
SLIPstream: Scalable Low-latency Interactive
Perception on Streaming Data

Padmanabhan S. Pillai, Lily B. Mummert, Steven W. Schlosser
Rahul Sukthankar, Casey J. Helfrich

Intel Research Pittsburgh
{padmanabhan.s.pillai, lily.b.mummert, steven.w.schlosser, rahul.sukthankar, casey.j.helfrich}@intel.com

ABSTRACT
A critical problem in implementing interactive perception applica-
tions is the considerable computational cost of current computer
vision and machine learning algorithms, which typically run one to
two orders of magnitude too slowly to be used interactively. For-
tunately, many of these algorithms exhibit coarse-grained task and
data parallelism that can be exploited across machines. The SLIP-
stream project focuses on building a highly-parallel runtime system
called Sprout that can harness the computing power of a cluster to
execute perception applications with low latency. This paper makes
the case for using clusters for perception applications, describes
the architecture of the Sprout runtime, and presents two compute-
intensive yet interactive applications.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose and Appli-
cation-Based Systems; D.2 [Software]: Software Engineering

General Terms
Algorithms Design Performance

Keywords
Parallel Computing, Cluster Applications, Multimedia, Sensing,
Stream Processing, Computational Perception

1. INTRODUCTION
Interactions between humans and computers have been lopsided

at best. Computers today have very rich output capabilities, and
can communicate with human users with a variety of video, au-
dio, text, and even physical (e.g., robotic or haptic) means. Al-
though sensing capabilities have vastly improved, communication
from humans to computers has been largely limited to a few input
modalities — keyboards, buttons, mice, and joysticks. Natural in-
teractions using voice and gestures in real world environments have
been largely beyond the capability of today’s systems. Most of the
successes in this area, such as speech recognition for phone menus,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’09, June 3–5, 2009, Williamsburg, Virginia, USA.
Copyright 2009 ACM 978-1-60558-433-1/09/06 ...$5.00.

Figure 1: Gestris: an example of a gesture-based interactive
gaming system

virtual reality systems, and the Wii gaming interface, operate by
constraining the problem, such as by using limited context-specific
vocabularies, highly controlled environments or requiring the user
to use special markers or devices while interacting with the system.
Truly natural interactions that approach the richness and complex-
ity of human-to-human visual and aural communications require a
new class of interactive perception applications and systems that
can process digital video and audio in unconstrained settings at in-
teractive time scales.

Figure 1 shows our prototype of a camera-based natural inter-
face, with which the user can interact with a game using gestures
in an uncontrolled environment. Unlike early efforts in gesture
recognition (e.g., [5, 29]), the user need not dominate the camera
view and may appear anywhere in the scene, which can contain
significant visual clutter and other moving objects. A key prob-
lem in realizing such interactive perception applications is that the
current best approaches use very compute-intensive computer vi-
sion and machine learning techniques. These algorithms often run
one or two orders of magnitude too slowly for interactive settings.
Compounding this problem, sequential processing speeds have not
improved significantly in recent hardware, as the semiconductor
industry has shifted towards increasing the number of cores in mi-
croprocessors rather than increasing their speed. Making effective
use of many-core architectures for computer vision and machine
learning remains an open research problem.

The SLIPstream project attempts to address this issue by pro-
viding a highly parallel runtime system, called Sprout, that can
harness the computing power of both multiple cores and multiple
machines in a cluster environment to run perception tasks at in-

teractive speeds. Our system is designed to make developing and
executing parallel applications as easy as possible. Sprout helps au-
tomate the execution and parallelization of applications on a cluster,
and provides an easy-to-use API that hides much of the complex-
ity of dealing with a parallel, distributed system. The application
developer only needs to be concerned with the coarse-grained par-
allelism and structure of the application, which is expressed as a
dataflow graph. The developer does not, for example, need to find
low-level, fine-grained parallel computations to vectorize, although
Sprout does not preclude such complementary optimizations. The
system can very rapidly scale the computing resources available
to an application by simply adding more machines. Furthermore,
our approach attempts to use these parallel resources to not just
increase throughput, but also reduce application latency, which is
critical in an interactive setting. Our goal is to allow the designer
to focus on developing algorithms for interactive perception, rather
than distribution aspects or optimizing for available processing re-
sources.

