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Abstract. We propose to learn pixel-level segmentations of objects from
weakly labeled (tagged) internet videos. Specifically, given a large col-
lection of raw YouTube content, along with potentially noisy tags, our
goal is to automatically generate spatiotemporal masks for each ob-
ject, such as “dog”, without employing any pre-trained object detectors.
We formulate this problem as learning weakly supervised classifiers for
a set of independent spatio-temporal segments. The object seeds ob-
tained using segment-level classifiers are further refined using graphcuts
to generate high-precision object masks. Our results, obtained by train-
ing on a dataset of 20,000 YouTube videos weakly tagged into 15 classes,
demonstrate automatic extraction of pixel-level object masks. Evaluated
against a ground-truthed subset of 50,000 frames with pixel-level anno-
tations, we confirm that our proposed methods can learn good object
masks just by watching YouTube.

1 Introduction

We are motivated by the question: What could a computer learn about the real
world solely from watching large quantities of internet video? We believe that
internet videos, with their potentially noisy tags, can provide sufficient weak
supervision to learn models of visual concepts. Specifically, our goal is to learn
models that can perform pixel-level spatiotemporal segmentation of objects (e.g.,
“dog”) when trained only using video-level tags.

To force us to tackle the core challenges, in this paper we adopt an extreme
stance characterized by several desiderata. Our models are tabula rasa and must
learn concept models from large numbers of raw, potentially low-quality internet
videos. The only training signals that can be provided to the system must be in
the form of video-level tags, which indicate that the concept occurs somewhere
within the video. Video tags can be corrupted by some degree of label noise
(e.g., some videos labeled “dog” may not contain dogs and there may be videos
containing dogs that are missing the “dog” tag). Although the labels are video-
level, the evaluation is on a spatiotemporal segmentation task with pixel-level
error metrics, such as the precision/recall of pixel masks for a concept, measured
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Fig. 1: Video object segmentation: (a) Stabilized frame; (b) Spatiotemporal over-
segmentation. (c) Seeds from segment classifier. (d) Spatiotemporal object mask.

on a set of manually annotated ground truth videos. The proposed methods
should be capable of scaling, both in the number of training videos and the
number of object classes that we recognize.

Figure 1 presents an overview of our object segmentation pipeline. Given a
video tagged with a label, say “dog”, it is first processed to extract spatiotempo-
ral segments. Then segment-level classifiers (trained from raw video using weakly
supervised learning) identify segments for given object categories in the video.
These detected segments serve as seeds for extracting pixel-level object masks.
The spatiotemporal segments ensure that the target concept is localized in both
space and time. This mechanism of going from a tagged YouTube video to a pixel
mask summarizes our goal of automatically distilling a large corpus of noisily-
tagged video into a smaller collection of spatially- and temporally-segmented
object instances with associated high-precision labels. Ours is the first work to
tackle weakly supervised training of pixel-level object models solely from large
quantities of internet video, where the only labels are potentially noisy video-
level tags.

2 Related Work

The area of learning visual concepts from weakly supervised video is still in its
infancy. Ramanan et al. [1] construct a single part-based animal model from
video. Ommer et al. [2] learn from controlled, hand-recorded video and classify
at the frame level. Ali et al. [3] build an appearance model from a single video.
Leistner et al. [4] employ weak video primarily to regularize detectors trained
using images. Our work is closest in spirit to recent work by Prest et al. [5],
which trains on a combination of fully annotated images and manually curated
labeled video; the task we address is more extreme as we learn exclusively under
weak supervision from raw video with noisy labels.

Our research bears superficial similarity to recent approaches to semi-supervised
online learning of object detectors during tracking in video, such as [6]. However,
rather than improving the model for a specific tracked object, our goal is to learn
broader classes of concepts, without initialization, from raw internet video.

