Appears in: Proceedings of the International Symposium on Agent Systems and Applications, 1999

JGram: Rapid Development of Multi-Agent Pipelines
for Real-World Tasks

Rahul Sukthankar!:2, Antoine Brusseau®, Ray Pelletier!, Robert Stockton!

1Just Research 2The Robotics Institute
4616 Henry Street Carnegie Mellon Univ.
Pittsburgh, PA 15213 Pittsburgh, PA 15213

{rahul s, brusseau, pel l etier,rgs}@ ustresearch. com

Abstract

Many real-world tasks can be decomposed into pipelines of sequential operations (where sub-
tasks may themselves be composed of one or more pipelines). JGram is a framework enabling rapid
development of such multi-agent systems. Each agent’s services are specified in the JGram De-
scription Language (JDL), and automatically converted into Java source templates. These services
may be invoked synchronously (analogous to function call) or asynchronously (analogous to mes-
sage passing), in a manner that is transparent to the service’s implementation. Complex tasks are
created by composing several agent services into hierarchical JGram pipelines in which each agent
may dynamically delegate its subtasks to other agents in a recursive manner, and in which errors are
handled by a cross-agent, exception mechanism. Although JGram agents communicate using Java’s
Remote Method Invocation (RMI) protocol, the framework provides significant enhancements such
as authentication, encrypted channels, and dynamic service specification. JGram has been used
to develop several real-world agent systems. This paper discusses ARGUS, a visitor identification
system that integrates a security camera with face detection, face recognition and user notification
systems to automatically identify regular visitors arriving at the front door of our building.

1: Introduction

Complex real-world problems can often be modeled as collections of simpler, sequential oper-
ations. For instance, the Unix environment provides a large collection of relatively simple tools
(filters) that can be creatively chained together (using pipes) to solve non-trivial problems. This pa-
per describes JGram, a generalization of the Unix pipe concept as applied to multi-agent systems,
where the role of the filters is played by agent services. Aside from the immediate observation
that a JGram pipeline is not restricted to a single machine, it differs from a standard Unix pipe in
the following three respects. First, the stream oriented communication is replaced by the JGram
slate, an arbitrary collection of named, typed entities. Second, agents involved in a JGram pipeline
can dynamically alter the pipeline’s structure (itinerary). Finally, unlike a Unix pipe, a JGram
pipeline provides extensive support for error handling. Unix pipes are useful mainly because they
allow rapid composition of basic functions. In the same spirit, agents in the JGram framework can
initiate a JGram pipeline by specifying a sequence of recipients.

The JGram framework minimizes the drudgework involved in creating agent services by auto-
matically converting high-level agent specifications (written in the JGram Description Language)
into Java source code. These services may be invoked synchronously (analogous to function call)
or asynchronously (analogous to message passing), in a manner that is transparent to the service’s
implementation. JGram is thus a Java-based agent framework specialized to enable the rapid in-
tegration of existing software into a multi-agent pipeline. This paper begins by motivating the
usefulness of such a tool by briefly describing a real-world visitor identification system that was
built using JGram. The paper then details the various aspects of the agent framework, with each
feature being discussed in the context of the visitor identification scenario. An overview of relevant
related work is provided, and promising directions for future research are outlined.

2: The Visitor Identification Task

Consider the following scenario. Visitors to large apartment complexes are typically screened
by a security guard in the lobby before being allowed to enter. Over time, guards learn to associate
frequent visitors with the tenants whom they plan to visit, and are able to immediately notify the
visitor’s host of the guest’s arrival over the building intercom. ARGUS (named after the vigilant
watchman from Greek mythology) is an automated version of such a security guard.

At a high-level, ARGUS’s operation consists of the following steps, each of which is managed
by one or more agents. A security camera photographs the building entrance every two seconds,
and a motion detection algorithm identifies potential scenes containing visitors. Faces from these
images are extracted using a neural-network-based face detector [13]. A face recognition system,
ARENA [15], examines these face images and attempts to find visually similar matches in its stored
database of visitors. Any user interested in receiving notification of visitors runs a user-interface
agent which is automatically informed when the relevant visitors are identified. This agent also
allows users to provide ARGUS with immediate corrections for identification errors. Since ARENA
is capable of online learning, this feedback can be immediately incorporated into the recognition
dataset. For more information on the ARGUS system, please see [16].

