
Efficient Near-duplicate Detection and Sub-image Retrieval

Yan Ke†

yke@cmu.edu
Rahul Sukthankar‡†

rahuls@cs.cmu.edu
Larry Huston‡

larry.huston@intel.com
†School of Computer Science ‡Intel Research Pittsburgh

Carnegie Mellon University 417 S. Craig Street Suite 300
Pittsburgh, PA 15213 Pittsburgh, PA 15213

U.S.A. U.S.A.

ABSTRACT
We introduce a system for near-duplicate detection and sub-image
retrieval. Such a system is useful for finding copyright violations
and detecting forged images. We define near-duplicates as im-
ages altered with common transformations such as changing con-
trast, saturation, scaling, cropping, framing, etc. Our system builds
a parts-based representation of images using distinctive local de-
scriptors which give high quality matches even under severe trans-
formations. To cope with the large number of features extracted
from the images, we employ locality-sensitive hashing to index the
local descriptors. This allows us to make approximate similarity
queries that only examine a small fraction of the database. Al-
though locality-sensitive hashing has excellent theoretical perfor-
mance properties, a standard implementation would still be unac-
ceptably slow for this application. We show that, by optimizing lay-
out and access to the index data on disk, we can efficiently query in-
dices containing millions of keypoints. Our system achieves near-
perfect accuracy (100% precision at 99.85% recall) on the tests pre-
sented in Meng et al. [16], and consistently strong results on our
own, significantly more challenging experiments. Query times are
interactive even for collections of thousands of images.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Image
databases; I.4.10 [Computing Methodologies]: Image Processing
and Computer Vision—Image Representation

General Terms
Algorithms, Performance, Experimentation

Keywords
Sub-image retrieval, Near-duplicate image detection, Interest points,
Local image descriptors, Locality-sensitive hashing (LSH)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’04, October 10-16, 2004, New York, New York, USA.
Copyright 2004 ACM 1-58113-893-8/04/0010 ...$5.00.

1. INTRODUCTION
Near-duplicate image detection and sub-image retrieval is an im-

portant problem with several applications. Our system is motivated
by two practical scenarios: finding (potentially modified) copy-
righted images [1] and detecting forged images [6].

As more images are published on the Web, and as image manip-
ulation software becomes more powerful and user-friendly, pirating
images is becoming increasingly easy. Although digital watermark-
ing techniques exist, these schemes are very difficult to design and
there is an inherent trade-off between the robustness of the water-
mark and the amount of degradation induced in the image. To cir-
cumvent digital watermarking, the pirated images are often altered
slightly — for instance, by cropping and rescaling. The problem
of matching a slightly altered photograph to its original is termed
near-duplicate image detection. A photo publishing agency could
use a system like ours to automatically identify potential copyright
violations and dispense with digital watermarks altogether.

A more insidious form of image manipulation, one that is be-
coming increasingly popular in propaganda, is the creation of fake
photographs by cutting and pasting pieces extracted from differ-
ent original sources. For instance, one could crop political figures
from two different photographs and create a fake composite im-
age showing them shaking hands, even though the individuals may
never have met in reality [6]. Figure 1 shows an example where a
girl’s head from one painting was grafted into a scene from another
painting. The problem of matching a small portion of one image
to its original is termed sub-image retrieval. If the original images
were stored in our system, we could detect query images that were
composites and accurately identify the exact sources used in their
creation.

We believe that practical systems that address the applications
discussed above should satisfy the following requirements:

1. High recall. All images in the database that contain sub-
images that are present in the query image should be found,
even if the sub-images only occupy a small portion of the
original.

2. High precision. If the database images and the query image
do not have sub-images in common, then they should not
be matched. This is important because incorrectly-flagged
images will waste the user’s time.

3. Efficiency. The time needed to query an image should be
small, enabling the system to scale to very large databases.

Near-duplicate image detection and sub-image retrieval have both
been studied extensively in recent years [3, 6, 12, 14, 16, 19]. How-
ever, previous work has typically cast the task into a traditional
content-based image retrieval (CBIR) context, which tends to suf-
fer from the following two problems. First, many techniques calcu-

Query image

210x174
Retrieved images

500x800 510x650

Figure 1: Example of sub-image retrieval applied to forgery
detection. Given the top (forged) image as a query, our system
correctly retrieves the bottom two (source) images, without any
false matches, from a database containing 6100 images of sim-
ilar paintings. Note that the query image contains only a very
small portion from each source image, and that these portions
have been cropped, resized and rotated.

late and store global statistics for each image, which is efficient but
insufficiently accurate: recall can suffer when a significant trans-
formation perturbs global statistics; and precision can be poor be-
cause global statistics, such as histograms (that are robust to geo-
metric transforms), tend to generate many false positives. Second,
those systems that compute local statistics of an image (e.g., by
partitioning an image into smaller pieces) can suffer from low pre-
cision [14, 19]. This is because they typically concatenate all of an
image’s local statistics into a single feature vector describing the
image. They must then relax the matching threshold in order to
match small parts of the feature vectors, which makes the vectors
less distinctive.

