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Abstract

We present the theory behind a novel unsupervised
method for discovering quasi-static objects, objects that are
stationary during some interval of observation, within im-
age sequences acquired by any number of uncalibrated cam-
eras. For each pixel we generate a signature that encodes the
pixel’s temporal structure. Using the set of temporal signa-
tures gathered across views, we hypothesize a global sched-
ule of events and a small set of objects whose arrivals and
departures explain the events. The paper specifies observ-
ability conditions under which the global schedule can be es-
tablished and presents the QSL algorithm that generates the
maximally-informative mapping of pixels’ observations onto
the objects they stem from. Our framework ignores distract-
ing motion, correctly deals with complicated occlusions, and
naturally groups observations across cameras. The sets of
2D masks we recover are suitable for unsupervised training
and initialization of object recognition and tracking systems.

1. Introduction

“Object Discovery” (OD) is the problem of grouping all
observations springing from a single object without includ-
ing any observations generated by other objects. Static OD
systems, such as object recognizers and image segmenters,
seek to discover objects in single, static images. Object rec-
ognizers discover objects for which they already have mod-
els, as in [5, 9], and generally require extensive training for
satisfactory performance. In contrast to object recognizers,
image segmenters do not require an a priori model of each
object of interest. Segmenters typically rely upon local spa-
tial homogeneity of color [3], texture [4], or a combination
of these cues [2] to discover objects. Because objects are
not actually spatially homogeneous, segmenters often split
objects and combine portions of different objects together.

Dynamic OD systems find objects that move indepen-
dently in the world using a combination of temporal and spa-
tial information. Many such systems depend upon spatial
homogeneity of motion flow vectors[11], and are sometimes
combined with texture or color [1]. Other dynamic OD sys-
tems use background subtraction [10] to separate moving ob-

Camera 0 Camera 1 Camera 2

Obj0 (Bowl)

Obj1 (Keyboard)

Obj2 (Can)

Obj3 (Spoon)

t = 41.2 s t = 51.2 st = 20.5 s

Figure 1. OD results on a sequence in which
the spoon and can arrive simultaneously, the
keyboard is always partially occluded in cam-
eras 0 and 1, and the can and keyboard mutu-
ally occlude each other in camera 1. Temporal
information alone is sufficient to group the pix-
els in and across the uncalibrated cameras.

jects from a static background. Unfortunately, dynamic OD
systems often require high frame rates and/or cannot separate
objects from the person manipulating them.

In this paper we present the theory behind a “quasi-
static” system that achieves good results (see Figure 1) us-
ing only temporal information to cluster pixel observations.
In the figure, the images in the top row are examples from



sequences acquired by three different uncalibrated cameras.
The other images in the bottom grid show the objects dis-
covered (the background is also found but not shown). The
complete keyboard is recovered even though it is partially
occluded by either the bowl or the can in every image in
which cameras 0 and 1 observe it. The can and spoon are
correctly discriminated even though they arrive in the scene
at the same time, a significant improvement over the results
reported in [7]. Because we do not use spatial information,
our approach is novel and complements the existing body of
segmentation work which generally relies upon local spatial
homogeneity of color, texture or motion flow vectors. The
advantages of our method include the following: (1) Low
frame rate requirements (e.g., 1Hz); (2) Entire objects are
discovered even in some cases where they are always par-
tially occluded; (3) Objects that arrive or depart simultane-
ously are correctly distinguished if each object’s lifetime (ar-
rival/departure pair) is distinguishable from the lifetime of
every other object; (4) The approach scales naturally to and
benefits from multiple completely uncalibrated cameras.