ARGUS is implemented as a collection of agents in a multi-agent system for several reasons.
First, the components require different platforms: for instance, the camera interface is limited to
Windows, while the face recognition system prefers Linux. Similarly, ARGUS users, distributed
over an intranet, require notification on their individual workstations (running either Linux or Win-
dows). JGram agents, which use Java RMI for communication, are well suited for this scenario.
Second, the computational load imposed by some of the image processing routines is severe enough
to merit splitting the task over multiple machines. Third, a multi-agent architecture offers a high
degree of modularity, allowing ARGUS agents to be dynamically added to or removed from the
system. For instance, interface agents can be created and killed as users arrive and leave without
affecting the rest of the ARGUS system. Similarly, monitoring agents can be inserted to diagnose
problems without disrupting service, and different face recognition algorithms can be seamlessly
tested. Figure 1 presents an overview of the ARGUS agents and their interactions, and each agent
is briefly described below.

The delegator agent provides several services, such as an interface to the camera, rudimentary
agent name services, and manages the image processing agents which perform the bulk of ARGUS’s
work. The delegator creates a JGram pipeline of the form: delegator — detector — recognizer
— ... — notifier. The detector agent, a wrapper around an existing face detection system, locates
human faces in its input image. If a face is not found, the detector signals this failure by throwing

M onitor

Dj'“" Delegator » Notifier

Notifier

Detector ——>» Recognizer

il

Reclassifier

<

Figure 1. This diagram shows an overview of the ARGUS architecture, where each
box depicts a JGram agent. The heavier lines show the major data pathways and
the light lines show monitoring information. A line with a double arrows represents a
synchronous exchange while one with a single arrow indicates asynchronous dataflow.
(See the text for details.)

an exception; this exception is trapped by the JGram framework and the delegator is notified.
Similarly, faces located in the image are automatically forwarded to the recognizer agent, a face
recognition system. When a face is identified as a known visitor, all notifier agents watching for
that visitor’s arrival are alerted. The notifier interface agents pop up a window on each user’s
machine as shown in Figure 2. If the user provides feedback (such as correcting an erroneous visitor
identification), the JGram framework automatically forwards the correction to the recognizer. The
remaining agents supplement this main loop: the reclassifier is an interface agent that allows users
to provide offline training signals to the face recognition system; the monitor agent (shown here as
communicating to the delegator) queries agents in the ARGUS system to provide centralized status
information.

As discussed above, ARGUS is constructed from several components, distributed over several
machines operating on different platforms; some consisting of legacy software and others built
completely in JGram. ARGUS has been running at Just Research since January 1999 and has
processed several thousand visitor and employee arrivals (ARGUS operates 24 hours a day, 7 days
a week). User interface agents were able to re-establish connections with their peers as various
parts of the system were upgraded. The remainder of this paper describes the features that made
the JGram agent framework well suited for our task.

(" Mo, stupid, that was

(" | have no ides who that was

Diane

Figure 2. The user-interface agent displays an image captured by the security camera
along with a box surrounding the face of the visitor and a tentative identification.

3: The JGram Agent Framework

What distinguishes the JGram agent framework from similar Java-based agent development sys-
tems? JGram is not designed to be a general agent framework; it is designed specifically to solve
two important problems:

Rapid development and integration:

Agent developers often spend precious time reimplementing solutions to the same basic tasks:
network communications, multi-threading to handle incoming requests, creation of name
servers to locate external entities, or wrapping (non-agent) legacy code into the agent system.
The JGram framework enables developers to provide concise high-level agent specifications,
and source code for these tasks is automatically generated. New source code added by the de-
veloper is automatically merged with machine-generated code as agent specifications evolve
over the lifetime of the project.