We argue that, instead of using a single feature vector to de-
scribe an entire image, one should identify and independently in-
dex a large number of local features, each of which is highly dis-
tinctive, while being robust to typical image transforms. Such an
approach would selectively identify local features that match ex-
tremely well, rather than seeking loose partial matches between
complicated global image features. Unlike existing techniques,
such a scheme would be highly resistant to occlusions and crop-
ping, both of which can destroy a significant fraction of the fea-
tures. The main drawback of the proposed approach is that a sin-
gle image could generate thousands of local features, and a sin-
gle query would require the system to search for each of these
features in a database containing millions or billions of features.
Since features would not generate exact matches, each of the in-
dividual searches would become a similarity query in a very high-
dimensional feature space. Consequently, such approaches have
previously been dismissed as computationally impractical. How-
ever, this paper shows that these ideas can become the foundation
for near-duplicate and sub-image retrieval system that is both ex-
tremely accurate and that scales well to large image collections.

The research that is most similar to ours is [1], where local fea-
tures are extracted from images and matched using an approximate
similarity search. Our system differs significantly in the following
respects. First, we use scale- and rotation-invariant interest point
detectors, more distinctive local descriptors, and perform geometric
verification on the matched features. Second, instead of an ad hoc
approximate similarity search, we employ locality-sensitive hash-
ing [7], an algorithm with provable performance bounds. These
contribute to the dramatic improvements in accuracy shown in Sec-
tion 5.1. Third, we build offline indices that are optimized for disk
access and search for all of the query local descriptors in a single
pass. This enables us to query large image collections in interactive
time.

The remainder of this paper is organized as follows. Section 2
reviews the relevant research for each of our components. Section 3
describes our system and gives implementation details. Section 4
details our evaluation metrics, experimental methodology, and the
different datasets. Section 5 presents results of our system’s re-
trieval accuracy and explores the impact of individual optimizations
on execution time. Finally, we discuss some limitations of our work
in Section 6 and conclude in Section 7.

2. BACKGROUND
We first introduce the three building blocks of our system: dis-

tinctive interest points, locality-sensitive hashing, and efficient lay-
out of data on disk. Using distinctive interest points allows us to
achieve high recall and precision, while using locality-sensitive and
efficient data layout gives our system interactive query times.

2.1 Distinctive Interest Points
Interest points [8, 13, 21] are commonly employed in a number

of real-world applications such as object recognition [4] and image
retrieval [17] because they can be computed efficiently, are resis-
tant to partial occlusion, and are relatively insensitive to changes in
viewpoint. There are three considerations to using interest points
in these applications. First, the interest points should be localized
in position and scale. Typically, interest points are placed at local
peaks in a scale-space search, and filtered to preserve only those
that are likely to remain stable over transformations. Second, the
neighborhood surrounding each interest point should be modeled
by a local descriptor. Ideally, this description should be distinc-
tive (reliably differentiating one interest point from others), con-
cise, and invariant over expected geometric and photometric trans-
formations. Finally, the matching between local descriptors must
be accurate and computationally efficient (discussed further in Sec-
tion 2.2).

For interest point detection, we use Lowe’s Difference of Gaus-
sian [13] (DoG) detector because it has been shown to be robust
and efficient. The DoG detector consists of three major stages:
(1) scale-space peak selection; (2) interest point localization; (3)
orientation assignment. In the first stage, potential interest points
are identified by scanning the image over location and scale. This
is implemented efficiently by constructing a Gaussian pyramid and
searching for local peaks, termed keypoints, in a series of difference-
of-Gaussian images. In the second stage, candidate keypoints are
localized to sub-pixel and sub-scale accuracy, and eliminated if
found to be unstable. The third stage identifies the dominant ori-
entations for each keypoint based on its local image patch. The as-
signed orientation(s), scale and location for each keypoint enables
us to construct a canonical view for the keypoint that is invariant to
similarity transforms. For a 640x480 pixel image, we typically find
hundreds to thousands of keypoints in the image, depending on the
complexity of the image. Figure 2 shows the keypoints found in

(a) Original image (b) Rotated, scaled, and sheared

Figure 2: The keypoints located in this pair of images are
shown as white circles, with lines denoting dominant orienta-
tions and radius denoting scale. Note that the keypoints are
found at the same locations in each image, enabling us to accu-
rately match the transformed image to the original. Note that
the size and orientation of the keypoints reflects how the im-
age was scaled, rotated and sheared. For illustration purposes,
keypoints with a very small scale are not shown.

two images of a plant. One image is a rotated, scaled and sheared
version of the other. Notice how the size and orientation of the key-
points are consistent with the applied transform. Although some
of the smaller keypoints from Figure 2(a) are not detected in Fig-
ure 2(b), our system can still reliably match the larger keypoints.

For interest point representation, we use PCA-SIFT [11], a lo-
cal descriptor that has been shown to be both more distinctive and
compact than the original SIFT [13] descriptor. Given the location,
size, and orientation of a keypoint, PCA-SIFT extracts a 41× 41
pixel patch at the given scale and rotates it to a canonical orien-
tation. The extracted patch covers an area in the original image
proportional to the size of the keypoint. PCA-SIFT then generates
its compact feature vector by computing the local gradient image
of the patch, normalizing it, and projects it onto a precomputed
eigenspace. As described in [11], this eigenspace is generated once
(off-line) from a large number of keypoints extracted from images
of natural scenes, and is not specific to our image collection. The
top 36 components of the projected vector are used as the local
descriptor.

