). The third cor-
pus, for Arabic-English, consists of UN proceedings and text from the Ummah
newspaper (about 81 million words of Arabic).

Indexing speed when generalization is disabled is approximately equal for the
old and new index formats. When generalization is enabled, lookup and retrieval
of exact matches among the generalization rules account for the majority of
the runtime in the old system. Thus, for the French-English test case, indexing
time is cut from 58 minutes to less than 10 due to the faster lookup during
generalization.

Table 1 clearly shows the O(NN) performance of the old index and the much
better scaling of the new BWT-based index for the Hindi and Arabic test sets.
The times listed are the amount of time required to locate all matching n-grams
in the input sentences, without retrieving any of the matches from the corpus.
The French test set also illustrates that the nature of the text influences the
lookup time, since the French training text is much closer to the test sentences
than is the case for the other languages, and as a result there are many more
matches — and, in particular, long matches — against the corpus.

Pre-computing the translations of all n-grams occurring at least 30 times in
the Hindi training corpus of 2.1 million words doubles the indexing time from 2.5
to 5 minutes, increases the total size of the indexed corpus by about 10 percent
and produces a considerable speed-up in translations (see Table 2). Similarly for
the Arabic corpus, training time increases from 84 minutes to about 4 hours and
disk usage increases by about 18 percent when precomputing all 2- through 12-
grams occurring at least 30 times each. Without the precomputation, the EBMT
engine attempts to perform a word-level alignment on up to 4000 instances

Time | Time
Corpus| Train | Test |(Invert|(BWT
(words) | (words) | File) |Index)
Hindi 2.1M 4460 1.8s 0.5s
Arabic | 81M 5003 | 36.0s | 0.7s
French | 2.2M 4628 7.2s 0.7s

Table 1. Index Lookup Performance

Precomputed
Corpus| Train Test |None| > 30

(words) | (words)
Hindi 2.1M 4460 14s 1.8s
Arabic | 81M 5003 | 145s | 6.8s
French | 2.2M 4628 | 158s | 8.7s

Table 2. Effect of Precomputation on Translation Time

of each distinct matching phrase, stopping after 1500 successful alignments, in
order to accumulate reliable translation probabilities. Naturally, only a small
percentage of n-grams actually have more than a small fraction of the maximum
instances to be checked, but as can be seen from the run times, these account
for the bulk of the processing.

The combination of new O(log N) index and precomputation yields overall
EBMT run times less than that required merely for lookups in the old index
format.

7 Speed as an Enabler

In addition to the newly-added capability of precomputing translations already
mentioned, pure speed can itself be an enabler for additional capabilities and
applications.

The Carnegie-Mellon EBMT engine has in the past been used as part of a
speech-to-speech translation system [10,11]. In such an interactive application,
it is important for translations to be completed quickly, preferably in less than
half a second. Similarly, for bulk translations of large corpora such as the Chinese
portion of the TDT-3 corpus [12], a system taking tens of seconds per sentence
(or, worse, several minutes per sentence) would simply not be practical.

Conversely, in applications where the previous system was fast enough, the
time saved by better indexing and precomputed translation hypotheses can be
applied to additional, more sophisticated processing. Or one can use a larger
training corpus with the same processing as before to gain additional coverage
without unacceptably slowing the translation process.

8 Future Work

We plan to use the pre-computed phrasal translations to help guide word-level
alignment in cases where there may be too much ambiguity to perform the
alignment based purely on a bilingual dicationary and the information in that
particular sentence pair. Whenever a portion of the bitext mapping between the
source and target language halves of a training instance is too sparse or too
ambiguous to provide a unique alignment, referring to the pre-aligned phrases
to restrict the possible alignments may allow the overall alignment to succeed.

9 Acknowledgements

This work was largely supported by the TIDES program under Navy research
contract N66001-00-C-8007.

The author would like to thank the reviewers for their feedback, which re-
sulted in numerous improvements to this paper.

10 References

References

1. Veale, T., Way, A.: Gaijin: A Template-Driven Bootstrapping Approach to
Example-Based Machine Translation. In: Proceedings of the NeMNLP’97, New
Methods in Natural Language Processessing, Sofia, Bulgaria (1997) http://-
www.compapp.dcu.ie/“tonyv/papers/gaijin.html.

2. Brown, R.D.: Adding Linguistic Knowledge to a Lexical Example-Based Transla-
tion System. In: Proceedings of the Eighth International Conference on Theoreti-
cal and Methodological Issues in Machine Translation (TMI-99), Chester, England
(1999) 22-32 http://www.cs.cmu.edu/"ralf/papers.html.

3. Carl, M.: Inducing Translation Templates for Example-Based Machine Translation.
In: Proceedings of the Seventh Machine Translation Summit (MT-Summit VII).
(1999) 250-258

4. Cicekli, I., Guvenir, H.A.: Learning Translation Templates from Bilingual Trans-
lation Examples. Applied Intelligence 15 (2001) 57—76 http://www.cs.bilkent .-
edu.tr/"ilyas/pubs.html.

5. Burrows, M., Wheeler, D.: A Block-Sorting Lossless Data Compression Algorithm.
Technical Report 124, Digital Equipment Corporation (1994)

6. Seward, J.: The bzip2 and libbzip2 Home Page (1997) http://wuw.bzip2.com.

7. Ferragina, P., Manzini, G.: An Experimental Study of an Opportunistic Index.
In: ACM-SIAM Symposium on Discrete Algorithms. (2001) 269-278 http://-
citeseer.ist.psu.edu/ferraginaOlexperimental.html.

8. Brown, R.D., Hutchinson, R., Bennett, P.N., Carbonell, J.G., Jansen, P.: Re-
ducing Boundary Friction Using Translation-Fragment Overlap. In: Proceedings
of the Ninth Machine Translation Summit. (2003) 24-31 http://www.cs.cmu.-
edu/"ralf/papers.html.

9. Linguistic Data Consortium: Hansard Corpus of Parallel English and French.
Linguistic Data Consortium (1997) http://www.ldc.upenn.edu/.

10.

11.

12.

13.

Frederking, R., Rudnicky, A., Hogan, C.: Interactive Speech Translation in the
DIPLOMAT Project. In Krauwer, S., et al., eds.: Spoken Language Translation:
Proceedings of a Workshop, Madrid, Spain, Association of Computational Linguis-
tics and Eurpoean Network in Language and Speech (1997) 61-66

Black, A.W., Brown, R.D., Frederking, R., Singh, R., Moody, J., Steinbrecher, E.:
TONGUES: Rapid Development of a Speech-to-Speech Translation System. In:
Proceedings of HLT-2002: Second International Conference on Human Language
Technology Research. (2002) 183-189 http://www.cs.cmu.edu/"ralf/papers.-
html.

Graff, D., Cieri, C., Strassel, S., Martey, N.: The TDT-3 Text and Speech Corpus
(1999) http://www.ldc.upenn.edu/Papers/TDT1999/tdt3corpus.ps.

Bentley, J., Sedgewick, R.: Fast algorithms for sorting and searching strings. In:
SODA: ACM-SIAM Symposium on Discrete Algorithms (A Conference on Theo-
retical and Experimental Analysis of Discrete Algorithms). (1997) http://www.-
cs.princeton.edu/"rs/strings/.