Rudimentary agent cooper ation:

As discussed in the introduction, complicated real-world tasks can often be decomposed
into hierarchies of simpler, sequential tasks. Agents in such a system attack these tasks
by dynamically delegating sub-tasks to other agents and chaining these results. Ideally, the
design is elegant since each agent is responsible only for a small aspect of the problem,
and can remain blissfully ignorant of the true complexity of the task. Unfortunately, error
handling in such a design is not necessarily simple, particularly when the agents are unable to
resolve problems at the local level. The JGram framework enables agents to create dynamic,
hierarchical “pipelines”, with transparent propagation of results. The notion of exceptions is
generalized so that the responsible agents are automatically notified when errors in a JGram
pipeline arise.

These issues are discussed in greater detail in the following sections.
3.1: Communications I nfrastructure

The communications infrastructure lies at the heart of any multi-agent system. In the JGram?
framework, all agent interactions occur through the transmission and receipt of objects known as
JGram slates. A JGram slate (see Figure 3) consists of two parts: a header specifying addressing
information and delivery instructions; and a body containing a set of typed, named, complex entities
(e.g., the list of JPEG images named “recent visitors”, or a Date named “current time”). A JGram
slate is passed from agent to agent, such that the current holder of the slate can read, modify or
delete entries. Since a slate may record arbitrary objects, it serves as a rich channel for inter-agent
communication. Naturally, a disorganized version of slate-passing could rapidly become unman-
ageable. To counteract this, the JGram framework makes it easy for agents to declare how their
services will interact with incoming JGram slates, in a manner analogous to function declarations
in programming languages. In exchange, the JGram framework provides benefits such as param-
eter checking, thread management, authentication, agent name service, and error handling. Thus,
developers can focus on creating and using agent services while the JGram framework manages the
low-level details.

JGram slates are sent from agent to agent using Java Remote Method Invocation (RMI) [17]. The
JGram framework multiplexes all remote communications through a single remote method call, so

L«3Gram”, like “telegram”, is intended to be a message that travels rapidly between agents.

JGram Itinerary Recipient

) . Full Agent

Itinerary Current Recipient Narr?e
NS Ali

Unique ID Recipient to Visit gopstior::ds)

JNS for Alias Exp.
(optional)

Time to Live

Recipient History

JGram Entry

Service Name

Is Error Handler

Figure 3. The internal structure of a JGram slate the basic communications object.
Agent data consists of a list of typed, named objects. The itinerary provides the rout-

ing information, where recipients are specified either by a physical address, or by an
alias (registered with a nameserver).

Agent-Specific | Communications Security
Components
Service Service Session
Dispatch Composition Agent Info
Startu Session Key
P encrypt()
decrypt()
Synchronous Error validate()
Installation Connections Handling refresh()
Servi Alias JGram
ervice Expansion Dispatch
PGP Based
Authentication
Utilities
Initiator
User
Resource Interface
Management
Components

Figure 4. An overview of the internals of a JGram agent. All of the components in the
Communications, Security and Utilities sections are provided the JGram framework
and Java source code skeletons for the Agent-Specific Components are automatically
generated from the high-level agent specification file.

that JGram agents can provide reconfigurable interfaces while all sharing the same static Java RMI
stub file. The multiplexing also allows the framework to perform extra processing before and after
each communication. For instance, the framework can verify that the incoming JGram slate satisfies
all of a service’s constraints (a generalization of type checking), and can return an error before the
service is initiated. Additionally, the framework can automatically start each service request in its
own thread, if the agent designer has indicated that the services are thread-safe. This enables an
implementation of synchronous and asynchronous service requests in a manner that is transparent
to the server agent.

Figure 4 depicts the internals of a JGram agent. The JGram framework implements the com-
ponents shown in the the Communications, Security and Utilities sections. Skeletons for the Agent
Specific Components are automatically generated from the JDL specification file, but the details
must be fleshed out by the human developer. The interactions between these components is best
illustrated by an example.

