
Pacific Association for Computational Linguistics

APPLYING MACHINE LEARNING FOR HIGH

PERFORMANCE NAMED-ENTITY EXTRACTION

Shumeet Baluja Vibhu O. Mittal Rahul Sukthankar

Just Research, 4616 Henry Street, Pittsburgh, PA 15213 &

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213

This paper describes a machine learning approach to build an efficient, accurate and fast name
spotting system. Finding names in free text is an important task in addressing real-world text-
based applications. Most previous approaches have been based on carefully hand-crafted modules
encoding linguistic knowledge specific to the language and document genre. Such approaches have
two drawbacks: they require large amounts of time and linguistic expertise to develop, and they
are not easily portable to new languages and genres. This paper describes an extensible system
which automatically combines weak evidence for name extraction. This evidence is gathered from
easily available sources: part-of-speech tagging, dictionary lookups, and textual information such as
capitalization and punctuation. Individually, each piece of evidence is insufficient for robust name
detection. However, the combination of evidence, through standard machine learning techniques,
yields a system that achieves performance equivalent to the best existing hand-crafted approaches.

Keywords:. information extraction, machine learning

1. INTRODUCTION

Spotting named-entities in text can be an important component of tasks such as informa-
tion extraction and retrieval,1 restoration of capitalization in single-case text, and spelling-
correction — to avoid accidentally “correcting” names that are mistaken as misspelled words.

Most previous research efforts in building named-entity systems have relied on the use of
carefully hand-crafted rules. There are two impediments to their wide use. First, most of the
typical hand-coded systems work well only in the specific circumstances envisioned by their
designers. However, both language and users’ needs are likely to evolve over time. Secondly, it
is unclear what additional resources would be required to adapt to other languages, document
genres, or less well-behaved texts — such as ones that may have misspelled words, missing
case information, or foreign words/phrases [Palmer and Day, 1997]. Thus, it is desirable
that name spotting systems should not only be accurate, but should facilitate easy user
parameterization.

This paper presents a system for named-entity extraction that is automatically trained
to recognize named-entities using statistical evidence from a training set. This approach
has several advantages: first, it eliminates the need for expert language-specific linguistic
knowledge. With the automated system, users only need to tag items that interest them.
If the users’ needs change, the system can re-learn from new data quickly. Second, system
performance can be improved by increasing the amount of training data without requiring
expert knowledge. Third, if new knowledge sources become available, they can easily be
integrated into the system as additional evidence.

1A recent study on IR in a legal domain found a 20% improvement in precision when users could
specifically search for names [Thompson and Dozier, 1997].

c© 1999 Pacific Association for Computational Linguistics

2 PACLING’99, Waterloo, Canada

2. BACKGROUND AND PREVIOUS WORK

Previous work in this area has largely taken place in the context of the Message Under-
standing Conferences (MUCs) [Grishman and Sundheim, 1995]. In the case of MUC, the
problem of finding named-entities was broken up into three sub-problems: enamex, finding
entity names (organizations, persons and locations); timex, finding temporal expressions
(dates and times); and numex, finding numerical quantities (monetary values, percentages,
etc.). However, as discussed by Palmer and Day [Palmer and Day, 1997], the latter two tasks
are much simpler than the first. In an analysis of the three tasks across five languages, they
found that nearly all numex phrases could be identified reliably with a very small number of
patterns. Since enamex has been suggested to be the most difficult of the three sub-tasks,
this paper concentrates solely on name detection.

Much of the initial work on finding names was based on either: (1) carefully hand-crafted
regular expressions [Appelt et al., 1993; Appelt et al., 1995; Weischedel, 1995]; (2) the use of
extensive specialized resources such as large lists of geographic locations, people and company
names, etc. [Iwanska et al., 1995]; (3) highly sophisticated rule-based linguistic approaches,
based on parsing [Morgan et al., 1995; Iwanska et al., 1995; Gaizauskas et al., 1995]. Because
these approaches rely on manually coded rules or large lists, such systems can be extremely
expensive to develop and maintain.

While a variety of name detection algorithms have been proposed in the literature, in
this paper, we mention only those that incorporate a strong machine learning component.
The best known of these systems is nymble [Bikel et al., 1997], a statistical system based on
a Hidden Markov Model (HMM) [Rabiner, 1993]. nymble is reported to have an F1 score of
93. While nymble’s approach is effective, it requires large computational resources. Another
system using machine learning techniques with similar, but slightly lower performance, is
Alembic, which relies on rule sequences [Aberdeen et al., 1995].