2. The Quasi-static World

In this section we define the quasi-static world model
used throughout the remainder of the paper. This model is at-
tractive because it imposes enough restrictions on the world
to be theoretically treatable while maintaining practical ap-
plication to real systems. The quasi-static model assumes
that the only objects of interest are those that undergo mo-
tion on some time interval and are stationary on some other
time interval (i.e., objects that stay still for a while). Thus the
quasi-static world model targets objects that are picked up
and set down while ignoring the person manipulating them.1

The following definitions will be used throughout the paper
in connection with the quasi-static model:

Physical object: A chunk of matter that leads to consistent
observations through space and time (i.e., an object in
the intuitive sense). We define physical objects in order
to contrast them with quasi-static objects. A physical
object is mobile if it is observed to move in the scene.

Quasi-static object: The quasi-static world interpretation
of a mobile physical object that is stationary over a par-
ticular time interval.

Quasi-static object lifetime: The time interval over which
a mobile physical object is stationary at a single loca-
tion. When a mobile physical object m moves around
the scene and is stationary at multiple physical loca-
tions, each stationary location i is interpreted as a sepa-
rate quasi-static object oi.

1Of course, according to the quasi-static world model, when a person is
completely stationary he/she becomes an object of interest.

Global schedule: A set of quasi-static object lifetimes.

Pixel visage: A set of observations made by a given pixel
that are interpreted as stemming from a particular quasi-
static object. A pixel’s visages are disjoint with each
other and each forms a history of a particular quasi-
static object’s visual appearance through time according
to the pixel. When an observation for a pixel p made at
time t is assigned to a visage v, p is said to observe v

at time t. Likewise, when contiguous observations for
p are assigned to v, p is said to observe v on the in-
terval delineated by the first and last of the contiguous
observations. A pixel visage is valid if each of its ob-
servations stems from a single quasi-static object.

The quasi-static world model assumes that each pixel
can reliably group observations that stem from a single
quasi-static object. In other words, the observations belong-
ing to one visage for a particular pixel are discriminable from
the observations belonging to any other visage for that pixel.
The next section presents the method we use to perform
this grouping of observations into visages. The following
scheduling and labeling sections then describe how to deter-
mine the identity of the quasi-static object responsible for
each visage.

3. Temporally Coherent Clusters

The first phase of the algorithm, temporally coherent
cluster (TCC) construction, begins by extracting each pixel’s
view of the world in the form of a temporal signature and
finishes by building large clusters of signatures that agree
on a particular worldview. Constructing a pixel’s temporal
signature consists of encoding the temporal structure in the
pixel’s observation history. Signature extraction is a com-
pletely local operation. Each set of observations in a pixel’s
history that appear to come from a single stationary object
are grouped together into a pixel visage. Figure 2 illustrates
a pixel’s observation history and the signature extracted from
it. In the figure, each interval on which a particular visage is
observed is labeled according to the visage’s number.

The interval between two different, temporally adjacent
visages in a particular signature is an event. An event con-
tains either the departure of the object corresponding to the
visage observed immediately before the event, or the arrival
of the object corresponding to the visage observed immedi-
ately after the event. An event is unambiguous if either inter-
pretation can be trivially eliminated. In Figure 2 the events
0 → 1 and 2 → 0 are unambiguous because neither event
can involve movement of 0. An event is completely speci-
fied by the interval over which the event occurred, the visage
that immediately precedes the event, and the visage that im-
mediately follows the event. The relevant temporal structure
in a pixel’s observation history, its so called worldview, is
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Figure 2. A pixel’s temporal signature.

captured by the events in its temporal signature. See [6, 7]
for signature extraction details.

Many signatures contain intervals upon which one vis-
age is observed before and after some other set of visages.
One way in which these bounded intervals of a signature are
interesting is that they allow the signature to be decomposed
into an equivalent set of nested simple signatures that do not
contain bounded intervals (Figure 3). Each complex signa-
ture may be decomposed into a single unique set of simple
signatures. The two representations are equivalent in that
both representations contain exactly the same set of events.
Decomposing a signature in this way allows a given pixel
to represent its overarching worldview by a set of simpler
worldviews that each covers a smaller temporal extent. This
decomposition allows our approach to scale naturally to long
sequences involving many objects. Additionally, converting
to simple signatures considerably simplifies the scheduling
algorithm presented in the next section.