Consider the Delegator, Detector and Recognizer agents from Figure 1. Upon acquiring an
image from the camera, the Delegator creates a JGram slate containing the image and places the
Detector and Recognizer agents on the slate’s pipeline itinerary. The JGram framework now takes
over. First, the JGram dispatch component in the Delegator agent establishes a connection with the
Detector agent’s Service Dispatch component (Alias Expansion or authentication may also need to
be performed first). Once the JGram slate has arrived at the Detector agent, the Service Dispatch
component verifies that the JGram slate satisfies the input requirements for the selected service,

fi ndFace. After these checks have been completed, the agent framework for the Detector agent
executes the code implementing the f i ndFace service (in this case, a JNI invocation). The f i nd-
Face service sets, clears or modifies the desired entries in the JGram slate and exits. Once again,
the agent framework assumes control and automatically forwards the JGram slate onto its next re-
cipient, Recognizer. Any problems encountered during this pipeline that are not handled by the
agent itself are automatically trapped by the JGram framework and processed as described in the
next section.

3.2: Exception Handling for JGram Pipelines

The JGram framework provides a cross-agent exception handling capability with semantics that
should seem natural to people familiar with the exception handling mechanisms in modern lan-
guages such as C++ and Java.

In the JGram framework, agents are responsible for handling errors that may occur in the
pipelines that they initiate. These agents are known as “managers”, and errors in a section of a
pipeline are sent to the appropriate manager. Agents are allowed to modify the itinerary of the slate
by prepending a section of pipeline, known as a “detour”. Detours enable agents to delegate tasks
to other agents®. An agent that adds a detour becomes responsible for exceptions generated during
the detour (since the initiator of a detour is typically the one most likely to understand the reasons
motivating the detour). Exceptions can arise in two ways: (1) unhandled Java exceptions occuring
within an agent service; (2) explicit throws of an exception by an agent. By throwing an exception,
an agent service can abort the execution of the pipeline. The exception is caught by the JGram
framework, which forwards the offending JGram slate to the manager responsible for the current
section of the pipeline. If this agent cannot solve the problem, the exception gets re-thrown. Thus,
if an error occurs deep within a nested pipeline, it will percolate up one pipeline-level at a time,
until it is either addressed successfully, or until the top-level pipeline is aborted. Manager agents
may re-submit the failed subtask (since failures need not be deterministic), correct the JGram slate
prior to resubmission, or abort the subtask in a controlled manner.

The semantics of JGram exception handling become clearer when the analogy to existing excep-
tion schemes is made explicit. The notion of flagging agents as managers is identical to entering a
t ry/ cat ch block. The forwarding of JGram slate to the closest manager corresponds to throwing
an exception that is caught by the closest cat ch statement. Similarly, if a given manager ignores
the error, it is automatically forwarded to the next manager in the hierarchy, exactly in the manner
that uncaught exceptions are propagated to the nextt r y/ cat ch block. The manager is removed
from the itinerary only after all recipients (and their detours!) have successfully completed. This is
analogous to a normal exit fromat ry/ cat ch block.

3.3: The JGram Description Language

The JGram Description Language (JDL) enables agent designers to specify the high-level be-
havior of their agents, in the form of services and requests. Consider the face detector component
in ARGUS: a Windows NT implementation of the Rowley-Baluja-Kanade [13] neural-network, de-
veloped at Carnegie Mellon University. From ARGUS’ perspective, the face tracker is an agent that
performs a single service: given an image, it outputs the location of a human face in that image, if
one exists. This is expressed in JDL as shown in Figure 5. The agent keyword is followed by the

2Note that, by including itself in the detour list multiple times, an agent can process intermediate results from these
subtasks.

agent Detect Face . "DetectFace" {

handl es findFace : "Looks for a face in a given imge." (
byte[] inage : "G F or JPGthat might contain a face.",
nul | abl e Rectangle clip : "Only search this part of the inmage.",
Long ti neStanp : "A unique identification of this inage",
nul | abl e out Rectangle face : "The |location of the face, if any."