3. KNOWLEDGE SOURCES USED

To determine whether a token is a name, the system uses evidence gathered from a
variety of sources. The main consideration in deciding which information sources to use
is the difficulty associated with creating and maintaining the appropriate resources. For
example, large, manually generated lists of people and business names are tedious to compile
and require large amounts of maintenance. A second consideration is that the learned model
must be easily adaptable to different genres of writing. For example, news-wire documents
display very different characteristics from business or informal letters. Rapid adaptation to
different genres requires that the model be easy to re-train, and that extensive genre-specific
knowledge sources are not over-used. A final, pragmatic, choice was to keep the learned
models extremely small. The knowledge sources that we use can be broadly divided into four
categories. The 29 features derived from these knowledge sources are discussed in subsections
below.

3.1. Word Level Features

Language- or genre-specific cues can sometimes be exploited to provide evidence for name
detection. For instance, in English, names typically begin with a capital letter. Not only are
these cues computationally inexpensive, as shown in Section 5, they can be surprisingly reli-
able. The following word-level features were chosen as potentially useful sources of evidence.
The system automatically learns which of these features correlate strongly with names: (1)

Machine Learning for Named-Entity Extraction 3

all-uppercase, (2) initial-caps, (3) all-numbers, (4) alphanumeric, (5) single-char, (6) single-s

(if the token is the character “s”), and (7) single-i (if the token is the character “I”).
Individually, none of the local word-level features are very effective: the strongest indi-

vidual feature is all-caps; it flags 474 tokens in the training set (which consists of a total of
50,416 tokens, of which 3,632 are names). Of these, 449 are actually names, the rest being
non-name acronyms such as “CEO” and “PC”, yielding an F-score2 of only 21 (Precision
= 94; Recall = 12). initial-caps is similar, flagging 5,650 words, of which 3,572 are names,
leading to an F-score of 82 (Precision = 73; Recall = 94). Note that not all capitalized
words are names, and that not all names are capitalized (e.g., “van Gogh”). This problem
can be particularly acute in some foreign languages such as Chinese, which does not have
capitalization, in Spanish where location names are often not capitalized, and in German,
where all nouns are capitalized.

For English text, capitalization, in conjunction with reliable end-of-sentence boundary
detection, is an excellent indicator for names. Unfortunately, as discussed in [Reynar and
Ratnaparkhi, 1997; Palmer and Hearst, 1994], determining sentence boundaries is difficult
since common boundaries such as periods, question- and exclamation-marks can occur in
many different contexts. For example, these punctuation marks, when used in quotations or
inside parentheses do not mark the end of a sentence. Additionally, periods are commonly
used in abbreviations, as decimal points, and in ellipses. While the system does not explicitly
contain rules for sentence boundary analysis, as we will show, it learns sufficient contextual
cues to account for most sentence boundaries.

3.2. Dictionary Look-Up

A simple heuristic for determining whether a particular token is a name is to check
whether it can be found in a dictionary. Since most names are not valid English words, this
approach can help identify potential names. The dictionary used in this study contained
45,402 words3. Of these words, 6,784 had their initial letters capitalized, and were discarded
as names. The remaining 38,618 tokens contained multiple morphological variants of the
same word (further decreasing the number of unique root forms). Finally, since a number of
English names are also part of the regular vocabulary (e.g., “mark”, “baker” and “stone”),
name detection using only evidence from the dictionary is not very reliable: the F-score for
the dictionary module alone on our training set was only 64.

3.3. Part-of-Speech Tagger

Part-of-Speech (POS) tags can be used by other modules to reason about the roles and
relative importance of words/tokens in various contexts. In this system, we used the Brill
tagger for POS tagging4. Brill reports approximately 97% to 98% overall accuracy for words
in the WSJ corpus for the tagger [Brill, 1994; Brill, 1995]. Its performance is lower on the
named-entity task. On our training data, the tagger obtained an F-score of only 83 (P = 81,

2Performance on the name detection task is typically measured by the Fβ score [van Rijsbergen, 1979],
which is a combination of the Precision (P) and Recall (R) measures used in IR. The Fβ score is defined to

be:
(β2+1)∗R∗P

β2
∗P+R

, where β is usually set to 1. Studies have shown that, on average, the F1 score for manually

finding names in text is approximately 96 [Grishman and Sundheim, 1995]. In comparison, the F1 scores for
many manually crafted systems are often between 90 and 92 [Iwanska et al., 1995; Gaizauskas et al., 1995;
Borkovsky, 1995; Sundheim, 1995].