This paper describes our rationale and design for a parallel per-
ception runtime system, and our experiences with an early imple-
mentation of our ideas.

2. RELATED WORK
Cluster-based interactive multimedia applications. FlowVR [3]
and Stampede [24] both provide support for distributed execution
of interactive multimedia applications on compute clusters. An
application is structured as a dataflow of processing modules and
explicit data dependencies. Modules execute asynchronously on
separate threads. The underlying system transports data between
modules transparently. FlowVR focuses on integration of disparate
modules that execute at different rates or may themselves encom-
pass parallel code, and a hierarchical component model that facil-
itates composition of large applications [22]. Unlike in Sprout, la-
tency and parallelization are controlled by hand tuning of module
code, execution rates, and placement on compute nodes. Stampede
emphasizes space-time memory (STM), a distributed data struc-
ture for holding time-indexed data, as a key abstraction around
which applications are constructed. While modules are placed on
compute nodes to minimize latency, the placement algorithm as-
sumes that the number of modules and data-parallel variations is
small enough to pre-compute optimal configurations [20]. Sprout
assumes a shared-nothing model based on explicit data channels
between modules and makes no assumptions about the number of
modules or configurations.

Distributed stream processing engines. Systems such as Au-
rora [8], Borealis [2], and TelegraphCQ [7] provide support for con-
tinuous queries over data streams. These systems are used for appli-
cations such as financial data analysis, traffic monitoring, and intru-
sion detection. Data sources supply tuples (at potentially high data
rates) which are routed through an acyclic network of windowed re-
lational operators, such as selection, projection, union, aggregation,
and join. Operators and data are distributed over compute nodes to
achieve a QoS goal, typically a function of performance (e.g., la-
tency), accuracy, and reliability. Compute nodes may be geograph-
ically distributed. QoS is managed by dynamically migrating oper-
ators, partitioning data, shedding load, and reordering operators or
data. Although these systems process streaming data, perform run-
time adaptation, and consider real-time constraints, they are lim-
ited to relational operators and data types. Other stream-processing
systems such as XStream [11] and GigaScope [16] go beyond rela-
tional operators and data types, but are narrowly focused on specific
domains.

System S [4] provides support for user-defined operators, stream
discovery, dynamic application composition, and operator sharing
between applications. It has been used to process multimedia streams,
and assumes a resource-constrained data center environment in which
utilization is high and jobs may be rejected. Compute resources are
allocated to applications to maximize an importance function, typ-
ically a weighted throughput of output streams [28], unlike Sprout
which is primarily concerned with low latency.

Coarse-grain data-parallel systems. MapReduce [9] and Dryad [15]
are systems that allow large data sets to be processed in parallel on a
compute cluster. MapReduce applications consist of user-specified
map and reduce phases, in which key-value pairs are processed into
intermediate key-value pairs, and then values with the same inter-
mediate key are merged. Dryad admits a more general application
structure; a job consists of an acyclic dataflow graph of sequential
processing modules. Both systems operate from stored data rather
than streams, and are employed in off-line rather than interactive
applications. Like Sprout, MapReduce and Dryad provide simple
programming abstractions and handle many of the messy details of
distributed computation.

Language support for stream applications. Streaming languages
provide high-level programming constructs to enable efficient use
of multiple processors on a single machine. Brook [6] extends
C with data-parallel constructs for stream operations on graphics
hardware. StreamIt [12], StreamC [17], and SPUR [30] represent
programs as dataflows of processing modules, enabling the com-
piler to extract task, data, and pipeline parallelism. Generally, mod-
ule execution times and data rates must be known at compile time to
construct a steady-state program graph and map it to the underlying
hardware. StreamWare [13] relaxes this requirement by providing
a platform-independent stream virtual machine abstraction to the
compiler and application, and mapping operations to hardware at
run time. In contrast, since perception workloads are highly data-
dependent, Sprout focuses on runtime adaptation.

