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Abstract

JKanji is an interactive character completion system
that provides stroke-order-independent recognition of com-
plex hand-written glyphs such as Japanese kanji or Chi-
nese hanzi. As the user enters each stroke, JKanji offers a
menu of likely completions, generated from a robust multi-
scale matching algorithm augmented with a statistical lan-
guage model. Drawbacks of traditional wavelet-based ap-
proaches are addressed by a redundant, phase-shifted basis
that is insensitive to variations of the input character across
guadrant boundaries. Unlike many existing systems, JKanji
can incrementally incorporate new training examples, ei-
ther to adapt to the idiosyncrasies of a particular user, or
to increase its vocabulary. On a kanji input task with a
vocabulary of 6369 kanji and English characters, JKanji
has demonstrated 93%-96% recognition accuracy and up
to 80% reduction in the number of input strokes. JKanji is
computationally efficient, processing images at 5-10Hz on
an inexpensive portable computer, and is well-suited for in-
tegration into personal digital assistants (PDAS) as an input
method. JKanji’s recognition system also processes low-
quality digital camera images and has been integrated into
a prototype tourist’s guide that interprets unfamiliar kanji
in the environment.

1. Introduction

Traditional computer input devices, such as keyboards,
are ill-suited for languages with large vocabularies of com-
plex glyphs (e.g., Japanese kanji or Chinese hanzi). Re-
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search has therefore focused on alternative input methods
such as optical character recognition [6] or stroke-based
handwriting recognition [3]. The former has proved suc-
cessful in processing scanned documents, while the latter
has become increasingly common in interactive applica-
tions.

Kanji completion is an interactive task that combines cer-
tain aspects of both character recognition and handwriting
recognition. However, kanji completion differs from these
tasks in two important respects: (1) a kanji completion sys-
tem must endeavor to match a user’s partially-drawn glyphs
against the (complete) glyphs in the training set as early as
possible; (2) a kanji completion system can rely on the user
to select the correct glyph from a small menu of likely com-
pletion candidates at each stage of the process. We present
JKanji, an approach to the task of interactive glyph input
that addresses common problems with existing input meth-
ods by employing techniques inspired by work in sketch-
based image retrieval [2]. Our system has three main goals:
(1) increasing the speed of stroke-independent?® glyph input;
(2) incrementally incorporating additional training data (ei-
ther new characters in the vocabulary or idiosyncratic exam-
ples of known glyphs); (3) providing a solution suitable for
handheld devices (low requirements on computing power
and memory usage).

JKanji has been integrated into a text-editor targeted for
non-native kanji users (see Figure 1) and is also a com-
ponent in a prototype tourist’s guide. The latter is a de-
vice equipped with a digital camera, capable of interpreting
common kanji signs from images (see Section 3).

1While native speakers are taught to use a canonical stroke order when
entering characters, non-native speakers (who may benefit most from a
character completion system) typically do not. JKanji can also be used to
enter user-defined characters that have no canonical stroke order.
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Figure 1. JKanji significantly facilitates interactive kanji input. Here, the user is entering the phrase
“Japanese language”. Upon confirmation that the first glyph is “sun”, JKanji’'s language model
immediately suggests “book” (the combination means “Japan”). The third glyph, recognized after
the first few strokes, demonstrates partial matching. JKanji is not stroke-order dependent.

2. System Architecture

JKanji consists of several components, shown in Fig-
ure 2. The input to the system consists of a sequence of
images: snapshots of a sketchpad window?, captured at the
conclusion of each glyph stroke (up to 10Hz). These images
are first preprocessed to ensure consistency in line thick-
ness, and scaled appropriately. Next, a feature vector is
extracted from each pre-processed image using a set of re-
dundant wavelet decompositions. These feature vectors are
matched against stored feature vectors corresponding to the
training images, and the best matches (weighted by several
language models) are presented to the user. This asymmet-
ric matching process is designed so that a partial glyph in
the input image correctly matches the respective complete
glyph in the training data. As the user adds strokes to the
glyph in the input area, JKanji recomputes the wavelet fea-
tures and updates the candidate list; this process repeats un-
til the desired glyph appears and is selected by the user. At
this point, dynamic language model parameters are updated
and JKanji clears the input area in preparation for a new
character. JKanji’s language model enables it to frequently
predict likely glyphs before the user enters any strokes (see
Figure 1), thus drastically reducing the input effort. The
major components are detailed below.

2.1. Training set preparation
JKanji can incorporate training data from a variety of

sources. In the experiments described in this paper, one im-
age for each of 6369 kanji was synthesized from the MS

2Glyphs are entered using a mouse-driven sketchpad with physics-
based smoothing (inspired by DynaDraw [1]).