3The dictionary used in the system was the standard spelling dictionary available on most Unix systems.
4Version 1.1, with 148 lexical rules and 283 contextual rules, trained on a Wall Street Journal (WSJ)

corpus from the Linguistic Data Consortium with a lexicon of 93,696 words.

4 PACLING’99, Waterloo, Canada

R = 86); Aberdeen et al. [Aberdeen et al., 1995] report consistent results. The following POS
tags were used as features by the machine learning component of our system: (1) determiner,
(2) foreign-word, (if the token is one that the tagger has not seen), (3) preposition, (4)
adjective, (5) noun, (6) proper-noun, (7) personal-pronoun, (8) possessive-pronoun, (9) verb,
(10) WH-pronoun (which, what, etc.), (11) unknown-POS.

3.4. Punctuation

For robust determination of name or not-name, our system must be able to capture
syntactic information surrounding the word to be classified. As mentioned earlier, contex-
tual information is necessary to disambiguate capitalization cues that occur due to sentence
boundaries. Context around the candidate token includes surrounding punctuation. The sys-
tem’s classifier learns to exploit syntactic regularities automatically from the training data.
Section 5 discusses the effects of varying the size of this contextual window. We consider
the following punctuation marks: (1) comma; (2) period; (3) exclamation mark; (4) question
mark; (5) semi-colon; (6) colon; (7) plus or minus sign; (8) apostrophe; (9) left parenthesis;
(10) right parenthesis.

4. SYSTEM ARCHITECTURE

The name spotting system consists of two components: a tokenizer and a classifier. The
tokenizer converts text into a set of features based on the knowledge sources presented in
the previous section; these are used by the classifier, a decision tree constructed from the
training data based on information theory (C4.5 [Quinlan, 1992]).

4.1. Tokenizer

The tokenizer reads free-form text and creates tokens consisting of either words or selected
punctuation marks. A feature vector of 29 elements is calculated for each such token, based
on the knowledge sources described in Section 3. All of the features, when used, encode
binary variables, (i.e., initial-caps is set to +1 if the token begins with a capital letter, and
-1 otherwise). As described in Section 5, some of the experiments do not use all of the
knowledge sources. If a knowledge source was not used, all of its features were set to 0.

Since the classifier does not explicitly model syntactic patterns in the text, the decision
tree learner must necessarily induce a large number of syntactic patterns to take into account
the variations in the numbers of tokens that can appear in a particular syntactic role. One
approach to dealing with this problem would be to collapse adjacent syntactic tokens from
the same category into one single token. This would present the learning system with far
fewer patterns to learn and potentially improve results.5

4.2. Decision Tree Classifier

The classifier processes evidence about the candidate token and its context. No feature,
by itself, is sufficient for robust classification. The goal of the classifier is to automatically
combine all of the evidence to determine whether the candidate token is a name. Perhaps the

5As we will discuss in Section 5, we tried a limited version of this method of collapsing patterns and
did indeed see a small improvement in performance. However, this comes about at the expense of processing
speed, and will not be discussed at length here.

Machine Learning for Named-Entity Extraction 5

Rule 39:

comma-1 = +1

word-in-dict-2 = -1

initial-caps-2 = +1

noun-3 = -1

-> named-entity [97.8%]

Rule 91:

unknown-pos-1 = -1

proper-noun-2 = +1

all-uppercase-2 = +1

-> named-entity [97.2%]

Rule 47:

adjective-1 = -1

word-in-dict-2 = -1

initial-caps-2 = +1

verb-3 = +1

-> named-entity [95.8%]

Rule 121:

proper-noun-2 = +1

word-in-dict-2 = -1

initial-caps-2 = +1

-> named-entity [95.3%]

Rule 82:

determiner-1 = -1

adjective-1 = -1

word-in-dict-1 = +1

proper-noun-2 = +1

word-in-dict-2 = -1

initial-caps-2 = -1

alphanumeric-2 = -1

comma-3 = -1

-> named-entity [94.4%]

Rule 60:

proper-noun-1 = +1

proper-noun-2 = -1

initial-caps-2 = +1

-> named-entity [93.9%]

Rule 66:

all-uppercase-2 = +1

single-char-2 = -1

colon-3 = -1

right-paren-3 = -1

-> named-entity [93.7%]

Rule 118:

period-1 = -1

question-1 = -1

proper-noun-2 = +1

initial-caps-2 = +1

single-i-3 = -1

-> named-entity [92.8%]