3. DESIGN

3.1 Interactive perception workloads
Interactive perception applications, whether processing video or

audio, typically consist of the following steps. First, raw data is en-
coded as a set of low-level features. These local descriptors charac-
terize the content in a localized spatial and temporal neighborhood
and can either be sampled densely throughout the stream or only at
specific interest points [10, 21]. Standard representations for audio
exploit the frequency domain (e.g., using short-time Fourier trans-
forms) while common descriptors for video include patches [19],
motion estimated using optical flow [18], or spatio-temporal gener-
alizations of SIFT [21,23]. The computed descriptors can be stored
as high-dimensional features or quantized into discrete “words” us-
ing a clustering algorithm (e.g., k-means [14]). The latter are re-
quired for higher-level representations that express the stream using
histograms, such as in the popular “bag of features” model.

In the next step, the representation from the incoming stream is
matched against training data. In the simplest case, matching could
involve a straightforward correlation between known templates or
(more typically) employ a discriminative classifier, such as a sup-
port vector machine [25, 26] or a cascaded linear combination of
decision stumps [18, 27] trained specifically to recognize events of
interest. In most cases, matching is performed using a scanning
window approach, which involves sweeping a region of interest in
a brute force manner over the stream both in space and time. The

sweep is often performed at multiple spatial scales because of per-
spective effects that cause objects closer to the camera to appear
larger in the image, while distant objects occupy only a small por-
tion of the frame. Scanning window approaches are computation-
ally intensive but are generally very amenable to parallelization.
Despite their expense, such brute force approaches allow the per-
ception algorithm to localize the detected event in space and time,
and are also more robust to scene clutter.

The final step aggregates lower-level matching results, first by
eliminating matches that fall below a specified detection threshold
and then combining multiple events detected in similar locations
and scales (non-maxima suppression). The perception algorithm
can thus flag events of interest and localize them in space and time,
if needed.

3.2 Application model
The application model and interfaces used in our system have

been designed for ease of use. Our approach to parallelizing in-
teractive perception tasks is based on identifying and executing
coarse-grained parallel components in an application. Hence, the
developer only needs to divide his application into a series of pro-
cessing stages that exhibit a few explicit data dependencies, i.e.,
one stage produces a particular set of data that is consumed by
another. These relations are captured in a dataflow graph. This
abstraction is particularly well suited for perception, computer vi-
sion, and multimedia processing tasks, as it mirrors the high-level
structure of these applications, which typically apply a series of
processing steps to a stream of video or audio data. The developer
does not need to identify or extract any fine-grained parallelism in
his application. In particular, the developer does not need to ex-
tract instruction- and block-level parallelism, nor vectorize compu-
tations. Although our system permits and encourages the use of
multithreaded or vectorized code, the developer can simply write
sequential code for the processing stages. In fact, the developer
does not even need to worry about thread-safety of his code or the
libraries it uses. Dealing with parallelism at this level of detail
should be easy for the developer, a key goal of our approach.

In keeping with the ease-of-use goal, the API for writing a stage
has been designed to require minimal additional effort from the de-
veloper. Our system is entirely written in C++, a standard language
familiar to most developers and amenable to high performance ap-
plications. An implementation of a stage needs to define just one
exec() method that takes one or more parameters for input data;
any outputs produced are passed back through additional pointer
parameters to this function. This is all that is strictly necessary for
writing a stage. The developer does not have to deal with communi-
cation primitives or buffers, as our system handles inter-stage com-
munications, and provides data in native user-defined structures and
classes. Hooks are provided for initialization and shutdown meth-
ods, as well as for any special marshaling code that may be needed
for the user-defined classes (e.g., deep copying, or special mem-
ory allocation). The stage executes the provided exec() method
when all inputs are ready; an optional firing rule can be specified
to change this behavior. Outputs are automatically propagated to
downstream stages. Outputs and inputs may connect to multiple
parallel instances of stages to realize parallel execution structures.