Because of noise and/or a breakdown of quasi-static
world assumptions, a particular pixel may have one or more
false views of the world and so generate signatures that are
inconsistent with reality. In order to be robust to these out-
liers, we need a method of determining which signatures are
consistent with the world and which signatures are not. Since
the state of the world is not directly observable, we must infer
world state from the set of all worldviews (i.e., the set of all
simple temporal signatures from all pixels). To determine the
amount of support for a particular worldview, we construct
a temporally coherent cluster (TCC) of all simple signatures
(from all pixels) that agree on that particular worldview. In
our case, a particular worldview is succinctly captured by a
signature hull, the most permissive temporal signature that
is consistent with every signature in a given TCC. These no-
tions are formalized in the following definitions:

Visage containment: A visage vcon contains a visage vin

if vcon is observed on every interval upon which vin is
observed.

Signature containment: A signature scon contains a signa-
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Figure 3. Converting a pixel’s signature to an
equivalent set of simple signatures.

ture sin if the following hold: (1) Every visage in sin is
contained by some visage in scon; (2) Every visage in
scon contains at most one visage in sin. It is trivially true
that every signature contains and is contained by itself.

Set containment: A signature scon contains a set of signa-
tures S if scon contains every signature in S.

Set coherence: A set of signatures S is coherent if some
signature scon (not necessarily in S) contains S. For the
set of simple signatures for a given pixel, no subset of
size two is coherent.

Signature hull: For any set of coherent signatures S, there
exists a unique signature shull, called the signature hull
of S, that contains S and is contained by every other
signature that also contains S. The signature hull of
any two coherent signatures s1 and s2 may be directly
constructed from the intersections of the pairs of events
that correspond in s1 and s2.

A signature hull captures the essence of a particular
worldview that is supported by every signature the hull con-
tains. Thus a signature hull for a TCC may serve as a repre-
sentative for all the signatures in the cluster. If the scheduling
phase explains the signature hull, the explanation is guaran-
teed to generalize to the signatures in the TCC. To determine
which worldviews are well supported and which are not, we
seek to find a small set of large TCCs that effectively spans
the set of all simple signatures generated across all pixels. In
our current implementation we construct such a set of large
TCCs using the following greedy algorithm:

1. Begin with an empty set of signature hulls H .

2. Examine each signature s in the set of all simple signa-
tures gathered across all pixels. If s is coherent with a
signature hull h ∈ H , replace h with the signature hull
of s and h, otherwise add s to H as a new hull.

3. Construct a TCC for each hull h ∈ H composed of all
signatures si such that h contains si.

4. Combine TCCs that contain nearly the same population
of signatures. This may disenfranchise a small (negligi-
ble) number of signatures that are consistent with only
one or the other TCC.



More details of TCC construction and combination may be
found in [8].

4. Establishing a Global Schedule

In the second phase of object discovery, schedule con-
struction, we use the signature hulls from the well supported
TCCs of the last section to hypothesize the existence of a
small set of objects whose arrivals and departures satisfy
the constraints of the hulls and thus explain them. The hy-
pothesized set object lifetimes constitutes a global schedule.
Each TCC’s signature hull places constraints upon the global
schedule. In order to be valid and complete, a global sched-
ule must satisfy all of these constraints. For a global schedule
to be valid, the lifetime of each quasi-static object it contains
must exactly match an interval on which some mobile phys-
ical object was stationary in the scene. To be complete, a
global schedule must explain every event observed by some
nonnegligible number of pixels. A valid and complete global
schedule is a correct schedule in the intuitive sense.

When a TCC’s signature hull is inconsistent with the
world, a global schedule that satisfies the inconsistent hull’s
constraints is not valid. Yet, if some event in the TCC’s sig-
nature hull is not explained by the schedule, the schedule is
not complete. Scheduling is the art of finding a good com-
promise between these two measures of correctness.