The use of local descriptors has several characteristics that are
ideal for solving the near-duplicate image detection problem. First,
the interest points are scale and rotation invariant. This allows us
to detect and match the same set of interest points even after im-
ages have been arbitrarily rotated or scaled. Our approach is also
robust to deformations such as Gaussian blurring, median filtering,
and the addition or removal of noise, which can degrade or destroy
the high frequency content of the original image. This is because
a subset of interest points in the original image will continue to
match those interest points that encode lower frequency content in
the transformed image (corresponding to larger image areas). Sec-
ond, the descriptors are robust to image deformations such as affine
warp, changes in brightness and contrast, etc. Furthermore, PCA-
SIFT ignores color and operates on gray-scale images, making the
algorithm immune to transforms that manipulate the color content
of the image, such as saturation and colorization. Finally, because
we use local descriptors, our system can find matches even if there
is significant occlusion or cropping in the images. The system re-
quires as few as five interest points (out of hundreds) to match be-
tween two images in terms of descriptor similarity and geometric
constraints. Despite the small number of interest points needed to
match, we maintain a low false positive rate because the local de-

scriptors are highly distinctive and the geometric constraints further
discard many false positives. In practice, the smallest sub-image we
can reliably match between two images is approximately 100×100
pixels. This technique is also well suited to approximate similarity
search algorithms, where one achieves a much faster query time at
the cost of missed matches; note that although recall may suffer at
the keypoint level, the overall recall of the system can continue to
be very high because so few keypoint matches are needed.

Because of the large number of keypoints present in each image,
it is cost prohibitive to do a linear search through the database for
each query. Therefore, we employ an approximate similarity search
that is well suited for high dimensional data.

2.2 Locality Sensitive Hashing
Locality-sensitive hashing (LSH), proposed by Indyk & Mot-

wani [10], is an approximate similarity search technique that works
efficiently even for high-dimensional data. Traditional data struc-
tures for similarity search suffer from the curse of dimensional-
ity, in that they scale poorly for data with dimensions greater than
20, where they perform no better than an exhaustive linear search
through the entire database. It has been shown that LSH out-performs
tree-based structures such as the Sphere/Rectangle-tree (SR-tree)
by at least an order of magnitude. Given that our data consists of
many, high-dimensional (36-dimensional) feature vectors, LSH be-
comes an attractive indexing scheme.

Locality-sensitive hashing solves the following similarity search
problem, termed (r,ε)-NN, in sub-linear time. If, for a point q
(query) in d-dimensional space, there exists an indexed point p such
that d(p,q) ≤ r, then LSH will, with high probability, return an in-
dexed point p′ such that d(p′,q)≤ (1+ε)r. If no indexed point lies
within (1 + ε)r of q, then LSH will return nothing with high prob-
ability. This is accomplished using a set of special hash functions
that satisfy the intuitive notion that the probability of a hash colli-
sion for two points be related to the similarity (distance) between
the points. By using multiple such hash functions in parallel, LSH
reduces the rate of false negatives.

A popular algorithm for LSH, introduced by Gionis et al. [7]
conceptually transforms each point p into a binary vector by con-
catenating the unary representation of each (discretized) coordi-
nate of p. The resulting bit string is a point in a high-dimensional
Hamming space, where L1 distances between points in the original
space are preserved. Hash functions that simply select a subset of
the bits that satisfy the desired locality-sensitive properties. The al-
gorithm builds a set of l such hash functions, each of which selects
k bits from the bit string (each function uses a different, randomly-
selected set of k bits). These k bits are hashed once more to in-
dex into the buckets in our hash table, and a 32-bit checksum hash
value is also generated. The two parameters, k and l enable the
designer to select an appropriate trade-off between accuracy and
running time. Our implementation of this algorithm is described
in Section 3. In our experiments, we use k=450 and l=20, based
on performance on a separate validation dataset. As seen in Sec-
tion 5.2, our choice of (k, l) favors execution speed over similarity
point recall; given that each image contains hundreds of keypoints,
we are willing to risk missing a significant fraction of them in ex-
change for speed.

2.3 Efficient Disk Access
Locality-sensitive hashing was originally designed to work effi-

ciently in memory, where random access is fast. For large datasets,
one must store the database on disk, and a naive implementation
of LSH fails miserably. This is because random access on disk is
expensive, on the order of 10ms per seek. Multiple queries into a

hash table, by definition, requires random seeks on disk. Our initial
experiments revealed that querying our database for the keypoints
from just one image took several minutes, indicating that the stan-
dard LSH implementation could never be practical for our problem.