Finally, our system uses a human-readable configuration file to
indicate how the stages are assembled to form the application, es-
sentially defining the dataflow. As our system is intended to au-
tomate replication of stages and degrees of parallelism, this file is
actually a template of the structure of the application, with hints for
extracting parallelism.

time

time

time

a) Unparallelized vision code: high latency, low throughput

b) Inter-frame parallelization: high latency, high throughput

c) Intra-frame parallelization: low latency, high throughput

Figure 2: Parallel execution to minimize latency

3.3 Parallel execution
Given an application divided into stages, and a template dataflow

graph describing how the components are connected, our system
attempts to parallelize the execution of the application by map-
ping instances of the stages to multiple processors and machines.
The actual methods of parallelization employed greatly affect any
speedup achieved, and in particular whether latency or throughput
is improved. Figure 2 illustrates this idea for an image process-
ing task that performs independent processing on frames of a video
stream. The sequential application is slow, in terms of frame la-
tency and throughput. As frame operations are independent, we
can make use of inter-frame parallelization by processing subsets
of the frames on multiple instances of the application. This allows
the throughput to increase, but latency for a given frame remains the
same. Ideally, one would exploit intra-frame parallelization — di-
viding the processing of each frame among multiple machines can
improve both latency and throughput. However, there is some cost
to this approach. Inter-frame parallelization requires little knowl-
edge or modification of the application, while intra-frame paral-
lelization may require intrusive modifications.

Sprout makes use of several parallelization techniques to achieve
low-latency execution. The template dataflow graph is inherently
a task-parallel model, and the runtime is free to execute separate
stages in parallel when data dependencies permit. When a config-
uration file indicates that data items are independently processed
by a stage, the runtime may instantiate multiple copies of the stage,
and distribute processing among these to improve throughput. Data-
parallel constructs are also supported. For example, a stage that
compares a data item to those in a large database can be executed
as multiple instances, each operating on a subset of the database.
In this example, some modification of the stage code is needed, as
it must export a set of tuning methods that lets the runtime assign
a subset of work to each instance. To correctly connect the parallel
stage instances, the runtime has built-in adapters to duplicate data
streams or split them in a round-robin fashion, as well as collect
and merge outputs. More intrusive mechanisms for reducing pro-
cessing times, such as splitting a frame among parallel stages, are
supported, but require more effort from the application writer to
devise custom split and merge adapters.

Sprout expands the template dataflow configuration and distributes
the requisite set of stages across a cluster of machines. As pro-
cessing time for many interactive perception applications is highly

Stage(s)

Stage API

Stage runtime

Data collection

Stage(s)

Stage API

Stage runtime

Data collection

Stage(s)

Stage API

Stage runtime

Data collection

Stage(s)

Stage API

Stage runtime

Data collection

Configuration
server

Application
controller

Black box
(system) data

White box
(stage) data

C
LU

S
T

E
R

 N
O

D
E

S
C

LI
E

N
T

 N
O

D
E

Config
advice

Config
info

App front end

Runtime API

Client library

Source Sink

Application data
(video, sensors, ...)

Initial
config

C
on
fig

ch
an

ge
s

Figure 3: Sprout system diagram

data- and scene-dependent, and may not be known precisely a pri-
ori, a full implementation of our system will incorporate runtime
monitoring and adaptation, varying the degree of parallelism to
meet latency and throughput requirements, in addition to automated
placement of stages. The system must be able to dynamically cre-
ate, shutdown and migrate stages to balance loads and latencies.
Finally, in particularly resource-constrained situations, the system
will resort to load shedding (e.g., dropping frames, or other application-
specific mechanism) to gracefully degrade performance while en-
suring low latency.