Rule 58:

word-in-dict-1 = +1

initial-caps-2 = +1

-> named-entity [89.3%]

Rule 34:

proper-noun-1 = +1

word-in-dict-1 = +1

all-numbers-2 = +1

-> named-entity [84.3%]

Rule 30:

word-in-dict-1 = +1

initial-caps-1 = +1

preposition-2 = +1

word-in-dict-3 = +1

initial-caps-3 = +1

-> named-entity [75.9%]

Figure 1. Sample rules for spotting named-entities generated by C4.5. The context consid-
ered here is one token to the left and one token to the right. For example, given three tokens in
order, token-1 token-2 token-3, the context in this case are token-1 and token-3; token-2 is the token
under consideration. To illustrate, Rule #47 states that if the preceding word is not an adjective,
the current token is not in the dictionary, has an initial upper-case letter, and the following word is
a verb, the token under consideration is a named-entity (if none of the preceding rules apply).

6 PACLING’99, Waterloo, Canada

simplest approach is to treat these features as inputs to a statistical regression or machine
learning procedure. The output, or target variable, is the manually-coded label identifying
whether the token is a name. Figure 1 shows some of the rules that C4.5 came up with based
on our data set.

5. EXPERIMENTAL RESULTS

All of the experiments reported here were conducted using a training set of 100 randomly-
selected Reuters news articles, containing 50,416 tokens, of which 44,013 were words (the rest
were punctuation). The training set included 3,632 names, with 1552 distinct names. The
results reported in this section were obtained by running the system on a test set of 25
additional articles (these articles had never been seen by the system). These test articles
contained a total of 13,507 tokens, of which 11,811 were words, and 1048 were labeled by the
coders as names.

Section 3 discussed baseline performance for each of the individual modules. One simple
“learning” approach would be for the system to construct a list of names encountered in the
training set and match candidate tokens against this list during testing. However, as pointed
out in [Palmer and Day, 1997], this is unlikely to significantly help in name detection. Our
observations confirmed this hypothesis: the test set contained 1048 names (of which 441 were
unique). Of these 1048 names, only 110 names had appeared in the training set; therefore,
the system cannot simply rely on a list of names built during training.

In this section, we present some of the experimental results with our system. The exper-
imental procedure was as follows: (1) the manually labeled data was divided into three sets,
training, validation, and testing ; (2) the training set was used for inducing the decision tree;
(3) the validation set was used to prevent over-fitting of the data; (4) when the validation
set error was minimized, training was stopped, and the results were measured on the testing
set. To ensure that idiosyncrasies in any data-set splitting did not affect our results, repeated
tests are required to accurately estimate the system’s performance; hence, each experiment
was repeated 5 times, using different parts of the data-set for training and validation. In
each experiment, 80 articles were used for training, and 20 for validation. All of the results
presented are measured on the performance of the network on an entirely separate testing
set of 25 articles.

In the first set of three experiments, we examined how the dictionary, part-of-speech and
word-level knowledge sources perform when used independently of each other. (Note that
the punctuation knowledge source is always used in these experiments.) We also examine
the effect of context. The first line of Table 1 shows the performance of the part-of-speech
tagger with only the part-of-speech information for the word to be classified. The second
line shows the performance when given context information; the part-of-speech information
for one word before and after the word to be classified is given. The third and fourth lines
show similar context information for 2 and 6 words before and after the word to be classified,
respectively. Note that the context is taken without regard to sentence boundaries.6 For
simplicity, the number of words examined before and after the candidate token were kept the
same; however, this is not a requirement for the algorithm. The remainder of Table 1 examines
the performance of using the part-of-speech tagger, the dictionary variables and the word-
level features independently. Note that although none of these performs well independently,
their performance improves when context is increased.

6A token, such as a period, which may, or may not, indicate a sentence boundary, is part of the context,
and thus enables the system to eventually learn about rules for capitalizing the first word of a sentence.

Machine Learning for Named-Entity Extraction 7

Table 1. Performance of Individual Knowledge Sources and the Effects of Context. (Aver-
aged over 5 runs)

KNOWLEDGE Context Accuracy
SOURCES words Recall Prec. F1

POS 0 0.855 0.814 83.3

POS 1 0.857 0.802 82.8

POS 2 0.854 0.818 83.5

POS 6 0.862 0.808 83.7

Dict. 0 0.910 0.483 62.8

Dict. 1 0.915 0.480 62.9

Dict. 2 0.911 0.489 63.6

Dict. 6 0.918 0.476 62.6

Word-Lev. 0 0.983 0.637 77.3

Word-Lev. 1 0.981 0.640 77.4

Word-Lev. 2 0.981 0.613 75.4

Word-Lev. 6 0.980 0.627 76.4

In the next set of three experiments, we examined all the pair-wise combinations of the
knowledge sources. Note that the dictionary features combined with the word-level features
performs almost as well as the word-level features combined with the part-of-speech tagging.
However, the dictionary and part-of-speech tagging do not perform as well. This suggests
that the word level features contain information that is not contained in either of the other
two sources. These results are summarized in Table 2.