The video segments employed in our work are related to spatiotemporal rep-
resentations such as Ke et al.’s oversegmented videos [7], Niebles et al.’s human
motion volumes [8] and Brendel & Todorovic’ 2D+t tubes [9]. We leverage recent
work in video segmentation based on motion, such as Xiao & Shah [10], Brox &
Malik [11] and Grundmann et al. [12, 13] to generate our representation.
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(a) Positive Set (b) Negative Set (c) Inference on “dog” videos

Fig. 2: We learn to locate objects by training only on video-level labels. (a)
samples from “dog” videos; (b) samples from background; (c) sample detections.

The weakly supervised learning task bears some similarity to multi-instance
learning. In the vision community, related work in this vein includes: Zha et al.’s
work on multi-label MIL for image classification [14]; Zhou & Zhang’s MIML-
BOOST and MIML-SVM applied to scene classification; Viola et al.’s MILBoost
algorithm [15] and Chen et al.’s MILES system [16]. However, we focus on high-
precision retrieval of instances rather than bag-level classification and are forced
to contend with significantly greater label noise at the bag level.

Our work contrasts with that of Ren & Gu [17], who employ domain-specific
cues (e.g., hands) to segment objects in egocentric video; our methods are most
suited for learning models from moving objects in scenes with relatively lit-
tle background motion. Duchenne et al. [18] perform action annotation from
weakly labeled data. However, their work is restricted to temporal localization
and requires movie scripts that are closely aligned with the scene (and much
less noisy than our video-level labels). We differ from existing weakly supervised
approaches in video, such as Liu et al. [19], which require pixel-level labeling in a
sparse set of frames; our work strives to learn object masks without any frame-,
segment- or pixel-level supervision.

3 Problem Formulation

Our goal can be formalized as the following (see Figure 2). Given a set of object
class labels Y = {y1, y2, . . . , yn} and a large set of weakly tagged videos {(v,Yv) :
Yv ⊆ Y}, we seek to learn a model for each concept yj that can output pixel-
level masks for test videos, localized in both space and time. We aim to learn
concept models from raw, full-length internet videos containing multiple scenes
and several topics. The video-level annotations simply indicate that the given
concept yj occurs somewhere in the video, possibly multiple times, at unspecified
spatial and temporal locations. We recognize that each concept can exhibit a
diversity of appearances due to intra-class variations (e.g., dog breeds) and that
most of the pixels in a video labeled yj will be unrelated to yj . While our notion
of “concept” is general, our methods are applicable only to semantic labels that
correspond to concepts with bounded spatiotemporal extent, such as objects and
actions, as opposed to tags that demand scene-level understanding or higher-level
domain-specific knowledge. Figure 2 gives a high-level idea of our framework.
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To bound our exploration and to enable direct comparisons, in this paper
we focus on a restricted set of approaches to our problem. Specifically, all of our
proposed methods strictly adhere to the following general strategy:
1. We assume that while label noise can be significant (e.g., 20%), it is inde-

pendent of the given video v or concept yj ;
2. We learn each concept yj separately, allowing any given video v to contain

multiple concepts Yv ⊆ Y;
3. We assume that each video v can be partitioned into a set of spatiotemporal

segments Sv, that each segment si ∈ Sv can be represented by aggregations
of a variety of local features, and that each si can be independently classified;

4. Rather than directly incorporating the spatiotemporal dependencies between
segments in our models (e.g., using a CRF), we account for these in a more
computationally scalable object mask refinement phase.

These principles guide us to computationally efficient algorithms that learn from
large quantities of video (> 108 frames) using parallelized implementations.
Specifically, our weakly supervised learning operates independently on instances
that are spatiotemporal segments, represented using a set of features (bags of
quantized features, with responses aggregated over the segment). In other words,
the core problem can be formulated as a segment selection task, where the set
of selected segments can be converted to pixel-level object masks.

In the following discussion, for a given concept yj , the term positive videos
refers to those videos in the labeled set that have the clip-level tag yj and negative
videos to those that do not.