4. IMPLEMENTATION

4.1 Architecture of Sprout runtime
Sprout applications consist of a set of processing stages that run

in parallel on a compute cluster. Each machine in the cluster runs a
stage server process, which executes the stages assigned to that ma-
chine. Each stage running in the stage server has a single thread to
run its exec() method when its input arrives. Auxiliary threads
in the stage server manage input and output connections and re-
spond to RPC calls from Sprout clients and external programs to
handle stage management and monitoring. Performance dictated
our choice of a single process as the container for all stages on a
node in order to minimize context switch time.

Programmers implement application stages according to the Stage
API and link them against the Sprout stage server library. This pro-
duces a single binary which can run any stage in the application,
allowing the Sprout runtime to manage stage placement by selec-
tively activating user stages as appropriate. We chose selective ac-
tivation over dynamic linking to simplify code management.

Sprout client programs link with the Sprout client library which
provides methods for instantiating applications. A client provides a
simple configuration file which specifies the application graph. The
client library passes this graph to the Sprout configuration server
(described below) which maps the application graph to the cluster
nodes, instantiates the stage servers, orchestrates data connections
between the stages, and activates them once setup is complete.

Data is delivered to a Sprout application by data sources. We
have implemented sources which provide images from cameras and
files, as well as data from distributed file systems. As specialized
stages, sources generally run within stage servers, but can also be
instantiated within Sprout clients if needed. Data is consumed by
data sinks, which are specialized stages that accept input but pro-
vide no further output to the Sprout graph. Rather, their output
is displayed to the user, stored in an archive, or routed to other
external systems. A Sprout application can have any number of
sources and sinks connected at any point in the application graph.
Data connections between stages, sources, and sinks are managed
by the Sprout runtime, not application writers. Connections are
either over TCP sockets between machines or via local memory
references when two stages run on the same machine.

For each Sprout cluster, a configuration server manages the place-
ment, startup, and shutdown of stages. The configuration server is
centralized so as to have a single view of the cluster and applica-
tions it manages. The configuration server’s interactions with ap-
plications are occasional rather than in-band, so it does not need to
be extremely scalable.

The process for application setup is initiated by a Sprout client
and orchestrated by the configuration server. The configuration
server generates an initial placement of stages to stage servers, in-
vokes stage servers on the cluster machines if they are not already
running, and directs those stage servers to instantiate the appropri-
ate application stages. Once the stages are instantiated, the stage
servers create input and output connections for each stage, either
over TCP or through local memory, as appropriate. The configura-
tion server then directs each stage to connect to the stages imme-
diately downstream. Once those connections have been made the
configuration server directs the stages to start processing.

The last component in the Sprout runtime is the application con-
troller, which is responsible for runtime adaptation. The applica-
tion controller gathers application-specific or white-box observa-
tions about the status of the application from the stages themselves.
These can be any manner of data including frame rates, process-
ing time per frame, number of extracted features, etc. As well,
the application controller gathers application-agnostic or black-box
observation about the status of the systems themselves, such as the
utilizations of CPU, network, and disk. These observations drive
the decision-making process for adaptation, which will suggest ad-
vice to the configuration server for changes to be made in the ap-
plication. These changes can include adjusting the level of par-
allelism, co-location or migration of stages, or other application-
specific adaptations. As structural changes are made by the con-
figuration server, they are communicated back to the application
controller.

Runtime adaptation is a very rich area of future work for SLIP-
stream, and we have only begun to scratch the surface. Our ini-
tial implementation of runtime adaptation in Sprout includes the
data collection architecture for both white- and black-box data, and
some simple decision trees for detecting and mitigating CPU bot-
tlenecks by adjusting parallelism.

