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Abstract

A wide variety of techniques for visual navigation using
robot-mounted cameras have been described over the past
several decades, yet adoption of optical flow navigation
techniques has been slow. This demo illustrates what visual
navigation has to offer: robust hazard detection (including
precipices and obstacles), high-accuracy open-loop
odometry, and stable closed-loop motion control
implemented via an optical flow based visual odometry
system. This work is based on 1) open source vision code,
2) common computing hardware, and 3) inexpensive,
consumer-quality cameras, and as such should be accessible
to many robot builders.

Demo Overview

Optical flow field and camera ego-motion estimation have
been the subject of much research for over 30 years, but
this research has seen limited use. For many years this
could be attributed to the high computational cost of the
known techniques, but modern PCs and embedded systems
have been sufficiently powerful to enable real-time optical
flow analyses for several years now. Other potential
reasons why optical navigation has not seen wider
application may include the mathematical and coding
complexity of implementing a robust vision system, and a
lack of understanding about the high quality of information
available via the technique.

This demonstration is designed to explore (and give
participants a chance to explore) the practicality and
potentially high quality of an optical flow navigation
system based on 1) readily available open source vision
code, 2) common computing hardware, and 3) consumer-
quality cameras. The capabilities of this visual navigation
system include robust hazard detection (precipices and
obstacles), high-accuracy open-loop “visual odometry”,
and stable closed-loop motion control. As part of the
demonstration, participants will arrange a variety of
hazards (obstructions, precipices) for a tabletop mobile
robot equipped with a USB webcam as its only sensor.

Copyright © 2004, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

¥ Carnegie Mellon University, The Robotics Institute
5000 Forbes Ave
Pittsburgh, PA 15213
jasoncam@ri.cmu.edu, rahuls@ri.cmu.edu, illah@ri.cmu.edu

The robot will show robust detection of any hazards put in
its way and, in the absence of a hazard, demonstrate
robotic positioning accuracy to better than 1% of distances
traveled and better than 5 degrees in orientation, in spite of
any (accidental or experimenter-induced) wheel slip.
Participants may also vary parameters in the vision system
(in particular, frame rate and resolution) and observe the
effect on overall system performance in order to gain a
better appreciation of the design-time tradeoffs required by
different environments, velocities, and types of movement.

Figure 1: Robot poised near a drop-off to illustrate
precipice detection. The visual navigation system
demonstrated can reliably detect a cliff even when
similar colors and textures appear at both the bottom
and the top of the precipice (such as in this photo). The
robot pictured has two cameras, but only the lower one,
pointing roughly 30° below horizontal, is in use.

Related Work

This is by no means the first robot to use visual sensing to
control motion! As long ago as 1976, Hans Moravec and
Donald Gennery used feature tracking algorithms to
perform visual servoing/course correction on the Stanford
Cart (Gennery and Moravec 1976). Since then many
research robots have explored more sophisticated forms of
visual sensing. One recent example has been the CMU



Autonomous Helicopter Project, which uses an on-board
visual navigation system based on optical flow techniques
(Amidi 1996).

Early work on visual navigation focused on the extraction
of an optical flow field from a time-sequence of images.
For a survey of such algorithms, see (Barron et al. 1994)
which remains the definitive comparison study in the area.
This study highlighted the gradient-based image matching
technique proposed in (Lucas and Kanade 1981) as
effective across both synthetic and real-world image
sequences, a conclusion other researchers have reached
less formally as they have chosen to base further work on
this algorithm. Recently, an efficient form of the Lucas-
Kanade technique (Bouguet 1999) has become widely
available as part of the OpenCV computer vision library'
(Bradski 2000). OpenCV also incorporates image
acquisition and processing functions suitable for
commonly available cameras and so offers a relatively
complete package for those wishing to apply the Lucas-
Kanade technique. This demo system uses the Lucas-
Kanade functions in OpenCV to capture video frames and
extract the optical flow field from each pair of frames.

Once an optical flow field has been obtained for a
sequence of images, a further analysis is required to
estimate camera ego-motion corresponding to the flow
field. From a research perspective this problem typically
has been viewed as just one component of a more general
problem termed “structure-from-motion” or SFM. Ego-
motion estimation and SFM are challenging because they
seek to recover 3-D information from a 2-D projection,
and to do so an algorithm must treat multiple observations
of movement in the 2-D images as one or more sets of
simultaneous equations. The resulting sets of equations
are often both highly over-determined and subject to ill
conditioned inputs. Statistical methods such as least-
median-of-squares or RANSAC have been proposed to
help screen out outliers and segment flow fields (Bab-
Hadiashar and Suter 1996). An additional complication
arises in that some solution techniques may fail when
presented with flow fields corresponding to the common
case of 2-D rotational and translational movement along a
flat floor, or when the tracked points all lie in a single
plane (Torr et al. 1998). The visual odometry system
demonstrated  adopts  several simpler techniques
(calculating median feature displacements and evaluating
the consistency of feature vectors over time) which allow
quick but surprisingly accurate estimates to be made of
incremental and total distance traveled / angle turned /
floor geometry by assuming the robot is traveling in only
two dimensions over a predominantly flat floor.
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References

Amidi, O. 1996. An Autonomous Vision-Guided Helicopter.
Ph.D. Thesis, Electrical & Computer Engineering Department,
Carnegie Mellon University.

Barron, J. L., Fleet, D. J.,, and Beauchemin, S. S. 1994,
Performance of Optical Flow Techniques. The International
Journal of Computer Vision 12(1):43-77.

Bab-Hadiashar A., Suter D. 1996. Robust Optic Flow Estimation
Using Least Median of Squares. In Proceedings of the IEEE
International Conference on Image Processing, 513-516.

Bouguet, Jean-Yves 1999. Pyramidal Implementation of the
Lucas-Kanade Feature Tracker, OpenCV Documentation, Micro-
processor Research Labs, Intel Corporation.

Bradski, G. 2000. Programmer's tool chest: The OpenCV library.
Dr. Dobbs Journal, November 2000.

Gennery, D. and Moravec, H. 1976. Cart Progress Report,
Stanford University (unpublished).  http://cart.frc.ri.cmu.edu/
users/hpm/project.archive/robot.papers/1976/nasal.txt

Lucas, B.D., and Kanade, T. 1981. An Iterative Image
Registration Technique with an Application to Stereo Vision. In
Proceedings of 7th International Joint Conference on Artificial
Intelligence, 674—679.

Torr, P.H.S., Zisserman, A. and Maybank, S. 1995. Robust
Detection of Degenerate Configurations for the Fundamental
Matrix. In Proceedings of the Fifth International Conference on
Computer Vision, 1037-1042.