The final experiment uses all of the knowledge sources. As can be seen by comparing
the results shown in Tables 2 and 3, there is little difference between the performance of a
system which uses only the part-of-speech tagger and the word-level features, and a system
which uses these knowledge sources in addition to the dictionary.

To better understand how each individual feature affects the performance of the classifier,
we can examine the weights for each of the features using linear regression.7 The magnitude
of these weights indicate how much importance is given to each input. A positive weight
implies that the respective feature is positively correlated with the candidate token being a
name; negative weights are negatively correlated in the same manner 8.

Figures 2 and 3 depict the weight values in a trained perceptron with context of 0
and 1 respectively. Several attributes of these figures should be noticed. First, in the no
context case, the features which are most indicative of names are those which account for
capitalization. As demonstrated in Section 3 the POS tagging for proper nouns is not very
reliable. This is reflected by the only medium weight given to the proper noun tag by the
classifier. Also notice that the POS-tagger’s label of noun and adjective are indicative of
proper names for the system. This suggests that the proper-name detection of the tagger

7In other experiments not reported here, we also trained a perceptron using the same data set and
obtained similar results to those obtained using decision trees. The relative weights obtained from the linear
regression as indicated by the trained perceptron are useful for gaining an insight into the problem.

8Note that the graphs are shown for training runs do not use a bias unit [Hertz et al., 1991].

8 PACLING’99, Waterloo, Canada

Table 2. Performance of Combining Knowledge Sources and the Effects of Context. (Aver-
aged over 5 runs)

KNOWLEDGE Context Accuracy
SOURCES words(0–6) Recall Prec. F1

Dict. & POS 0 0.646 0.831 72.6

Dict. & POS 1 0.760 0.780 76.9

Dict. & POS 2 0.822 0.774 79.7

Dict. & POS 6 0.752 0.777 76.4

Dict. & Word-Lev. 0 0.639 0.929 75.7

Dict. & Word-Lev. 1 0.931 0.910 92.0

Dict. & Word-Lev. 2 0.949 0.911 93.9

Dict. & Word-Lev. 6 0.941 0.912 92.6

POS & Word-Lev. 0 0.906 0.912 90.8

POS & Word-Lev. 1 0.911 0.901 90.5

POS & Word-Lev. 2 0.932 0.918 92.4

POS & Word-Lev. 6 0.923 0.883 90.2

Table 3. Using All Knowledge Sources and the Effects of Context. (Averaged over 5 runs)

KNOWLEDGE Context Accuracy
SOURCES words(0–6) Recall Prec. F1

ALL 0 0.932 0.899 91.5

ALL 1 0.941 0.923 93.2

ALL 2 0.942 0.931 93.1

ALL 6 0.937 0.924 93.0

sometimes misses nouns and adjectives which should be labeled as names. The largest features
against proper names are whether the word exists in the dictionary and whether it is a single
character. It is also interesting to note the context that it is developed in the 1 token
context case. Since all of training articles came from the Reuters news-wire stories, the
classifiers learned to exploit domain-specific idiosyncrasies. For example, the news articles
always contain the token (Reuters), where “Reuters” is flagged as a name in the training set;
the classifier learns to tag candidate tokens with parentheses on either side as names. See
Figure 3 for the weights on the features, and Figure 4 for an example news article.

Finally, it is promising to note that although there are many input features, the system
automatically ignores the irrelevant features. When porting the system to other languages
or genres, it may not be obvious which features to use. The system allows us to add many
potential features from which the relevant ones are automatically selected.

As mentioned earlier, the variability in language makes the number of syntactic patterns
that the system has to learn be much larger than can be learned using the very limited
amount of training data we had available. In order to learn the syntactic context of greatest

Machine Learning for Named-Entity Extraction 9

−2.50

−2.00

−1.50

−1.00

−0.50

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

A
ll

U
p

p
er

ca
se

In
it

ia
l C

ap
s

A
d

je
ct

iv
e

N
o

u
n

P
ro

p
er

 N
o

u
n

A
lp

h
an

u
m

er
ic

D
et

er
m

in
er

W
o

rd
 in

 D
ic

t

S
in

g
le

 C
h

ar
.