The key difference between our system and other systems that
use LSH for other applications is that all of our queries occur in
batches of hundreds or thousands (corresponding to all of the key-
points in the query image). We extract the keypoints from the query
image, and search on the entire set of keypoints to determine if any
of them match the keypoints in the database. An earlier disk-based
implementation of LSH by Gionis et al. [7] was designed for effi-
cient single point queries rather than the batch queries required by
our system. Since disk seek times are the bottleneck, our approach
relies on organizing the batch queries so as to minimize the motion
of the disk heads. We do this by precomputing all of the hash bins
that we need to access, sorting them, and accessing them in sequen-
tial order. Reducing the disk head motion in this manner translates
to a dramatic improvement in effective seek time — cutting it to
approximately 1ms per seek. Gionis et al. also suggested inlining
the data in the hash table instead of storing only the pointers as one
would for an in-memory implementation. Their goal was to halve
the number of seeks because one would not need to follow a pointer
to the actual data. However, for our application, inlined data led to
a massive increase in required disk space (20x for our dataset) and
actually slowed our search. Since our searches do not require ran-
dom seeks, we achieve better performance by employing a small
hash table with an auxiliary keypoint database (and scanning both
in-order) rather than a large hash table with inlined data.

All of these components are required to make our system practi-
cal. The use of robust interest point detectors and distinctive local
descriptors enables us to query images with high recall and preci-
sion, as shown in section 5. By using locality-sensitive hashing and
optimizing the data layout on disk, we achieve interactive response
times for queries.

3. IMPLEMENTATION
This section describes the implementation details of our system.

Our algorithm consists of two stages. First, in the index construc-
tion phase, we process the image collection and index all of the
extracted keypoints. Then, in the database query phase, the user
can issue queries to find near-duplicates or to perform sub-image
retrieval. These are summarized in Figure 4 and detailed below.

3.1 Index Construction
Given the collection of images to be indexed, we first use the

SIFT DoG detector to locate all of the interest points. Then, we
use PCA-SIFT to build local descriptors using a small image patch
centered around each interest point. The source code for these two
steps was downloaded from the web and the default parameters for
each algorithm were employed.

We create three disk-based data structures, which are carefully
laid sequentially on disk.1 The data structures store a list of file
names (FT), a list of keypoints from all the images (KT), and the
locality-sensitive hash table of pointers to the keypoints (HTs). We
construct the data structures, illustrated in Figure 3, as follows.

First, we create the file name table (FT) using a list of fixed-sized
records on disk. Each record is 256 bytes in length, where the first
byte denotes the length of the file name and the rest are used to
store the string. Implicitly, the id of each file is its index location in
the name table.

1In practice, it is difficult for a user program to control the data
layout on disk; we start with a defragmented disk.

File Name
Table (FT)

…

2

1

ID

……

File 2xxx

File 1xxx

File nameLen

Byte 256…Byte 2Byte 1

Keypoint
Table (KT)

…

Local Descr.

…

Orien.

Bytes
17-20

…

Size

Bytes
13-16

…

Y

…

2

1

ID

……

bbb

aaa

XFile ID

Bytes
21-92

Bytes
9-12

Bytes
5-8

Bytes
1-4

Keypoint 2Keypoint 1

……

…

…

Hash
Val

Bytes
13-16

…

Key
ID

…

2

1

Bucket
ID

……

Hash
Val

Key
ID

Bytes
9-12

Bytes
5-8

Bytes
1-4Layout of one

hash table (HT)

Figure 3: Format of the disk-based data structures.

Similarly, we create the keypoint table (KT) using fixed-sized
records. Each record stores one keypoint and consists of a file id
(where the keypoint came from), its x and y location, orientation,
scale, and its local descriptor. In total, each record is 92 bytes in
length. Assuming that there are a thousand keypoints per image, it
takes approximately 90MB to store the keypoints from one thou-
sand images. Wherever possible, our implementation optimizes
disk read access. For instance, given a list of keypoints that need to
be read from disk, we first sort the list by keypoint id, thus ordering
the disk reads to be efficient, and thereby reducing the average seek
time.

Finally, we create the locality-sensitive hash tables (HTs). Re-
call that the LSH algorithm builds l independent hash tables, each
with its own hash function. Below, we describe the layout of just
one of these hash tables. All of the independent hash tables are
concatenated and stored sequentially on disk. The hash tables are
of fixed size, so the number of keypoints that we need to store must
be determined before we create the hash tables. Each hash table
consists of B buckets, where each bucket can store up to m key-
points. With a utilization value of α, we need B = n/(αm) buckets
to store n keypoints. A higher α will lead to better space utiliza-
tion, with an increased risk that some keypoints will not be indexed
due to full buckets. A smaller bucket size m will lead to faster
search times, but also a higher risk of dropped keypoints. For our
experiments, we set m = 20 and α = 0.5. Two items are stored per
keypoint: the keypoint id and a checksum hash value that enables
the system to avoid verifying every keypoint in the same bucket.
Therefore, the system utilizes approximately 16MB of storage, per
independent hash table, per million keypoints. One of our major
system performance optimizations is that each hash table is created
separately and entirely in memory before being written to disk. It
would be impractical to create the hash table otherwise. This is fea-
sible because we’re only storing pointers to keypoints, and thus we
can easily accommodate databases of 50 million keypoints (from
50 thousand images) in 1GB of main memory.