Gothic font and processed as described below to create a
single training example per glyph in the vocabulary®. The
user may easily augment the training set, either when diffi-
culties in matching a known glyph are experienced (adapt-
ing to user idiosyncrasies), or when he/she wishes to add
a new glyph; the wavelet features for the current input im-
age (assumed to be a complete glyph) are simply appended
to the vocabulary of known kanji characters. The language
models (described in Section 2.5) are initialized from a cor-
pus of Japanese natural language text.

2.2. Image pre-processing

Unlike traditional handwriting input systems, JKanji
does not extract features from a time-series of the user’s
gestures. Rather, the snapshot of each successive version of
the sketched glyph is processed independently. This lack of
temporal information results in two important benefits: (1)
JKanji is insensitive to stroke-order; (2) JKanji can easily
be applied to noisy input from scanned text or photographs
(see Section 3).

Each image is first processed to ensure that strokes are of
uniform width using a heuristic algorithm adapted from [6]:
shrink or grow filters are successively applied until the
thickness metric for the input image matches that of the im-
ages used during training.

JKanji creates two copies of the input image: one to test
the hypothesis that the image is a complete glyph, and the
other to attempt partial matches. The former is centered
and then robustly scaled so that 75% of the dark pixels lie
within a specified “central region”; the latter is scaled with-

3Training and input images are treated identically in JKanji except dur-
ing the asymmetric matching process.



Language
model
Skgtchpad | Preprocesdb] Wavelet | | Lik'elih('Jod* Candidgte
input decomp. estimation | | generation

Figure 2. Overview of JKanji system.

out centering (centering would destroy information about
subfeature location). Wavelet features for each of these two
images are independently computed, and matched against
candidate glyphs in the training set as described below.

2.3. Wavelet decomposition

Wavelet-based approaches are becoming increasingly
popular in pattern recognition, and have recently been
applied to character recognition [4]. However, JKanji’s
wavelet decomposition is unrelated to prior research in this
area; it was inspired by work in sketch-based image re-
trieval [2]. For background material on wavelets, see [5, 7].

A serious drawback with employing a wavelet-based ap-
proach in this domain is that the decomposition is overly
sensitive to small variations in the neighborhood of quad-
rant boundaries. Kanji characters are particularly prone to
this problem since they commonly contain centered verti-
cal and horizontal strokes. Slight shifts in such a stroke’s
position can cause significant changes in the wavelet coeffi-
cients. To alleviate this problem, JKanji employs a novel re-
dundant basis: (1) three copies of the input image are made,
with the pixels in each “barrel shifted” (toroidal translation)
up and to the left by 0, 1/5, and 1/3 of the image width; (2)
128 x 128 wavelet decompositions are independently per-
formed on each of the three images; (3) the most important
coefficients (see below) from each of these decompositions
are retained. Since the barrel shift multiples share no com-
mon factors, a particular stroke in the original input image
will lie on a critical region in at most one of the three de-
compositions (see Figure 3).

The images are filtered (both horizontally and vertically)
using a simple variant of the Haar wavelet*. Although
the Haar basis is rarely the best choice for filtering natu-
ral images, our experiments have shown that it outperforms
Daubechies and cubic spline bases in the kanji completion
domain. We hypothesize that this is because the binary im-
ages created by the sketchpad application consist of crisply
separated black and white regions (see Figure 1) whose
sharp discontinuities are effectively expressed by the Haar
basis.

4Identical to the Haar wavelet except: (1) scaling constants are omitted;
(2) averages are replaced by sums. This integer variant is more efficient
than the standard Haar. The scaling constants for coefficients in different
frequency bands is partially subsumed in the w;; weights (see Section 2.4).
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Figure 3. JKanji considers two independent
hypotheses: that the input glyph will partially
or completely match glyphs in the training
set. To overcome quadrant effects present
in standard wavelet decompositions, three re-
dundant wavelet coefficients are extracted by
barrel shifting each scaled input image.

From the 128 x 128 wavelet coefficients in each of three
images, the signs and coordinates of the 40 coefficients with
the greatest magnitude are retained as features. Each glyph
can be compactly expressed as a list of 120 signed integers
(2 bytes each). Therefore, the 6369 kanji in JKanji’s train-
ing set consume only 6369 x 40 x 3 x 2 ~ 1.5 MB of stor-
age space (small enough to comfortably fit into a handheld
computer’s RAM).