4 Training Segment Classifiers and Object Segmentation

We tackle this weakly supervised problem using the two establised approaches,
described below. The learning techniques take as input segments that are either
positive or negative, that is each segment inherits the binary label of the video
it is in. The learned models then score and rank the segments of a given test
video. Each segment is described by bags of local features. We also present a
training variant based on one-vs-one class comparisons and a post-processing
technique that takes as input the individually ranked segments and improves
the final object masks by exploiting spatiotemporal consistency

4.1 Discriminative Segment Classifier

The most direct approach to learning under weak supervision is to train a dis-
criminative one vs. rest model for a segment from each concept using all of the
available data (labeled segments), which effectively treats the background seg-
ments present in each positive video as label noise. The intuition is that since
similar background segments are present in both positive and negative data, a
linear model (with its limited capacity) should largely ignore such segments and
focus more on the desired concept (whose segments are unlikely to appear in
the negative videos). The challenge is whether such an approach can work even
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if the fraction of segments that relate to the concept is small (e.g., 20% of the
total). Thus, the input to the classifier is the set of features for a given segment
and the ouput is a single real-valued output indicating the classifier’s confidence
that this segment is an instance of the concept.

We employ Fan et al.’s liblinear (linear SVM) classifier [20], trained in-
dependently (one vs. rest) on each concept using 200,000 positive and 400,000
negative segments, sampled uniformly from concept and background (negative)
videos, respectively (sampling enables us to retain the training set in memory).

4.2 Multiple Instance Learning (MIL)

To explore MIL on our task, We adapt the MILBoost algorithm with ISR crite-
rion [15]. We use sparse boosting with decision stumps [21] as the base classifier.
All of the instance (segment) weights are updated by multiplying with the cor-
responding bag weights. Viola et al. noted [15] that the ISR criterion can lead
to competition among instances in the same bag, but this is a reasonable choice
for our problem because: 1) the target concept can occur in only a very small
fraction of the pixels in a positive video, and 2) the tags for our videos are
themselves noisy. We train using 500,000 positive and 50,000 negative segment
instances.

4.3 One-vs-one Training Variant

Many of the segments within the positive videos (tagged by a specific desired
concept, the target of learning) belong to concepts that co-occur with the desired
concept. Such segments, may help detect the desired concept, but they are not
part of the desired concept. When we take as the negative videos a subset of all
videos, these frequently associated concepts tend to be learned, because they are
not sufficiently represented in the negative videos. The problem of associated or
co-occurring concepts is pervasive to weakly-supervised learning. Focusing the
learner on what makes the concept what it is, by showing videos drawn randomly
from different distributions corresponding to other concepts should help focus
the learner on the desired concept.

We realize this idea by training one-versus-one linear classifiers for each class
pair. Let si,j(x) denote the score that the binary classifier, trained on segments
from video tagged by concepts i and j, assigns to class i when applied to a
segment with feature vector x of a segment. Then, when scoring segments from
a video tagged by class i, the score of a segment x is defined as the minimum
over all classifier scores:

si(x) = min
j 6=i

si,j(x).

For each class pairing i and j, the segments are taken from videos tagged with i
and j only (about 100,000 segments each in our experiments), and raw classifier
scores are calibrated (to obtain probabilities) on 20% of such segments. Taking
the minimum score is intuitive, as we seek those segments that are least like
any other concept. Note that this is slightly different from traditional 1-vs-1
multi-class SVM training, which votes across many pairs of subsets of classes.
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4.4 Object Segmentation from Ranked Segments

The segment-level classifiers described above output a set of segments for each
video ranked by the likelihood of being instances of the concept.4 Given such a
list of segment “seeds” for a video, our goal is now to refine these into object
masks using both appearance and spatial consistency. To construct such a dense
labeling, we adopt a graph-cut based segmentation formulation, summarized
briefly due to space considerations.