S
in

g
le

 ’I
’

’+
’ o

r
’−

’

 All Features − 0 Context

Figure 2. Feature weightings when using all knowledge sources, and no context (All-0).
Positive values signal a name, and negative values signal against a name. For clarity, only weights
with large magnitudes are labeled here.

−1.00

−0.50

0.00

0.50

1.00

1.50

2.00

2.50

All Features − 1 Word Context

L
ef

t
P

ar
en

.

P
er

io
d

A
lp

h
an

u
m

er
ic

A
ll

U
p

p
er

ca
se

D
et

er
m

in
er

A
d

je
ct

iv
e

N
o

u
n

P
ro

p
er

 N
o

u
n

W
o

rd
 in

 D
ic

t
A

ll
U

p
p

er
ca

se

S
in

g
le

 C
h

ar
.

In
it

ia
l C

ap
s

A
lp

h
an

u
m

er
ic

S
in

g
le

 ’I
’

S
in

g
le

 ’S
’

+
or

 −

In
it

ia
l C

ap
s

R
ig

h
t

P
ar

en
.

 WORD (N−1) WORD (N) WORD (N+1)

L
ef

t
P

ar
en

.

Figure 3. Feature weightings when using all knowledge sources, and 1 word of context before
and after the word to be classified (All-1).

10 PACLING’99, Waterloo, Canada

Table 4. A Cascaded Processing Model Seems to Give Improved Performance.

Algorithm CONTEXT
0 1 2 6

One-Pass 91.50 93.20 93.70 93.05
Cascaded 92.06 95.22 95.00 94.75

NEW YORK (Reuters) - Hotel real estate investment trust

Patriot American Hospitality Inc. said Tuesday it had agreed to acquire

Interstate Hotels Corp, a hotel management company, in a cash and stock

transaction valued at $2.1 billion, including the assumption of $785 million

of Interstate debt.

Interstate’s portfolio includes 40 owned hotels and resorts, primarily

upscale, full-service facilities, leases for 90 hotels, and management-service

agreements for 92 hotels.

On completion of the Interstate deal and its pending acquisitions of

Wyndham Hotel Corp. and WHG Resorts and Casinos Inc., Patriot’s portfolio

will consist of 455 owned, leased, managed, franchised or serviced properties

with about 103,000 rooms.

A definitive agreement between Patriot and Interstate values Interstate at

$37.50 per share. Patriot will pay cash for 40 percent of Interstate’s

shares, and will exchange Patriot paired shares for the rest. Paired shares

trade jointly for real estate investment trusts and their paired operating

companies.

Patriot said it expects the transaction to be about 8 percent accretive to

its funds from operations.

It said the agreement had been approved by the boards of Interstate and

Wyndham Patriot said it did not expect the deal to delay the closing if its

transaction with Wyndham, which is to close by year-end.

Figure 4. This example illustrates some of the mistakes that the system (with a context
of one) can make on difficult news stories. Underlined words indicate names that were successfully
detected; italicized words mark tokens that were misclassified as names; and bold words are names
that were not found. See the text for details.

concern here, that surrounding the placement of named-entities in text, we carried out some
preliminary experiments of folding multiple named tokens into a single one. In training,
sequences of adjacent named entities were collapsed into a single token. In testing, adjacent
tokens that were classified as nouns by the POS tagger were collapsed into a single token.
Using such a cascaded processing model resulted in improved figures, with the system’s
performance now beginning to match the best reported F1 scores, either by machine or by
humans. Table 4 shows these results. It should be emphasized that these are preliminary,
and we are looking at ways in which syntactic patterns can be better compressed, for both
training and usage.

The preceding discussion, along with the experimental results reported in Tables 1, 2,

Machine Learning for Named-Entity Extraction 11

and 3, has identified some of the benefits and drawbacks of our approach. We can also
gain insight into the system’s performance on the name detection task by examining specific
failure cases. Figure 4 presents the system’s output on a difficult news story. The underlined
words are names that were successfully detected; italicized words mark tokens that were
misclassified as names; and bold words are names that were missed. In this example, the
system failed to find two names (“Interstate” and “Patriot”), and misclassified the word
“upscale” as a name. It should be noted that the word “upscale” does not appear in the
system’s dictionary, while both of the names, “Interstate” and “Patriot” do. However, the
latter errors are not simply caused by dictionary confusion: although the words “Interstate”
and “Patriot” occur multiple times in this document, they are correctly tagged in every other
instance. Some insights into this failure are given by the feature weightings in Figure 3: when
the system is restricted to a context of one word, it learns that capitalized tokens are likely
to be names — but not when these tokens also appear in the dictionary and are preceded by
a period (rudimentary end-of-sentence detection).