In general, the constraints from temporal information
alone are not enough to completely determine the schedule.
Specifically, temporal information cannot determine whether
an object o has arrived or departed unless o has both arrived
and departed during the period of observation. While tem-
poral information cannot, in general, completely determine
a global schedule, many cases exist where temporal infor-
mation does suffice. In fact, if the following observability
criteria are met, the 2DSched algorithm we present later in
this section is guaranteed to find a complete and valid global
schedule using only temporal information.

2D Scheduling (2DSched) Observability Criteria Given
that there are nc cameras observing the scene and
an arbitray constant k, temporal information alone
is sufficient to construct a valid and complete global
schedule if the following observability criteria are met:

1. Clean world criterion: Every quasi-stationary object
both arrives and departs.2

2. 2D temporal discriminability criterion: The true state
of the world is such that each object’s lifetime is clearly
distinct from every other object’s lifetime in the 2D tem-
poral space of arrival/departure pairs. Essentially, when

2The background is treated specially and is the union of all objects that
neither arrive nor depart.

the constraints from all the signatures are considered to-
gether, each lifetime must clearly stand out as separate
from the others.

3. Strong temporal observability criterion: For every
object o, the signature hull h for some TCC containing
at least knc signatures unambiguously observes both the
arrival and departure of o (neither of o’s events are hid-
den by another object). Pixels that have valid visages
and observe an object arrive and depart over top of a
single other stationary object generate a simple signa-
ture that unambiguously determines the object’s arrival
and departure events. This strong observability crite-
rion becomes more likely to be met as the number of
different viewpoints increases.

4. Valid visages criterion: The total number of invalid
visages is less than knc. In our implementation this gen-
erally implies that each stationary pixel’s observations
of each particular stationary object lie in a small region
of RGB space unique to the pixel/object pair.

The criteria listed above significantly weaken the 1D
temporal discriminability criterion we presented in [7] that
required every event to be discriminable from every other
event. In this paper event pairs rather than events must be
distinct, allowing objects that arrive at the same time but de-
part at different times to be discriminated. The big win in
temporal discriminability comes with the cost of a slightly
stronger observability criterion that still tends to be a good
assumption for real-world sequences. These criteria lead di-
rectly to the scheduling algorithm presented below.

2D Scheduling (2DSched) Algorithm Given that the
2DSched observability criteria listed above are met, the
following algorithm establishes a valid and complete
global schedule:

1. Collect all TCCs whose signature hull is composed of
exactly two events and for which np ≥ knc where np

is the total number of pixels the TCC contains (from
all cameras), nc is the number of cameras observing
the scene and k is the constant for which the 2DSched
observability criteria collectively hold. Each of these
TCCs satisfies the strong temporal observability crite-
rion mentioned above.

2. For each of these TCCs, create an object hypothesis that
explains the two events in the TCC’s hull as the arrival
and departure of a quasi-static object and enter the hy-
pothesized object’s lifetime into the global schedule.

5. Mapping Observations to Objects

During the labeling phase of object discovery, we use
the schedule generated by the 2DSched algorithm and the
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complex temporal signature computed for each pixel during
the first phase to map the observations in each pixel visage
to the objects in the schedule that those observations could
have stemmed from. This labeling of observations is the ul-
timate goal of object discovery. Once each observation has
been mapped to the objects that could have given rise to it,
we can easily assemble multi-view 2D masks of each object
from the observations attributed to the object. In this section
we describe our Quasi-Static Labeling (QSL) algorithm for
solving the mapping problem. For the details of the QSL al-
gorithm including proofs see [6]. We begin this section by
defining the observation labeling problem.

Observation labeling problem: Given a pixel p and a valid
and complete global schedule, determine for each of p’s
visages vi the smallest set of quasi-static objects in the
schedule guaranteed to contain the actual quasi-static
object that generated p’s observations of vi.