4.2 Example application: Gestris
Gestris is an interactive two-player game system in which play-

ers use hand gestures to move and rotate blocks in a Tetris-style
game (Figure 1). The system requires no special props, cloth-
ing, or markers. Instead, gestures are detected from two video
streams (one for each player) using a volumetric event detection
algorithm [18] that is robust to background clutter. The gestures
are translated to keystrokes that control the actual game, which has
not been modified.

RRSplitter

LSplit RSplit

LJoin RJoin

RRJoin

FeatureGen0FeatureGen1FeatureGen2FeatureGen3FeatureGenLMatch

FeatureGen0FeatureGen1FeatureGen2FeatureGen3FeatureGenRMatch

Figure 4: Gestris application graph

The Gestris application has just one processing stage that matches
a set of gesture templates to a region of a sequence of video frames.
The perception system receives an interleaved stream of frames
from both cameras. To parallelize this application, we separate
these video streams, and process them concurrently. The matcher
stage is replicated, and each instance assigned a disjoint subregion
in which to check for gestures. The sequence of matching gestures
is merged, and returned to the keystroke generator. The complete
graph of the Gestris perception system shown in Figure 4 runs on
two machines equipped with 3.0 GHz quad-core Intel R© CoreTM 2
Extreme processors, and handles 15 frames per second from each
camera with latencies under 250 ms. A third machine handles video
acquisition, keystroke generation, and execution of the game itself.

4.3 Example application: Object recognition
pMocha is a parallelized version of an object instance recogni-

tion application [1], which consists of three major components that
execute in Sprout stages: SIFT feature generation [23], similarity
calculation against a database of training images, and classification.
The full application graph appears in Figure 5.

pMocha exploits several opportunities for parallelism. Incoming
frames are sent round-robin to subtrees of feature generator stages.
Each subtree splits an incoming image into five subimages (four
quadrants plus an overlapping center subimage) and then gener-
ates SIFT features from each. The features for a whole image
are merged by the ImageMerger stage, and those from alternat-
ing frames from the left and right subgraphs are ordered by the
InputJoiner. Each set of features is compared against a database
of training images, generating a similarity vector which is used
downstream for classification. The database is partitioned among
the workers, which each receive a copy of the features. Finally,
the similarities are gathered and classified, resulting in the object’s
identification. The three major components run concurrently in a
pipeline fashion.

Re-factoring the original Mocha application to run on Sprout was
a straightforward task, requiring a few days for a programmer who
had never worked with Mocha before. We have scaled pMocha
to process live video at a resolution of 640x480 pixels per frame,
running at 25 frames per second, with a latency of between 0.08
and 0.5 seconds (2–10 frames outstanding). To maintain that data
rate, pMocha requires 14 8-core servers, each with two four-core
2.83 GHz Intel R© XeonTM E5440 processors and 8 GB of mem-
ory. The majority of the machines (10 out of 14) are devoted
to SIFT feature generation, two are devoted to similarity calcula-
tion, and the remainder for splitting and joining. The original non-
parallelized implementation of Mocha on one 8-core machine can
only sustain two frames per second.

InputSplitter

ImageSplitter0 ImageSplitter1

FeatureGen0FeatureGen1FeatureGen2FeatureGen3FeatureGen

ImageMerger0 ImageMerger1

InputJoiner

DBSplitter

DBMerger +
Classifier

FeatureGen0FeatureGen1FeatureGen2FeatureGen3FeatureGen

SimCalculator

Figure 5: pMocha application graph

Optimizing pMocha, even if only by hand, has taught us about
some of the tasks that lay ahead for runtime adaptation. First,
throughput bottlenecks quickly became evident at specific stages
(in particular, the SIFT feature generator and the similarity calcu-
lator), and were addressed by increasing the level of parallelism,
when possible. Second, while the increased throughput from paral-
lel stages was able to keep up with the frame rate, initially latency
was unacceptable due to processing time for feature extraction. As
a solution, we introduced subimage feature extraction, a form of
intra-frame parallelization, which reduced the latency by roughly a
factor of five. Third, we encountered load imbalances in both the
parallel feature generators and the similarity calculators because
processing time is strongly data dependent. Complex images tend
to have more features and therefore take longer to process. Because
objects often appear centered in the frame, the central subimage
tends to contain more features and requires more time to process
than the others. To prevent load imbalances, we randomly assigned
work among the parallel stages. Lastly, the SIFT feature gener-
ator transparently uses the Intel Performance Primitives (IPP) li-
brary to parallelize SIFT at a fine granularity, independent of the
coarse-grained parallelism of Sprout. To avoid interference with
IPP, we dedicated entire machines to feature generation, mapping
other pMocha functions to their own machines.