6. APPLICATIONS: A BROWSING INTERFACE TO THE WWW

As an immediate application of this technology, we implemented a specialized interface
for reading news articles on the WWW. The name spotting technology was built into a proxy
which filtered the textual data of all documents requested by a browser. In addition, one
of our colleagues implemented a system which, when given a named entity, attempts to find
the “official” home page of that entity.9 This application also highlighted another important
aspect of our approach. Since our system does not use a detailed parse of the text, it is
very fast. This is an important factor in user acceptance; the fact that the proxy does not
impose any noticeable delays in serving pages is very important. A screen shot of news article
served using the proxy is shown in Figure 6. As can be seen, almost all the named-entities
in the document were correctly identified, and if a “home page” could be found for them,
a hyperlink to that page was generated and inserted in the text automatically . We believe
that a machine learning approach such as the one described here can be, and will be, used in
the future to allow users to interactively mark text and images of interest, and the browsers
will automatically learn to filter incoming pages and highlight portions of interest to the
individual reader.

7. CONCLUSIONS AND FUTURE WORK

This paper presents a high-performance name extraction system based on machine learn-
ing techniques. Although it achieves performance comparable to the best name detection
systems, the system does not rely on hand-crafted rules or large manually created databases
of names. This paper also presents an analysis of the value of different knowledge sources.
Different combinations of knowledge sources can yield widely varying results. To design larger
systems which address more complex tasks, it is important to determine which knowledge
sources provide the best discrimination power, and which are redundant.

In future work, we hope to extend this system to other tasks. For example, we plan to
fulfill the complete MUC task specifications, which includes name-spotting and categorizing
the names as people-names, location-names and organization-names. Once a potential name

9This is similar in functionality to pages such as ahoy and others that attempt to do the same thing.

12 PACLING’99, Waterloo, Canada

has been identified, there are several cues that can be exploited to determine to which of
these three categories it belongs. Additionally, we plan to explore hybrid systems where our
approach is used in conjunction with traditional parsing techniques.

Acknowledgments
The authors would like to thank Tony Brusseau for his work on an initial

implementation of the system, termed J-Name, which was presented in

Tokushima, Japan. Scott Fahlman has also contributed ideas for applications.

The views and conclusions of this document do not reflect official policies

of Justsystem Pittsburgh Research Center, Just Research, or

Justsystem Corporation. Mark Kantrowitz designed and implemented the

official-home page finder; the proxy that combined the name spotting

technology and the home page finder was implemented by Michele Banko.

Figure 5. This figure shows the acknowledgments of this paper, as processed by the system.
All of the names are correctly identified.

REFERENCES

[Aberdeen et al., 1995] J. Aberdeen, J. Burger, David Day, Lynette Hirschman, P. Robinson, and
Marc Vilain. MITRE: Description of the alembic system used for MUC-6. In Proceedings of
the Sixth Message Understanding Conference (MUC-6), pages 141–155, Columbia, MD, 1995.
NIST, Morgan-Kaufmann Publishers.

[Appelt et al., 1993] D. Appelt, J. Hobbs, D. Israel, and M. Tyson. FASTUS: A finite-state processor
for information extraction from real-world text. In Proceedings IJCAI-93, 1993.

[Appelt et al., 1995] T. Appelt, J. Hobbs, J. Bear, D. Israel, M. Kameyama, A. Kehler, D. Martin,
K. Myers, and M. Tyson. SRI international FASTUS system MUC-6 test results and analysis.
In Proceedings of the Sixth Message Understanding Conference (MUC-6), Columbia, MD, 1995.
NIST, Morgan-Kaufmann Publishers.

[Bikel et al., 1997] D. Bikel, S. Miller, R. Schwartz, and R. Weischedel. nymble: a high-performance
learning name-finder. In Proceedings of the Fifth Conference on Applied Natural Language
Processing, pages 194–201, Washington, D.C., 1997. ACL.

[Borkovsky, 1995] A. Borkovsky. Knight-Ridder Information’s Value Adding Name Finder. A Vari-
ation on the Theme of Fastus. In Proceedings of the Sixth Message Understanding Conference
(MUC-6), Columbia, MD, 1995. NIST, Morgan-Kaufmann Publishers.