The remainder of this section is written from the per-
spective of a single pixel’s observation labeling problem and
assumes the existence of a valid and complete global sched-
ule containing all known objects. We begin by defining sev-
eral terms used to describe the QSL algorithm.

Contemporaneous object set: A contemporaneous object
set X is a set of objects such that each object o ∈ X is
present in the scene at some time t. A maximal contem-
poraneous object set X∗

t is the set of all objects present
in the scene at time t.

X∗

t = {o : o is present at time t}

Intersection set: For a pixel visage v, v’s intersection set Iv

is the set of all objects such that each object is present
at every time at which v is observed.

Iv =
⋂

t

X∗

t t : v is observed at time t

Union set: For a pixel visage v, v’s union set Uv is the set of
all objects such that each object is present at some time
at which v is observed. Clearly Uv ⊇ Iv (Figure 4).

Uv =
⋃

t

X∗

t t : v is observed at time t

Bounding visage: For pixel visages v and b, b is a bounding
visage of v if the following hold:

1. b is observed prior to every observation of v;

2. b is observed after every observation of v.

Bounded set: For a pixel visage v, v’s bounded set Bv is
the set of all objects such that each object is present at
every time that v is observed, and no object is present at
any time at which a bounding visage of v is observed.

Bv = Iv −
⋃

b

Ub b : b is a bounding visage of v

Given the quasi-static assumptions, the object bounded
set Bv for a visage v contains the actual object observed
by v.

Object function: The object function O(v) = o maps a
visage v onto an object o. This function represents ab-
stractly the true state of the world. The goal of the la-
beling process is to find the smallest set of candidate
objects C such that O(v) ∈ C is true given that the
model assumptions hold. In some cases it is not physi-
cally possible to narrow C down to a singleton.

Front function: The front function F (C) = o for a pixel
p maps a set of candidate objects C onto the object
o ∈ C that is in front of the other objects. The
front object o is said to occlude the other objects in C.
F (C) = o is unique for all sets C such that for every
other o′ ∈ C, at some time t, both o and o′ are simulta-
neously present and p observes o at time t. Any subset
of the union set for a visage v that contains O(v) meets
this condition. Like the object function O(), F () repre-
sents abstractly the true state of the world, not what we
know about it.

The following lemmas and theorems provide the foun-
dation for the labeling algorithm. To make the discussion
easier to follow, we use color names to refer to particular
pixel visages.

Lemma 1 For a visage red, the following statements hold:

1. O(red) = F (Bred);

2. O(red) = F (Ired);

3. O(red) = F (X∗

t ), ∀X∗

t : red is observed at t;

4. O(red) = F (Ured).

The relationships between the sets and the object and
front functions are illustrated in Figure 4. These relation-
ships follow directly from the definitions of the sets and the
object and front functions.



The following QSL Theorem is central to the QSL al-
gorithm. In essence, the QSL Theorem provides a general
rule that allows us to use one pixel visage’s union set (e.g.,
Ublue) to rule out candidates for O(red) for some other vis-
age red. Iterative invocation of this theorem forms the heart
of QSL and allows us to find the most informative mapping
from visages to objects.

Theorem 2 QSL Theorem Given distinct visages red, blue

and contemporaneous subsets Xred, Xblue such that
O(red) = F (Xred) and O(blue) = F (Xblue):

Xblue ⊂ Ured ⇒ O(red) occludes O(blue)

⇒ O(red) = F (Xred − Ublue)

The definitions and results presented above allow us to
state the Quasi Static Labeling (QSL) algorithm succinctly.
The algorithm maintains a collection R of statements of the
form O(vi) = F (Ci), one for each visage vi, where the ele-
ments of set Ci essentially encode a set of candidates for the
object that maps to visage vi as determined by QSL at some
point in the algorithm. We start with an initial set of true
statements and attempt to produce new, smaller true state-
ments by applying the QSL Theorem. The ultimate goal is
to obtain for each visage the true statement with the smallest
possible front function subset argument.