)
}

Figure 5. This is the high-level agent specification file for the face detector agent from
ARGUS. From this JDL description, JGram automatically generates an agent wrap-
per for the neural-network face tracker (a Windows NT application written in C).

agent’s name, “DetectFace”, a colon and a human-readable documentation string in quotes. The
same syntax is used to document the other major aspects of the specification file. The documen-
tation strings are automatically incorporated into this agent’s interface description and peer agents
may obtain this description to aid composition of agent services. The rest of the file defines service
declarations (beginning with the handl es keyword) and remote service requests (beginning with
the i ni ti at es keyword, not applicable here). Both service declarations and service requests
accept a list of entries (Java objects of arbitrary type) in a similar manner to that used in a method
call. For detailed specifications of the JGram Description Language, the reader is directed to the
JGram documentation.

From this description file, the JGram development system generates Java source code that im-
plements communication and type-checking, and creates a skeleton for the human developer where
the service can be detailed. In this example, the service is simple: it just invokes the neural-network
executable using Java’s Native Interface and converts the program’s output into the appropriate
format.

3.4: Security

As multi-agent systems become widely used in corporate applications, the need for security
becomes increasingly important. The security component of the JGram framework enables agents
to communicate over encrypted communications channels and to authenticate peer agents. When
two JGram agents interact, they first use public-key cryptography [6] to confirm identities. Since
asymmetric key protocols are slow, the agents also negotiate a shared session key [14], so that
subsequent interactions can use a symmetric protocol. The current implementation of the JGram
framework uses the Cryptix cryptographic libraries [2], but we are in the process of upgrading the
JGram security components to use the cryptographic extensions provided by Java2.

4: Related Work

Multi-agent systems are reviewed in [7, 8, 18]. Most multi-agent systems still employ socket-
based communications with text messages in agent languages such as FIPA [5] or KQML [4]. This
allows large communities of interoperable agents to be built, but complicates the task of building
systems like ARGUS, where images and complex data structures would need to be explicitly seri-
alized by each agent. JAFMAS [1] is a Java-based framework that, like JGram, uses RMI protocol
as a communications substrate providing object transport between agents. However, JAFMAS fo-
cuses on supporting structured “conversational models” between agents (derived from speech-act
theory) and is not well suited for our applications. Unlike systems such as RETSINA [3], the JGram

framework provides no higher-level abstractions for agent planning or cooperation, aside from the
relatively low-level pipelining and exception handling mechanisms discussed above. Stanford’s
JATL.ite [9] is an agent toolkit with goals that are seem similar to the JGram framework: quickly
creating new software agents that communicate over the network. JATLite provides templates (Java
classes) which can be used by developers to write their own agents. Unfortunately, JATL.ite has no
notion of itineraries: messages cannot easily be sent to a sequence of recipients. Also, since JATL.ite
parameters are simple untyped strings, there is no support for parameter checking (neither exis-
tence nor type), and agents must implement their own parameter marshalling. IBM’s Aglets [10],
MEITCA’s Concordia [11] and Fujitsu’s Kafka [12] are Java-based agent architectures primarily
directed towards building mobile agents (agents that move from machine to machine during execu-
tion). While JGram agents may send executable code to each other for remote execution, this is not
explicitly supported by the current framework. Sun’s JINI [19] promises several exciting enhance-
ments, particularly in the area of hardware interfaces; we hope to exploit some of these features in
future versions of the JGram framework. In summary, the JGram framework is specialized towards
the needs of particular multi-agent systems (those easily expressed using pipelines).

5: Conclusions and Future Work

The JGram framework enables rapid development of pipelined multi-agent systems by automat-
ically generating Java source code from high-level agent specifications. The JGram infrastructure
also provides:

e dynamic composition of agent services using JGram pipelines;
hierarchical, cross-agent exception handling;

automatic checking of JGram service requirements;

limited security: authentication, encryption, key management;
transparent multithreading for agent services;

sync/async communication independent of service implementation;

JGram has been used at Just Research and Carnegie Mellon University to build several multi-
agent applications, such as an intranet messaging system and the ARGUS visitor identification
system described above. JGram may be freely obtained by members of the agent community for
non-commercial, research purposes by contacting the authors.