[Brill, 1994] Eric Brill. Some advances in rule based part-of-speech tagging. In Proceedings of the
Twelfth National Conference on Artificial Intelligence, pages 722–727, Seattle, WA, 1994. AAAI.

[Brill, 1995] Eric Brill. Transformation-based error-driven learning and natural language processing:
A case study in part of speech tagging. Computational Linguistics, 21(4):543–566, December
1995.

[Gaizauskas et al., 1995] R. Gaizauskas, T. Wakao, K. Humphreys, H. Cunningham, and Y. Wilks.
University of Sheffield: Description of the LaSIE system as used for MUC-6. In Proceedings of
the Sixth Message Understanding Conference (MUC-6), Columbia, MD, 1995. NIST, Morgan-
Kaufmann Publishers.

[Grishman and Sundheim, 1995] R. Grishman and B. Sundheim. Design of the MUC-6 evaluation.

Machine Learning for Named-Entity Extraction 13

In Proceedings of the Sixth Message Understanding Conference (MUC-6), Columbia, MD, 1995.
NIST, Morgan-Kaufmann Publishers.

[Hertz et al., 1991] John Hertz, Anders Krogh, and Richard G. Palmer. Introduction to the Theory
of Neural Computation. Addison-Wesley Publishing Company, Reading, Massachusetts, 1991.

[Iwanska et al., 1995] L. Iwanska, M. Croll, T. Yoon, and M. Adams. Wayne state university: De-
scription of the UNO natural language processing system as used for MUC-6. In Proceedings of
the Sixth Message Understanding Conference (MUC-6), Columbia, MD, 1995. NIST, Morgan-
Kaufmann Publishers.

[Morgan et al., 1995] R. Morgan, R. Garigliano, P. Callaghan, S. Poria, M. Smith, A. Urbanowicz,
R. Collingham, M. Costantino, C. Cooper, and the LOLITA Group. University of durham:
Description of the LOLITA system as used for MUC-6. In Proceedings of the Sixth Message Un-
derstanding Conference (MUC-6), Columbia, MD, 1995. NIST, Morgan-Kaufmann Publishers.

[Palmer and Day, 1997] David D. Palmer and David S. Day. A statistical profile of the Named-Entity
Task. In Proceedings of the Fifth Conference on Applied Natural Language Processing, pages
190–193, Washington, D.C., 1997. ACL.

[Palmer and Hearst, 1994] David D. Palmer and Marti A. Hearst. Adaptive sentence boundary dis-
ambiguation. In Proceedings of the 1994 Conference on Applied Natural Language Processing,
Stuttgart, Germany, October 1994. ACL.

[Quinlan, 1992] J. Ross Quinlan. C4.5 : Programs for Machine Learning. Morgan Kaufmann Series
in Machine Learning. Morgan-Kaufmann Publishers, Menlo Park, CA, 1992.

[Rabiner, 1993] Lawrence Rabiner. A tutorial on hidden markov models and selective applications
in speech recognition. In Alex Waibel and K. F. Lee, editors, Readings in Speech Recognition.
Morgan Kaufmann Publishers, 1993.

[Reynar and Ratnaparkhi, 1997] Jeffrey C. Reynar and Adwait Ratnaparkhi. A maximum entropy
approach to identifying sentence boundaries. In Proceedings of the Fifth Conference on Applied
Natural Language Processing, pages 16–19, Washington, D.C., 1997. ACL.

[Sundheim, 1995] B. Sundheim. Overview of results of the MUC-6 evaluation. In Proceedings of
the Sixth Message Understanding Conference (MUC-6), Columbia, MD, 1995. NIST, Morgan-
Kaufmann Publishers.

[Thompson and Dozier, 1997] Paul Thompson and Christopher C. Dozier. Name searching and in-
formation retrieval. Available in the The Computation and Language E-Print Archive at
http : //xxx.lanl.gov/abs/cmp− lg/9706017/, June 1997.

[van Rijsbergen, 1979] C. J. van Rijsbergen. Information Retrieval. Butterworths, London, 1979.

[Weischedel, 1995] Ralph Weischedel. BBN: description of the PLUM system as used for MUC-6.
In Proceedings of the Sixth Message Understanding Conference (MUC-6), Columbia, MD, 1995.
NIST, Morgan-Kaufmann Publishers.

14 PACLING’99, Waterloo, Canada

Figure 6. A screen shot of the browser interface built using the name spotting technology
described in this paper (this one implemented using a context window of 1 word for speed).

