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Abstract 

A wide variety of techniques for visual navigation using 
robot-mounted cameras have been described over the past 
several decades, yet adoption of optical flow navigation 
techniques has been slow.  This demo illustrates what visual 
navigation has to offer: robust hazard detection (including 
precipices and obstacles), high-accuracy open-loop 
odometry, and stable closed-loop motion control 
implemented via an optical flow based visual odometry 
system.  This work is based on 1) open source vision code, 
2) common computing hardware, and 3) inexpensive, 
consumer-quality cameras, and as such should be accessible 
to many robot builders. 

Demo Overview   
Optical flow field and camera ego-motion estimation have 
been the subject of much research for over 30 years, but 
this research has seen limited use.  For many years this 
could be attributed to the high computational cost of the 
known techniques, but modern PCs and embedded systems 
have been sufficiently powerful to enable real-time optical 
flow analyses for several years now.  Other potential 
reasons why optical navigation has not seen wider 
application may include the mathematical and coding 
complexity of implementing a robust vision system, and a 
lack of understanding about the high quality of information 
available via the technique.   
 
This demonstration is designed to explore (and give 
participants a chance to explore) the practicality and 
potentially high quality of an optical flow navigation 
system based on 1) readily available open source vision 
code, 2) common computing hardware, and 3) consumer-
quality cameras.  The capabilities of this visual navigation 
system include robust hazard detection (precipices and 
obstacles), high-accuracy open-loop “visual odometry”, 
and stable closed-loop motion control. As part of the 
demonstration, participants will arrange a variety of 
hazards (obstructions, precipices) for a tabletop mobile 
robot equipped with a USB webcam as its only sensor.  
                                                 
Copyright © 2004, American Association for Artificial Intelligence  
 (www.aaai.org). All rights reserved. 
 

The robot will show robust detection of any hazards put in 
its way and, in the absence of a hazard, demonstrate 
robotic positioning accuracy to better than 1% of distances 
traveled and better than 5 degrees in orientation, in spite of 
any (accidental or experimenter-induced) wheel slip.  
Participants may also vary parameters in the vision system 
(in particular, frame rate and resolution) and observe the 
effect on overall system performance in order to gain a 
better appreciation of the design-time tradeoffs required by 
different environments, velocities, and types of movement.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Robot poised near a drop-off to illustrate 
precipice detection.  The visual navigation system 
demonstrated can reliably detect a cliff even when 
similar colors and textures appear at both the bottom 
and the top of the precipice (such as in this photo).  The 
robot pictured has two cameras, but only the lower one, 
pointing roughly 30◦ below horizontal, is in use.  

Related Work 
This is by no means the first robot to use visual sensing to 
control motion!  As long ago as 1976,  Hans Moravec and 
Donald Gennery used feature tracking algorithms to 
perform visual servoing/course correction on the Stanford 
Cart (Gennery and Moravec 1976).  Since then many 
research robots have explored more sophisticated forms of 
visual sensing.  One recent example has been the CMU 



Autonomous Helicopter Project, which uses an on-board 
visual navigation system based on optical flow techniques 
(Amidi 1996).   
 
Early work on visual navigation focused on the extraction 
of an optical flow field from a time-sequence of images.  
For a survey of such algorithms, see (Barron et al. 1994) 
which remains the definitive comparison study in the area.  
This study highlighted the gradient-based image matching 
technique proposed in (Lucas and Kanade 1981) as 
effective across both synthetic and real-world image 
sequences, a conclusion other researchers have reached 
less formally as they have chosen to base further work on 
this algorithm.  Recently, an efficient form of the Lucas-
Kanade technique (Bouguet 1999) has become widely 
available as part of the OpenCV computer vision library1 
(Bradski 2000).  OpenCV also incorporates image 
acquisition and processing functions suitable for 
commonly available cameras and so offers a relatively 
complete package for those wishing to apply the Lucas-
Kanade technique.  This demo system uses the Lucas-
Kanade functions in OpenCV to capture video frames and 
extract the optical flow field from each pair of frames. 
 
Once an optical flow field has been obtained for a 
sequence of images, a further analysis is required to 
estimate camera ego-motion corresponding to the flow 
field.  From a research perspective this problem typically 
has been viewed as just one component of a more general 
problem termed “structure-from-motion” or SFM.  Ego-
motion estimation and SFM are challenging because they 
seek to recover 3-D information from a 2-D projection, 
and to do so an algorithm must treat multiple observations 
of movement in the 2-D images as one or more sets of 
simultaneous equations.  The resulting sets of equations 
are often both highly over-determined and subject to ill 
conditioned inputs.  Statistical methods such as least-
median-of-squares or RANSAC have been proposed to 
help screen out outliers and segment flow fields (Bab-
Hadiashar and Suter 1996).  An additional complication 
arises in that some solution techniques may fail when 
presented with flow fields corresponding to the common 
case of 2-D rotational and translational movement along a 
flat floor, or when the tracked points all lie in a single 
plane (Torr et al. 1998). The visual odometry system 
demonstrated adopts several simpler techniques 
(calculating median feature displacements and evaluating 
the consistency of feature vectors over time) which allow 
quick but surprisingly accurate estimates to be made of 
incremental and total distance traveled / angle turned / 
floor geometry by assuming the robot is traveling in only 
two dimensions over a predominantly flat floor.   
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