Several extensions to the JGram system are planned. First, a generalized mechanism for remote
event notification will be added: agents may register an interest in an event, and receive notification
when the remote event occurs. For instance, some of the explicit management of remote events
in the ARGUS system could be handled by the framework. Second, more support will be added
for agents with intermittent network connections. A subset of the JGram framework is already
supported on the 3Com PalmPilot PDA. Third, since the JGram framework does not provide any
support for “traditional” agent activities, such as planning, we hope to create gateways that will
enable JGram pipelines to interoperate (to some degree) with their more “intelligent” counterparts.

Acknowledgments

The ARENA face recognition system was developed in collaboration with Terence Sim, Shumeet
Baluja and Matthew Mullin. The authors would like to thank Gita Sukthankar for valuable assis-
tance with this paper and Michael Witbrock for proofreading drafts of an earlier version. Numerous
researchers at Just Research and Carnegie Mellon have tested the JGram agent framework and pro-
vided useful feedback.

References

(1]
(2]
(3]
(4]

(5]
(6]
[7]

(8]
(9]

[10]
[11]
[12]
[13]

[14]
[15]

[16]
[17]

[18]
[19]

D. Chauhan and A. Baker. JAFMAS: A multiagent application development system. In Proceedings of Autonomous
Agents, 1998.

Cryptix Development Team. The Cryptix encryption library, 1998. <http://ww. systenics. com -
sof tware/ crypti x-j aval >.

K. Decker, A. Pannu, K. Sycara, and M. Williamson. Designing behaviors for information agents. In Proceedings
of Autonomous Agents, 1997.

T. Finin, Y. Labrou, and J. Mayfield. KQML as an agent communication language. In J. Bradshaw, editor, Software
Agents. MIT Press, 1997. <ht t p: / / www. cs. unbc. edu/ agent s/ i ntroducti on/ kgm acl . ps>.

FIPA: Foundation for Intelligent Physical Agents. FIPA home page, 1999. <htt p: / / www. fi pa. or g/ >.
S. Garfinkel. PGP: Pretty Good Privacy. O’Reilly and Associates, 1995.

L. Gasser. An overview of DAI. In N. Avouris and L. Gasser, editors, Distributed Artificial Intelligence: Theory
and Praxis. Kluwer Academic, 1992.

M. Huhns and M. Singh. Readings in Agents. Morgan Kaufmann, 1997.

H. Jeon. An introduction to JATLite. Technical report, CDR, Stanford University, 1998. <http://-
java. stanford. edu/java_agent/ htm />,

D. Lange and M. Oshima. Programming and Deploying Java Mobile Agents with Aglets. Computer and Engineer-
ing Publishing Group, 1998. <htt p: //www. trl . i bm co. j p/ agl et s/ >.

Mitsubishi Electric Information Technology Center America. White paper: Mobile agent computing. Technical
report, MEITCA, 1998. <ht 't p: / / www. rei t ca. coml HSL/ Pr oj ect s/ Concor di a/ >.

T. Nishigaya. Design of multi-agent programming libraries for Java. Technical report, Fujitsu Laboratories, Ltd.,
1997. <htt p: //ww. fujitsu. co.p/ hypertext/freel kaf ka/ paper/>.

H. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 20(1), 1998.

B. Schneier. Applied Cryptography. John Wiley and Sons, 1996.

T. Sim, R. Sukthankar, M. Mullin, and S. Baluja. High-performance memory-based face recognition for visitor
identification, 1999. Submitted for publication. An expanded version is available as Just Research TR-1999-001-1.

R. Sukthankar and R. Stockton. Argus: An automated multi-agent visitor identification system. In Proceedings of
AAAI-99, 1999.

Sun Microsystems. Java Remote Method Invocation — distributed computing for Java. Technical report, Sun
Microsystems, 1998. <htt p: //j ava. sun. com mar ket i ng/ col | ateral /javarm . htm >.

K. Sycara. Multiagent systems. AAAI Al Magazine, 19(2), 1998.

Waldo98. Jini architecture overview. Technical report, Sun Microsystems, July 1998. <http://-
j ava. sun. coni product s/ji ni /whit epapers/architectureovervi ew. pdf >.