Our formulation employs a unary appearance (color and local texture) poten-
tial that is obtained using two Gaussian Mixture Models trained on foreground
(pixels in selected seeds) and background (pixels sampled far from seeds). The
pairwise term is standard and designed to enforce smoothness. The energy func-
tion is efficiently minimized using [22] for each frame in the test video.

5 Evaluation

We present both qualitative and quantitative evaluations of our method on a
large corpus of partially groundtruthed internet video. Additional results exam-
ining the role of different features, type of video over-segmentation and com-
parisons with other weakly supervised classifiers are omitted here due to space
limitations.

Table 1: Summary of weakly supervised internet video dataset

Concept Summary Number

bike motorbikes and bicycles, often with a rider 1,671
boat a variety of watercraft including ships, boats and jetskis 1,283
card playing cards, featured in magic tricks and card games 937
dog dogs of various breeds, indoors & outdoors 1,336
helicopter includes both full-size and toy helicopters in outdoors scenes 1,189
horse typically horses being ridden in equestrian events 1,800
robot a variety of robots, including toys, research & industrial machines 601
transformer shape-shifting toys, often occluded by hands manipulating them 1,283
background (from a variety of other tags detailed in text) 12,207

5.1 Dataset

Our dataset consists of full-length internet videos that are several minutes in
length and contain multiple shots. To remain true to our goals, we perform no
manual filtering or selection of the content. We have collected 20,000 public
videos from YouTube, summarized in Table 1 along with additional background

4 The common application case for object segmentation is that the given category
occurs somewhere within the tagged test video; our method can be applied to un-
tagged test videos by requiring a high-precision threshold on segment-level seeds and
dropping videos without insufficient seed segments.
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videos from several other tags, such as “stadium”, “protest”, “flower”, “moun-
tain”, and “running”. Additionally, a set of test videos from different classes has
been manually annotated (at the pixel level) to generate a ground truth set of
approximately 50,000 frames to generate precision/recall curves.

5.2 Experiments

We process each of the videos in the training set as follows to ensure unifor-
mity. First, we scale each video to a consistent width of 240 pixels, maintaining
its original aspect ratio. Next, we perform video stabilization [11, 13] to reduce
camera motion that could corrupt motion features and shapes of spatiotemporal
segments. We then perform hierarchical spatiotemporal segmentation5 to iden-
tify segments (at multiple scales) that capture contiguous parts of objects and
the background. To better understand the role of segmentation, we also repeat
our experiments using a tesselation of cuboids (spatiotemporal generalization of
patches), where each image is divided into 12× 9 patches, 10 frames deep.

We represent each segment (and cuboid) using the following features: 1) RGB
color histogram, quantized over 20 bins; 2) histogram of local binary patterns
computed on 5×5 patches [23, 24]; 3) histogram of dense optical flow [25], with
an additional fifth bin for near-zero flow; 4) heatmaps computed over a 8×6 grid
to represent the (x, y) shape of each segment, summed over its temporal extent;
5) histogram of quantized SIFT-like local descriptors extracted densely within
each segment.
Computational details: It is a challenging task to process videos at such
a large scale. We distribute the job of video stabilization, spatiotemporal seg-
mentation and feature extraction for each video to different machines using the
MapReduce framework. Using our implementation, we are able to process our
20,000 videos using a cluster of 5000 nodes in less than 30 hours.

For the liblinear classifier, we present results based on a few regularization
(C) values (and compare the classifiers using the same C). For MIL, we set the
regularization term of sparse boost to 1.0 and used 1000 decision stumps.

Figure 3 presents pixel-level precision/recall curves6 (overall and per class)
for segment-level classification. Surprisingly, the choice of segment-level classifier
is not critical. In particular, posing this problem in a multiple-instance learning
(MIL) framework does not result in clear gains. Using the one-vs-one variant gen-
erates significant improvement over one-vs-rest, and in paired (per groundtruth
video) tests, comparing precision at each of 5%, 10%, and 20% recall levels, we
observe 17 or more wins vs. 9 or fewer losses.