3.2 Database query
Once the index is created on disk, we can issue queries on new

images using a parallel set of operations. First, we locate interest
points in the query image and build local descriptors, as described
above. Then, we calculate the bucket id’s of each keypoint using
the locality hash functions without accessing the disk. If we were
to read data from the hash buckets (from HTs) as we hashed each
keypoint, then this would be equivalent to doing random seeks on
disk and would be unfeasibly slow. Instead, we sort the bucket id’s
and read the buckets in order, which corresponds to a linear seek on
disk. We read all of the keypoints within a bucket and confirm that
the checksum hash values match. All of the candidate keypoints
are stored in a list sorted by keypoint id.

Finally, we read the keypoint data (location, orientation, size,
and descriptor) from the keypoint table (KT) in order to generate
a list of candidate matches for the query keypoints. Because LSH
only returns approximate matches with respect to the L1 (Manhat-
tan) norm, we need to check both for false positives and for points
outside the threshold distance under the L2 (Euclidean) norm. We
discard false matches by checking that the distance between the lo-
cal descriptors of the query keypoint and the candidate keypoints is
within the threshold distance under L2.

At this point, we look up the file id (in FT) corresponding to
matched keypoints and separate them according to file id. The
greater the number of matches found per file, the more likely it
is that the image is a near-duplicate. However, it is still likely that
there are significant false positives at the keypoint match phase. In
other words, although some keypoints are within the threshold dis-
tance, they belong to patches of images that are not near-duplicates.
We do affine geometric verification using RANSAC [5] to elimi-
nate such outliers. The affine transformation between two images
can be derived using three pairs of matched keypoints. RANSAC
verifies whether the majority of the other matched keypoints sup-
port this transform and discards any outliers. The remaining pairs
of matched keypoints correspond to the target image under an affine
warp from the query image. The affine transformation includes ro-
tation, scale, and shearing along the axes. The remaining set of
images are discarded if fewer than θ matches are found, where θ
is an adjustable parameter that controls the recall-precision of the
system.

4. EVALUATION METHODOLOGY
We present a number of experiments to show the effectiveness of

our system. For our initial experiments, we use the methodology
from [16] so that our results can be compared. A direct comparison
should ideally test both algorithms on the same dataset. Unfortu-
nately, neither their source code nor their image database was avail-
able. Therefore, we have created a very similar dataset by using
identical image transformations for our experiments, and compare
our algorithm against Meng et al.’s published results [16].

The experiments employ a small set of query images (probes)
and a much larger set of test images (gallery). The gallery is com-
posed of transformed versions of the probe images, augmented by
a large number of similar-looking random images that serve as dis-
tractors. We use the transformations described in [16] and build a
gallery with the same fraction of distractors.

We also created a significantly more challenging gallery by ap-
plying difficult transformations to the probe images to gain ad-
ditional insight into the performance of our algorithms. All of
our datasets are detailed below, and they can be downloaded from
http://www.cs.cmu.edu/˜yke/retrieval/.

Index Construction

1. For each image in the gallery:
2. Find keypoints using DoG detector
3. Build PCA-SIFT local descriptors for each keypoint
4. Build and store file name table (FT)
5. Build and store keypoint table (KT)
6. For each of the l hash tables (HTs):
7. For each keypoint:
8. Hash keypoint and store id in table (in memory)
9. Store hash table (HT) on disk

Database Query

1. Find keypoints in query image using DoG detector
2. For each keypoint:
3. Build its PCA-SIFT local descriptor
4. Compute the l LSH hashes for the descriptor
5. Sort hashes by bucket id, scan hash tables (HTs)
6. Sort returned keypoint ids and scan KT linearly
7. For each returned image:
8. Determine best affine transform using RANSAC
9. Discard if a valid transform was not found

10. Print matched file names by reading FT

Figure 4: Summary of our algorithm.

4.1 Evaluation Metrics
In order to evaluate our system’s performance, we measure the

recall and precision of our algorithm. Intuitively, we want to max-
imize the number of correct positives and minimize the number of
false positives. A correct positive is defined as a match between
a probe image and one of its transformed versions in the gallery.
Recall and precision are defined as:

recall =
number of correct-positives

total number of positives

and

precision =
number of correct-positives

total number of matches (correct or false)
.

4.2 Experimental setup
For our first experiment, our image database consists of 6261

images of fine art downloaded from an online art gallery [2]. We
resize each image so that the size of its larger dimension is 512
pixels. We randomly select 150 images to be the probes, and use the
rest are added to the gallery as distractors. Each probe is modified
according to the following 40 transformations, and these 6000 near-
duplicates are added to the gallery to create a dataset with 12,111
images.

Using the Difference of Gaussian interest point detector, we iden-
tify 13.6 million keypoints in the images, and apply PCA-SIFT to
build local descriptors. There are 1100 keypoints per image on av-
erage, although some images generate as few as 67 keypoints and
others as many as 3000, depending on the complexity of the image
content. We use locality-sensitive hashing to index all of the key-
points with parameters k=450 and l=20. We define two PCA-SIFT
descriptors as matching if their L2 distance is within 3000. The
minimum match threshold θ is 5 for our experiments. These pa-
rameter values were empirically selected using tests on a small val-
idation set. All of our experiments use a 3GHz Intel R© Pentium R© 4

machine with 1GB of memory running Linux 2.4. The algorithms
are implemented in C++.