5. CONCLUSIONS AND FUTURE WORK
The SLIPstream project is pursuing natural modalities of interac-

tion between humans and computers. A key problem is that com-
puter vision and machine learning algorithms used in perception
tasks have very high processing requirements and unacceptably
high latencies. We believe that harnessing the scalable process-
ing capacity of computer clusters will be a key enabler for these
applications.

This paper presents our design for Sprout, a core systems com-
ponent of the SLIPstream vision, which provides the APIs and
runtime support to implement parallel, interactive perception ap-
plications. Initial results from two applications implemented on

the Sprout prototype indicate that our approach is effective for de-
veloping parallel vision algorithms, tuning them for latency, and
enabling interactive-speed perception applications that operate in
unconstrained environments. We hope that Sprout will prove to be
easy-to-use and readily applicable to a broad range of vision appli-
cations, and that it can serve as a form of rapid-prototyping system
for interactive perception applications. In particular, Sprout allows
one to focus on creating algorithms rather than tuning for perfor-
mance, yet achieves interactive speeds by exploiting the available
hardware resources. Later, focused tuning and optimization efforts
can be applied to achieve the performance goals more efficiently.

Sprout is currently a work in progress. In particular, runtime
adaptation, automatic placement of stages, and system optimization
for latency are under active development. We are also investigat-
ing systematic ways to incorporate domain-specific techniques for
managing fidelity, such as load shedding and dynamically adjust-
ing classification accuracy. A complete implementation of Sprout
will be an effective tool for developing and executing interactive
perception applications.

6. REFERENCES
[1] Visual Object Instance Recognition. http://people.

csail.mit.edu/rahimi/projects/objrec/.

[2] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel,
M. Cherniack, J. Hwang, W. Lindner, A. S. Maskey,
A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik. The
Design of the Borealis Stream Processing Engine. In Proc.
Innovative Data Systems Research, 2005.

[3] J. Allard, V. Gouranton, L. Lecointre, S. Limet, E. Melin,
B. Raffin, and S. Robert. FlowVR: a middleware for large
scale virtual reality applications. In Proc. Euro-Par, 2004.

[4] L. Amini, H. Andrade, R. Bhagwan, F. Eskesen, R. King,
P. Selo, Y. Park, and C. Venkatramani. SPC: A Distributed,
Scalable Platform for Data Mining. In Proceedings of the
Workshop on Data Mining Standards, Services, and
Platforms, 2006.

[5] A. F. Bobick and J. W. Davis. The recognition of human
movement using temporal templates. PAMI, 23(3), 2001.

[6] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,
M. Houston, and P. Hanrahan. Brook for GPUs: Stream
Computing on Graphics Hardware. In SIGGRAPH, 2004.

[7] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy,
S. Madden, V. Raman, F. Reiss, and M. Shah. TelegraphCQ:
Continuous Dataflow Processing for an Uncertain World. In
Proceedings of the Conference on Innovative Data Systems
Research, 2003.

[8] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Çetintemel, Y. Xing, and S. Zdonik. Scalable Distributed
Stream Processing. In Proceedings of the Conference on
Innovative Data Systems Research, 2003.

[9] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. CACM, 51(1), 2008.

[10] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie. Behavior
recognition via sparse spatio-temporal features. In IEEE
Workshop on PETS, 2005.