The use of video segmentation also dominates cuboids in a similar fashion,
both on average and in paired comparisons.

Weakly supervised learning of some visual concepts at the individual segment
level is easier than others. For instance, “bike”, “dog”, “robot” and “transform-
ers” seem to have sufficiently distinctive features that they can be separated from

5 Using the web-based segmentation service at http://videosegmentation.com [12].
6 Precision is the fraction of correctly classified pixels to classified pixels; recall is the

fraction of correctly classified to groundtruth concept pixels.
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Fig. 3: Averaged & per-class results. Random pixel baseline precision: 16%.

the background class, at the segment level, under weak supervision. Among the
difficult classes, spatiotemporal segmentation often undersegments helicopters.
“Horse”, “boat” and “card” seem to be difficult because of the problem of asso-
ciated segments (e.g., water in the case of boat).

Figure 4 shows examples of object masks (magenta overlay) for each of the
eight classes, as well as precision-recall curves for the corresponding video. These
results include object mask refinement (dashed lines in P-R curves) as well as
the raw P-R curves using individual segment classifiers. We see that, the object
masks localize objects from different classes, even under challenging conditions:
dog at the beach, complicated close-up of motorbike, etc. Object mask refine-
ment works best for high-precision individual segment results. We note that rare
objects, such as the beach ball in the horse video, are occasionally highlighted
(false positives). Additional failure cases are shown in Figure 4 (last row).

6 Conclusion

This paper proposes the idea of learning spatiotemporal object models, with
minimal supervision, from large quantities of weakly and noisily tagged video.
Since we are the first to tackle this problem, particularly at large scale, we
conduct an evaluation of several computationally scalable approaches to weakly
supervised learning. We believe that weakly supervised learning from internet
video has the potential to radically transform object and action recognition. This
paper is just the first step towards that goal.

In future work, we plan to explore several directions. First, our current frame-
work implicitly uses segment-level loss whereas the evaluation is at the pixel
level; directly optimizing the latter is worth exploring. Second, we plan to inves-
tigate how our approach scales to thousands of concepts. Finally, we plan to use
our object segmentation masks as strongly supervised training data for training
traditional object detectors in both image and video domains.

Acknowledgments We thank C. Cortes, S. Kumar, K. Murphy, M. Ruzon,
E. Sargin, G. Toderici, J. Weston, and J. Yagnik for many helpful discussions.



Weakly Supervised Learning of Object Segmentations from Web-Scale Video 9

0.0 0.2 0.4 0.6 0.8 1.0

Recall
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall
MIL+GC

Lin

Lin+1_vs_1

MIL

0.0 0.2 0.4 0.6 0.8 1.0

Recall
0.0

0.2

0.4

0.6

0.8

1.0

Pre
cis

ion

Precision-Recall
Lin+GC

Lin

Lin+1_vs_1

MIL

0.0 0.2 0.4 0.6 0.8 1.0

Recall
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall
MIL+GC

Lin

Lin+1_vs_1

MIL

0.0 0.2 0.4 0.6 0.8 1.0

Recall
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall
MIL+GC

Lin

Lin+1_vs_1

MIL

0.0 0.2 0.4 0.6 0.8 1.0

Recall
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall
MIL+GC

Lin

Lin+1_vs_1

MIL

0.0 0.2 0.4 0.6 0.8 1.0

Recall
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall
MIL+GC

Lin

Lin+1_vs_1

MIL

0.0 0.2 0.4 0.6 0.8 1.0

Recall
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall
Lin+GC

Lin

Lin+1_vs_1

MIL

0.0 0.2 0.4 0.6 0.8 1.0

Recall
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall
MIL+GC

Lin

Lin+1_vs_1

MIL

Failure cases

Fig. 4: Sample object segmentation results for each class and some failure cases.
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