As discussed above, our image transforms are identical to those
described in [16], and are implemented using ImageMagick [9].
These 40 transforms are described below. The number in brackets
next to each operation denotes the number of near-duplicate images
generated by that particular operation.2

1. Colorizing [3]: Tint the (a) red, (b) green, or (c) blue chan-
nels of the image by 10%.

2. Changing contrast [2]: (a) Increase or (b) decrease image
contrast using default parameters.

3. Cropping [4]: Crop the image by (a) 5%, (b) 10%, (c) 20%,
or (d) 30%, preserving the center region. Resize cropped
image to original size.

4. Despeckling [1]: ImageMagick’s despeckle operation.
5. Downsampling [7]: Downsample (without Gaussian blur-

ring) the image so that its size is reduced by (a) 10%, (b)
20%, (c) 30%, (d) 40%, (e) 50%, (f) 70%, or (g) 90%.

6. Changing format [1]: Convert JPEG source image to GIF
format. This compresses the color space to a palette of 256
colors.

7. Framing [4]: Add an outer frame to the image, where the
size of the frame is 10% of the framed image. Four images
are produced, each with a frame of a random color.

8. Rotating [4]: Rotate image by (a) 90◦, (b) 180◦, or (c) 270◦.
9. Scaling [6]: Scale the size of image up by (a) 2, (b) 4, (c) 8

times; or down by (d) 4, (e) 4, (f) 8 times. The scaled image
is resized to the original size.

10. Changing saturation [5]: Change image saturation ampli-
tude by (a) 70%, (b) 80%, (c) 90%, (d) 110%, or (e) 120%.

11. Changing intensity. [4]: Change image intensity amplitude
by (a) 80%, (b) 90%, (c) 110%, or (d) 120%.

Note that because we use rotation-, scale-, and illumination-invariant
grayscale local descriptors, we are inherently robust to all of the
above transforms (confirmed by results in Section 5). To exam-
ine where our system could fail, we constructed a second set of
more difficult experiments with larger data sets. We randomly se-
lected 15,582 photos from the MM270K [15] database and ran-
domly chose 314 of them as query images. We applied the fol-
lowing more difficult transformations to both the art and MM270K
databases:

12. Cropping [3]: Crop the image by (a) 50%, (b) 70%, or (c)
90%, preserving the center region. Resize cropped image to
original size.

13. Shearing [3]: Apply an affine warp along the x axis by (a)
5◦, (b) 10◦, or (c) 15◦.

14. Changing intensity [2]: Change the brightness of the image
by (a) 50% or (b) 150%.

15. Changing contrast [2]: (a) Increase contrast by 3x, or (b)
decrease contrast 3x.

Figure 5 shows a small subset of these transformations.
Our last series of experiments verifies that our system can apply

sub-image retrieval to detect forged images. For the first test, we
manually generated three fake images by carefully tracing and past-
ing images of people from six source photographs. Using the fake
images as probes, our system correctly identifies all of the source
images with no false positives. The second test used automatically-
generated composite images as queries. Each composite was gen-
erated by drawing a pair of random images from a gallery of 1000
images, and the center 10% region from one image was selected
and pasted on to the other. We created a probe set of 1000 images,

2Our tests do not include the flipping transform; those are easily
matched using mirrored versions of the probe images.

Table 1: Recall-Precision for standard transformations.
recall precision

Baseline - select 40 random images
0.3% 0.01%

Weighted Sampling Threshold method from [16]
90% 67%
100% 6%

Our method on art database of 12,000 images
99.85% 100%

Table 2: Recall-Precision for difficult transformations.
recall precision

Art database of 7,611 images
98.40% 99.86%

MM270K database of 18,722 images
Original 96.78% 88.78%
Same scene removed 96.78% 96.12%

and judged the system’s response to be correct only if both of the
source images for that query were correctly retrieved.

5. RESULTS
We now present our image retrieval accuracy results and the ef-

fect of our design choices on running time performance.

5.1 Retrieval results
Table 1 shows the results on the first experiment using the set of

transformations from [16] on 12,111 images. We see that we per-
form extremely well on both the recall and precision. There are 150
query images, each with 40 near-duplicates in the database. There-
fore, there are 6000 possible total correct matches. For θ = 5, our
system only fails to find 9/6000 near-duplicates and generates zero
false positives. By comparison, a baseline strategy that randomly
selected 40 images from the gallery to match each probe would
have a recall of 0.3% and a precision of 0.01%. Meng et al.’s sys-
tem achieves a recall of 90% with a precision of 67% (as shown by
the ROC plots published in [16] on their dataset).