[11] L. Girod, Y. Mei, R. Newton, S. Rost, A. Thiagarajan,
H. Balakrishnan, and S. Madden. XStream: a
Signal-Oriented Data Stream Management System. In Proc.
International Conference on Data Engineering, 2008.

[12] M. Gordon, W. Thies, and S. Amarasinghe. Exploiting
Coarse-Grained Task, Data, and Pipeline Parallelism in

Stream Programs. In Proceedings of the International
Conference on Architectural Support for Programming
Languages and Operating Systems, October 2006.

[13] J. Gummaraju, J. Coburn, Y. Turner, and M. Rosenblum.
Streamware: programming general-purpose multicore
processors using streams. In Proc. Architectural Support for
Programming Languages and Operating Systems, 2008.

[14] J. Hartigan and M. Wang. A k-means clustering algorithm.
Applied Statistics, 28:100–108, 1979.

[15] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
distributed data-parallel programs from sequential building
blocks. In Proceedings of European Conference on
Computer Systems, 2007.

[16] T. Johnson, M. S. Muthukrishnan, V. Shkapenyuk, and
O. Spatscheck. Query-aware partitioning for monitoring
massive network data streams. In Proc. SIGMOD, 2008.

[17] U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn,
P. Mattson, and J. D. Owens. Programmable Stream
Processors. IEEE Computer, pages 54–62, August 2003.

[18] Y. Ke, R. Sukthankar, and M. Hebert. Efficient visual event
detection using volumetric features. In Proceedings of
International Conference on Computer Vision, 2005.

[19] Y. Ke, R. Sukthankar, and M. Hebert. Event detection in
crowded videos. In Proceedings of International Conference
on Computer Vision, 2007.

[20] K. Knobe, J. M. Rehg, A. Chauhan, R. S. Nikhil, and
U. Ramachandran. Scheduling constrained dynamic
applications on clusters. In Proc. Supercomputing, 1999.

[21] I. Laptev and T. Lindeberg. Space-time interest points. In
Proc. International Conference on Computer Vision, 2003.

[22] J.-D. Lesage and B. Raffin. A Hierarchical Component
Model for Large Parallel Interactive Applications. The
Journal of Supercomputing, July 2008.

[23] D. Lowe. Distinctive image features form scale-invariant
keypoints. IJCV, 60(2), 2004.

[24] U. Ramachandran, R. Nikhil, J. M. Rehg, Y. Angelov,
A. Paul, S. Adhikari, K. Mackenzie, N. Harel, and K. Knobe.
Stampede: a cluster programming middleware for interactive
stream-oriented applications. IEEE Trans. Parallel and
Distributed Systems, 14(11), 2003.

[25] C. Schuldt, I. Laptev, and B. Caputo. Recognizing human
actions: A local SVM approach. In Proc. International
Conference on Pattern Recognition, 2004.

[26] V. N. Vapnik. The Nature of Statistical Learning Theory.
Springer, 1995.

[27] P. Viola and M. Jones. Rapid object detection using a
boosted cascade of simple features. In Proc. Computer
Vision and Pattern Recognition, 2001.

[28] J. Wolf, N. Bansal, K. Hildrum, S. Parekh, D. Rajan,
R. Wagle, K.-L. Wu, and L. Fleischer. SODA: an optimizing
scheduler for large-scale stream-based distributed computer
systems. In Proc. ACM/IFIP/USENIX Middleware, 2008.

[29] C. Wren, F. Sparacino, A. Azarbayejani, T. Darrell,
T. Starner, A. Kotani, C. Chao, M. Hlavac, K. Russell, and
A. Pentland. Perceptive spaces for performance and
entertainment: Untethered interaction using computer vision
and audition. Applied AI, 11(4), 1996.

[30] D. Zhang, Z.-Z. Li, H. Song, and L. Liu. A Programming
Model for an Embedded Media Processing Architecture. In
Embedded Computer Systems: Architectures, Modeling, and
Simulation, 2005.

