Unifying Discriminative Visual Codebook Generation with Classifier Training for Object Category Recognition
(Supplemental Material for CVPR 2008 paper)

Liu Yang¹ Rong Jin¹ Rahul Sukthankar²,³ Frederic Jurie⁴
yangliu1@cse.msu.edu rongjin@cse.msu.edu rahuls@cs.cmu.edu frederic.jurie@inrialpes.fr
¹Dept. CSE, Michigan State Univ. ²Intel Research Pittsburgh ³Robotics Institute, Carnegie Mellon ⁴LEAR Group - CNRS - INRIA

Appendix A : Proof of Lemma 1

Proof. \(l'(X_i, y_i) \) can be upper bounded by follows:

\[
\begin{align*}
 l'(X_i, y_i) &= \sum_{X_i} \sum_{i=1}^{n_i} e'(x_{i,j}, y_i) \\
 &= \sum_{j=1}^{n_i} \frac{e(x_{i,j}, y_i)}{\sum_{j=1}^{m} \exp(\alpha g(x_{i,j}, y_i))} \\
 &= \frac{1}{\sum_{j=1}^{n_i} \exp(\alpha g(x_{i,j}, y_i))} \\
 &\leq \frac{1}{\sum_{j=1}^{n_i} \exp(\alpha g(x_{i,j}, y_i))} \\
 &= \frac{1}{\sum_{j=1}^{n_i} q_{i,j}(y_i) \exp(\alpha g(x_{i,j}, y_i))} \\
 &= \frac{1}{\sum_{j=1}^{n_i} \exp(\alpha g(x_{i,j}, y_i))}.
\end{align*}
\]

where

\[
q_{i,j}(y_i) = \frac{e(x_{i,j}, y_i)}{\sum_{j=1}^{n_i} e(x_{i,j}, y_i)}.
\]

The above inequality gives us the result in Lemma 1.

Appendix B : Proof of Lemma 2

Proof. \(\exp(\alpha(g(x_{i,j}, y) - g(x_{i,j}, y'))(y)) \) can be upper bounded as follows:

\[
\begin{align*}
 \exp(\alpha(g(x_{i,j}, y) - g(x_{i,j}, y'))(y)) &= \exp(-3\alpha \times \frac{g(x_{i,j}, y') - g(x_{i,j}, y) + 1}{3} + 3\alpha \times \frac{1}{3} \\
 &\leq \frac{g(x_{i,j}, y') - g(x_{i,j}, y) + 1}{3} \exp(-3\alpha) \\
 &\leq \frac{1}{3} \exp(3\alpha) + \frac{g(x_{i,j}, y') - g(x_{i,j}, y) + 1}{3} \exp(-3\alpha) + \exp(3\alpha) + 1 \\
 &= \frac{1}{3} - \exp(-3\alpha) + \exp(3\alpha) + \frac{g(x_{i,j}, y') - g(x_{i,j}, y)}{3}.
\end{align*}
\]

In the above, we exploit the convexity of exponential function, namely

\[
\exp\left(\sum_{i=1}^{n} p_i q_i\right) \leq \sum_{i=1}^{n} p_i \exp(q_i),
\]

when \(p_i, i = 1, \ldots, n \) is a probability distribution (i.e., \(p_i \geq 0, i = 1, \ldots, n \) and \(\sum_{i=1}^{n} p_i = 1 \)).
Appendix C : Proof of Theorem 1

Proof. Using the results in Lemma 1 and 2, we have the loss function \(l'(X_i, y) \) upper bound as follows:

\[
\frac{l'(X_i, y)}{l(X_i, y)} \\
\leq \frac{\exp(-3\alpha) + \exp(3\alpha) + 1}{3} \sum_{j=1}^{n_i} \sum_{y'=1}^{m} q_{i,j}(y) e(X_i, y') \\
- \frac{1 - \exp(-3\alpha)}{3} \sum_{j=1}^{n_i} q_{i,j}(y) \sum_{y'=1}^{m} e(X_i, y') g(x_{i,j}, y) \\
- \frac{1 - \exp(-3\alpha)}{3} \sum_{j=1}^{n_i} q_{i,j}(y) \sum_{y'=1}^{m} e(X_i, y') g(x_{i,j}, y') \\
\]