Quasi-Static Labeling (QSL) Algorithm Given a com-
plete global schedule, for each pixel p and its set of pixel
visages Vp:

1. For each pixel visage v ∈ Vp find v’s union set Uv .

2. For each pixel visage v ∈ Vp find v’s bounded set Bv,
and add the statement O(v) = F (Bv) to the collection
R. By Lemma 1 these are all true statements.

3. Repeatedly apply the QSL Theorem to appropriate pairs
of statements in R to shrink the subset argument of one
of the statements. Repeat until no further applications
are possible.

If the QSL Theorem applies to a pair of statements, it
equally applies to the pair of statements if either statement’s
subset argument shrinks. Thus the result is independent of
the order in which the transformations are applied. If there
are m visages in the pixel and n objects in the schedule, the
QSL algorithm is guaranteed to terminate in less than m3n2

steps.

6. Conclusion

The framework described by the theory in this paper ig-
nores distracting motion, correctly deals with complex oc-
clusions, discriminates between objects having the same ar-
rival/departure but different departures/arrivals, and recovers

entire objects even in cases where the objects are partially
occluded in every frame (see Figure 1 for example results).
Because we do not use spatial information to perform our
clustering, our technique is significantly different from and
complements traditional spatially based segmentation algo-
rithms. Additionally, our approach is well suited to train and
initialize object recognition and tracking systems without re-
quiring human supervision. More details on the system may
be found in in [6, 7, 8] available from:
http://www.cs.rochester.edu/˜sanders.

7. Acknowledgments

This work funded in part by NSF Grant EIA-0080124,
NSF Grant IIS-9977206, Department of Education GAANN
Grant P200A000306 and a Compaq Research Internship.

References

[1] Y. Altunbasak, P. E. Eren, and A. M. Tekalp. Region-Based
Parametric Motion Segmentation Using Color Information.
GMIP, 60(1), 1998.

[2] S. Belongie, C. Carson, H. Greenspan, and J. Malik. Color-
and Texture-Based Image Segmentation Using EM and Its
Application to Content-Based Image Retrieval. In Proc.
ICCV, 1998.

[3] J. Liu and Y. Yang. Multiresolution Color Image Segmenta-
tion. IEEE PAMI, 16(7), 1994.

[4] J. Mao and A. K. Jain. Texture Classification and Seg-
mentation Using Multiresolution Simultaneous Autoregres-
sive Models. PR, 25(2), 1992.

[5] C. Papageorgiou and T. Poggio. A Trainable System for Ob-
ject Detection. IJCV, 38(1), 2000.

[6] B. C. S. Sanders, R. C. Nelson, and R. Sukthankar. Discov-
ering Objects Using Temporal Information. Technical Report
772, URCS, Rochester, NY 14627, Apr. 2002.

[7] B. C. S. Sanders, R. C. Nelson, and R. Sukthankar. The OD
Theory of TOD: The use and limits of temporal information
for Object Discovery. In Proc. AAAI, 2002.

[8] B. C. S. Sanders, R. C. Nelson, and R. Sukthankar. Ro-
bust Quasi-static Schedule Creation. Technical Report 777,
URCS, Rochester, NY 14627, May 2002.

[9] B. Schiele and J. L. Crowley. Recognition without Cor-
respondence using Multidimensional Receptive Field His-
tograms. IJCV, 36(1), 2000.

[10] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers.
Wallflower: Principles and Practice of Background Mainte-
nance. In Proc. ICCV, 1999.

[11] J. Y. A. Wang and E. H. Adelson. Representing Moving Im-
ages with Layers. IEEE Trans. on Image Proc. Special Issue:
Image Sequence Compression, 3(5), 1994.