2.4. Likelihood estimation

In this step, the 120 features of the input image (probe)
are compared against the stored features of every kanji (tar-
get) in the training set. JKanji employs an asymmetric
weighted comparison metric in order to reward similarity
between probe and target without overly penalizing miss-
ing strokes in the probe kanji. Specifically, the score for a
target kanji is increased whenever a coefficient in the probe
appears in the target (with the same sign). The increment
w; ; 18 a function of the coefficient’s coordinates:

Wy = blosa mex(i.)]

where b = 1.2 (determined empirically). Since two ver-
sions of the wavelet decomposition are performed per kanji
(for partial and complete matches), each kanji is assigned a
final score that is the maximum of its two scores. This score
is used to determine an ordering of the training set kanji (in
response to the given input glyph).



The final step of this stage is to convert the ranking into
likelihood estimates. The target kanji are assumed to fol-
low Zipf’s law [8] and accordingly, each kanji is assigned a
likelihood proportional to the inverse of its rank.

2.5. Language models

The likelihood estimates implicitly assume a uniform
prior distribution on every kanji in the training set. This is
almost certainly violated when the input stream consists of a
coherent sequence of well-formed, meaningful text. JKanji
therefore considers three additional priors: (1) a unigram
model based upon a large corpus of Japanese text; (2) a bi-
gram model based upon the same corpus®; (3) a unigram
model based solely upon the user’s input to the kanji editor.
Note that (2) and (3) are dynamically updated as the user
enters text.

The user may selectively enable or disable particular lan-
guage models. For instance, a user using JKanji simply for
dictionary lookup could disable the bigram model, or could
restrict JKanji to the uniform prior.

2.6. Candidate merging

The goal of this stage is to generate a single list of kanji
candidates, to be displayed to the user. JKanji uses an un-
orthodox scheme that has produced excellent empirical re-
sults: the rankings according the each language model is
independently computed by multiplying the likelihoods for
each kanji by its respective prior generated from the model.
These ordered rankings are now interleaved (with dupli-
cates removed) to create a menu of candidates (see Figures 1
and 4).

3. Tourist’s Guide

Tourists who are unable to read kanji could benefit sub-
stantially from a handheld device that recognized glyphs in
their environment (e.g., shop signs or posters). We have de-
veloped a prototype application that enables users to snap a
picture with a handheld digital camera and select an unfa-
miliar glyph in the image. JKanji processes this low-quality
image and presents a menu of likely matches. The user
may move a cursor over each match to obtain a translation.
For instance, in Figure 4, JKanji correctly recognizes the
glyph for “son” from a blurred and noisy image. This task
is substantially more difficult than the text editor applica-
tion since: (1) creating a good binary input image from the
noisy greyscale photograph is non-trivial; (2) JKanji is un-
able to derive benefits from its bigram language model; (3)

5Such a model can give the probability P(x|y) of seeing a particular
kanji, =, given that the previous kanji was y.
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Figure 5. JKanji correctly recognizes 93% of
6369 glyphs from MS-Mincho even though it
was trained on glyphs from the MS-Gothic font.
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the appearance of the glyph may differ substantially from
its single prototype in the training set (MS-Gothic). Never-
theless, as discussed in Section 4, JKanji’s performance is
surprisingly promising.

4. Results

We first present baseline results that demonstrate the
competency of JKanji’s glyph recognition system. In this
experiment, JKanji was trained on MS-Gothic glyphs and
tested on each of the glyphs in the MS-Mincho font. Al-
though the glyphs differ in appearance (see Figure 5),
JKanji achieved a 96.2% accuracy on the 2521 common
glyphs and 93.0% on the complete set. In this experi-
ment, JKanji received no benefit from its language models
since the unigram and bigram frequency statistics of the test
glyphs were not consistent with the natural language corpus
for initialization.

An instrumented version of the kanji text editor was
tested by several users (both native Japanese speakers and
novices). Since recognition accuracy is not meaningful in
this interactive context (users modify the glyph until JKanji
offers the correct completion), we present statistics on kanji
completion: JKanji reduced the number of input strokes re-
quired to enter Japanese text by 50%-80% (greater benefits
were achieved when the input was consistent with the bi-
gram language model). Novice users who were unfamiliar
with canonical kanji stroke order reported the greatest ben-
efits.

Finally, the tourist’s guide prototype was tested on a set
of low-quality images captured using a handheld digital
camera. JKanji performed surprisingly well on this chal-
lenging task (see Figure 4), correctly recognizing 76% of
the glyphs (in the absence of a bigram language model).

5. Conclusion

JKanji demonstrates that an interactive kanji completion
system can significantly reduce the effort required to enter
complex glyphs. JKanji has been successfully integrated
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Figure 4. JKanji can also recognize kanji characters in photographs or scanned documents. A
glyph extracted from a low-quality image of a poster (left) is shown enlarged (center). The correct

identification is also shown (right).

into two prototype applications: a kanji text editor, and a
tourist’s guide.
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