Table 2 shows the results for the second set of experiments. The
accuracy remains very high, despite the more challenging transfor-
mations used to generate the near-duplicates. For the art database,
we used 150 query images and for the MM270K database, we used
314 query images. Each query image has 10 near-duplicates in the
database. Although the recall is high for both databases, the pre-
cision is significantly lower for the MM270K database. The drop
in precision is due to the fact that this database contains several
images that are slightly-different views of the same scene, taken
from the same location, at the same time. A manual inspection of
the false positives shows them to be panned or zoomed versions
of others in this database, or photos of the same scene taken with
a different color filter. If these photos of the same scene are not
penalized as false positives, our system’s precision remains above
95%.

Finally, Table 3 shows the results of querying the 1000 composite
“forged” images to detect their sources. Again, our system does
extremely well.

5.2 Running time results
While the previous section focused on the accuracy of our near-

duplicate detector, we now turn to the system design and show that

Original 5(g): Downsampling 90% 12(c): Crop 90% 13(c): Shear x-axis 15◦

14(a): Brightness 50% 14(b): Brightness 150% 15(a): Increase contrast 3x 15(b): Decrease contrast 3x

Figure 5: Examples of automatically-generated near-duplicates. Only 7 out of 50 transforms are shown; all were correctly identified.

Table 3: Recall-Precision for composite images.
recall precision

98.85% 99.65%

Table 4: Efficiency of LSH versus linear search.
linear search LSH

Running time in sec. (σ) 80.3 (0.06) 0.97 (0.04)
Pairs of keys checked 268 million 2656
Pairs of keys matched 5464 1611

each of our optimizations were necessary in order to make our ap-
proach practical. All of the following experiments were done us-
ing a small test set of 200 random images combined with 10 near-
duplicates of the query image from the difficult test set, for a total
of with 265,000 extracted keypoints. There are 1010 keys in the
query image.

First, we compare the execution time of locality-sensitive hash-
ing versus an exhaustive linear search through the keypoints, for
the selected LSH parameters. Table 4 shows the performance of
searching for matches of 1010 keys in the database. We give the
running time and the number of keys checked by each. We see that
LSH, due to the approximate nature of its search, misses a very
large fraction (71%) of keys that were correctly matched by the ex-
haustive search. On the other hand, our execution speed is faster by
two orders of magnitude. Despite the large number of keys missed
by LSH, our system still performs well because we extract hun-
dreds of interest points per image, while requiring as few as θ=5
matching keys to identify near-duplicates.

Recall that our implementation of LSH assumes L1 (Manhat-
tan) distance in the analysis of near neighbors, while PCA-SIFT
requires L2 (Euclidean) distance to be calculated during the actual
matching of keypoints. Our algorithm makes the implicit assump-
tion that using L1 in the LSH stage does not force us to examine and
discard too many points during the PCA-SIFT matching stage. Our
next experiment quantifies the inefficiency induced by this assump-
tion. Table 5 shows that most of the keys (94%) that are checked
but not matched under L2 are due to hash table collisions. The

Table 5: Inefficiency due to L1 assumption.
No. of keys

Checked by LSH 2656
Matched under L1 (d ≤ 18000) 1674
Matched under L2 (d ≤ 3000) 1611
Checked because of hash table collision 982
Matched under L1 but not L2 63

Table 6: Importance of building hash table in memory.
Running time in sec. (σ)

Build directly on disk 325 (1.8)
Build in memory, stream to disk 48 (0.1)

number of keys matched under L1 but not L2 only account for 2%
of the total keys checked. Therefore, the L1 distance assumption is
acceptable for our data.

While the use of LSH gives us tremendous theoretical gains in
performance, careful system design is required to realize LSH’s
benefits for our application. When creating the hash tables, we
build the independent hash tables in memory, and then stream them
sequentially to disk. Table 6 compares the running time of build-
ing the hash table in memory and directly on disk. We see that
eliminating the random seeks to disk reduces the running time by a
factor of 7.

For queries, we must also linearize the disk accesses to remove
as many random seeks as possible. By sorting the hash bucket id’s
and keypoint id’s before reading them from disk, we get a dramatic
improvement in running time. Table 7 shows that this optimization
results in a 20x speed-up.

Table 7: Importance of linearizing disk accesses in queries.
Running time in sec. (σ)

Unoptimized disk reads 65 (1.8)
Sorted disk reads 3.4 (0.1)

It is only by combining all of these optimizations that we are able
to create a practical near-duplicate and forgery detector that scales
to large image databases.