In the above, we use the relationships

\[\sum_{j=1}^{n_i} q_{i,j}(y) = 1, \quad \text{and} \quad \sum_{y=1}^{m} e(X_i, y) = 1. \]

Using the above inequality and the fact that \(L' = \sum_{i=1}^{N} l'(X_i, y), l(X_i, y) \), we obtain the result in Theorem 1. \(\square \)

Appendix D : Computing the Optimal \(\alpha \)

Proof. First, using Lemma 1, we have the following upper bound for the objective function \(L' \), i.e.

\[
L' = \sum_{i=1}^{N} \sum_{y \in y_i} l(X_i, y) \sum_{j=1}^{n_i} q_{i,j}(y) \frac{e(x_{i,j}, y')}{\exp(\alpha|g(x_{i,j}, y) - g(x_{i,j}, y')|)} \\
+ \sum_{i=1}^{N} \sum_{y \in y_i} \frac{n_i}{m} t_{i,j}(y, y') \delta(g(x_{i,j}, y), 1) \delta(g(x_{i,j}, y'), 0) \exp(\alpha) \\
+ \sum_{i=1}^{N} \sum_{y \in y_i} \frac{n_i}{m} t_{i,j}(y, y') \delta(g(x_{i,j}, y), 0) \delta(g(x_{i,j}, y'), 1) \exp(\alpha)
\]

where

\[t_{i,j}(y, y') = l(X_i, y) q_{i,j}(y) e(x_{i,j}, y'). \]

By setting the derivative of the above expression with respect to \(\alpha \) to be zero, we have the expression for computing the optimal \(\alpha \). \(\square \)

Appendix E : Proof of Theorem 3

Proof. First note that \(L \) can also be written as

\[
L = \sum_{i=1}^{N} \sum_{y \in y_i} l(X_i, y) q_{i,j}(y) e(x_{i,j}, y') \\
= \sum_{i=1}^{N} \sum_{y \in y_i} \sum_{z' = 0}^{m} A_{i,j}(z) B_{i,j}(z') \\
= K_{0,0} + K_{0,1} + K_{1,0} + K_{1,1},
\]

where

\[K_{z,z'} = \sum_{i=1}^{N} A_{i,j}(z) B_{i,j}(z'). \]

On the other hand, using the result for \(\alpha \), we have \(L' \) expressed as follows:

\[
L' = \sqrt{K_{1,0}} K_{0,1}
\]

Hence, the ratio \(L'/L \) is calculated as

\[
\frac{L'}{L} = \frac{2\sqrt{K_{1,0}} K_{0,1}}{K_{0,0} + K_{0,1} + K_{1,0} + K_{1,1}} \\
\leq 1 - \frac{K_{1,0} + K_{0,1} + K_{1,0} + K_{1,1}}{K_{0,0} + K_{0,1} + K_{1,0} + K_{1,1}} \\
= 1 - \frac{(\sqrt{K_{0,0}} - \sqrt{K_{1,0}})^2}{2K_{0,0} + K_{0,1} + K_{1,0} + K_{1,1}} \\
= 1 - \frac{(\exp(\alpha) - 1)^2}{1 + \exp(2\alpha) + \eta},
\]

where

\[\eta = \frac{K_{1,1} K_{0,0}}{K_{1,0}} = \frac{\sum_{i=1}^{N} \sum_{j=1}^{n_i} A_{i,j}(z) B_{i,j}(z)}{\sum_{i=1}^{N} \sum_{j=1}^{n_i} A_{i,j}(1) B_{i,j}(0)}. \]

\[
L_T = L_0 \prod_{i=1}^{T} \frac{L_i}{L_{i-1}} \\
\leq \prod_{i=1}^{T} \left(1 - \frac{(\exp(\alpha) - 1)^2}{1 + \exp(2\alpha) + \eta} \right).
\]

\(\square \)