6. LIMITATIONS
While our experiments show excellent results in retrieving near-

duplicates and sub-images, there are limitations to our technique.
Our system can match similar images of the same scene even if they
were not near-duplicates nor forged images, as in our MM270K
database. This scenario could occur if the copyrighted image database
contains pictures of famous landmarks, where there are likely to
be many pictures of the same landmarks on the web. Our system
may find similar keypoints on the landmarks and incorrectly match
them. Others have exploited this property as a feature to detect
images of the same scene taken from different camera locations as
in [17, 18, 20]. To informally test the performance of our system
under such conditions, we gathered 59 pictures from the Web of
Big Ben, Eiffel Tower, and Half Dome, and queried them against 18
professional pictures of the same landmarks. We were pleased to
see only one match (i.e., false positive) among the 59 queries. The
reason why we do not accidentally identify similar scenes as forged
images more frequently is due to well-known limitations in apply-
ing current interest point detectors to recognize real-world objects.
They include the instability of the DoG interest point detector on
three dimensional objects and appearance changes due to self oc-
clusion or shadowing. For example, during the course of the day,
Big Ben’s appearance changes significantly due to self-shadows.
Similarly, Half Dome’s appearance varies with seasonal vegetation.
The sensitivity of keypoints to these appearance variations is seen
as a limitation in the object recognition domain. However, for our
application, this inability to generalize is a benefit. Since our goal
is to detect perturbations of an image, we can set our system’s ap-
pearance matching and geometric verification thresholds to much
tighter bounds. This allows us to detect simple manipulations to
copyright images while rejecting different views of the same scene.

7. CONCLUSION
The primary contributions of our paper are the synthesis of re-

cent advances in robust interest point detection (DoG detector), lo-
cal descriptor representation (PCA-SIFT), and efficient similarity
search of high-dimensional data (LSH). By using a robust inter-
est point detector and distinctive local descriptors, we accurately
solve the near-duplicate and sub-image retrieval problem. Because
we use a parts-based approach, our system is highly resistant to
cropping, scaling, and other common transforms that traditional ap-
proaches based on global features can not cope with. A potential
drawback in using a parts-based approach is that the system needs
to query hundreds to thousands of features at a time, which could be
slow. We make our system theoretically efficient through locality-
sensitive hashing. Further, we make our system practical through
careful data placement and batched disk accesses to minimize ran-
dom seeks. We show experimentally that our system has near per-
fect accuracy (99.85% recall and 100% precision) on a standard test
set. For future work, we plan to further optimize the data structures
to gain additional query performance and further improve accuracy.

Acknowledgments
Yan Ke is supported by the Intel Research Scholar program. We
thank M. Satyanarayanan and Derek Hoiem for valuable feedback.

8. REFERENCES
[1] S. Berrani, L. Amsaleg, and P. Gros. Robust content-based

image searches for copyright protection. In Proceedings of
ACM Workshop on Multimedia Databases, 2003.

[2] CGFA - A Virtual Art Museum.
http://cgfa.sunsite.dk/.

[3] E. Chang, J. Wang, C. Li, and G. Wiederhold. RIME: A
replicated image detector for the world-wide web. In
Proceedings of SPIE, 1998.

[4] R. Fergus, P. Perona, and A. Zisserman. Object class
recognition by unsupervised scale-invariant learning. In
Proceedings of IEEE Computer Vision and Pattern
Recognition, June 2003.

[5] M. Fischler and R. Bolles. Random sample consensus: a
paradigm for model fitting with applications to image
analysis and automated cartography. Communications of the
ACM, 24(6), June 1981.

[6] J. Fridrich, D. Soukal, and J. Lukas. Detection of copy-move
forgery in digital images. In Digital Forensic Research
Workshop, 2003.

[7] A. Gionis, P. Indyk, and R. Motwani. Similarity search in
high dimensions via hashing. In Proceedings of International
Conference on Very Large Databases, 1999.

[8] C. Harris and M. Stephens. A combined corner and edge
detector. In Alvey Vision Conference, 1988.

[9] ImageMagick. http://www.imagemagick.org/.
[10] P. Indyk and R. Motwani. Approximate nearest neighbor -

towards removing the curse of dimensionality. In
Proceedings of Symposium on Theory of Computing, 1998.

[11] Y. Ke and R. Sukthankar. PCA-SIFT: A more distinctive
representation for local image descriptors. In Proceedings of
IEEE Computer Vision and Pattern Recognition, 2004.

[12] A. Loui and M. Wood. A software system for automatic
albuming of consumer pictures. In Proceedings of ACM
International Conference on Multimedia, 1999.

[13] D. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision, 2004.

[14] J. Luo and M. Nascimento. Content based sub-image
retrieval via hierarchical tree matching. In Proceedings of
ACM Workshop on Multimedia Databases, 2003.

[15] Media Graphics International. 270,000 Multimedia Graphics
Pack, 1998.

[16] Y. Meng, E. Chang, and B. Li. Enhancing DPF for
near-replica image recognition. In Proceedings of IEEE
Computer Vision and Pattern Recognition, 2003.

[17] K. Mikolajczyk and C. Schmid. Indexing based on scale
invariant interest points. In Proceedings of International
Conference on Computer Vision, July 2001.

[18] F. Schaffalitzky and A. Zisserman. Automated location
matching in movies. Computer Vision and Image
Understanding, 2003.

[19] N. Sebe, M. Lew, and D. Huijsmans. Multi-scale sub-image
search. In Proceedings of ACM International Conference on
Multimedia, 1999.

[20] J. Sivic and A. Zisserman. Video Google: A text retrieval
approach to object matching in videos. In Proceedings of
International Conference on Computer Vision, Oct. 2003.

[21] L. Van Gool, T. Moons, and D. Ungureanu.
Affine/photometric invariants for planar intensity patterns. In
Proceedings of European Conference on Computer Vision,
1996.

