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Abstract. This paper presents a comparison of basic progressive and wavelet ra-
diosity algorithms. Several variants of each algorithm were run on a set of scenes
at several parameter settings, and results were examined in terms of their error,
speed, and memory consumption. We did not compare more advanced variations
such as clustering or discontinuity meshing. Our results show that progressive ra-
diosity with substructuring works fairly well for all scenes. Among wavelet meth-
ods, the Haar basis works best, while higher order methods suffer because of
extreme memory consumption and because poor visibility handling causes dis-
continuous, blocky shadows.

1 Introduction

A number of variations on the radiosity method have been published in the last decade [4]. The
algorithmic options are quite numerous. They include: matrix radiosity, progressive radiosity,
wavelet radiosity, hemicube form factors, ray-traced form factors, discontinuity meshing, impor-
tance-driven radiosity, and clustering. Given all these options, a developer or user might ask:

• Which method is fastest? Which is most accurate?

• What wavelet basis function is best?

• Are discontinuities a problem for wavelet methods?

• Which method is best for shadows? For complex scenes?

The radiosity literature does not currently answer these questions in a very satisfying manner.
While the papers introducing these techniques have demonstrated the strengths of each radiosity
algorithm, and some have offered theoretical complexity analyses, radiosity algorithms have not
been compared extensively in terms of actual speed and accuracy. The existing comparisons focus
on matrix and progressive radiosity, and their variations [7, 19, 1]. To our knowledge, wavelet and
progressive radiosity have not been thoroughly compared.

There seem to be several causes of the lack of algorithm comparison: implementing a radiosity
algorithm properly is difficult; there is little free, public radiosity software available; comparing
results is not as simple as measuring CPU time; and there are few incentives for performing large-
scale empirical software tests in computer graphics.

In order to provide some hard data on the relative performance of various radiosity methods, to
learn more about the strengths and weaknesses of these algorithms, and to develop a deeper un-
derstanding of the maths and physics of diffuse interreflection, we designed and carried out a
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large array of empirical experiments.

Rather than piece together existing code or experiments, we re-implemented and re-ran the algo-
rithms ourselves, since differences in programming style, compiler, computer, and test scene can
cause large variations in running times. Re-implementing in a common code base allowed us to
compare speeds of various algorithms directly. Such empirical comparison is valuable, since the
theoretical performance of an algorithm is not always wholly representative. In the real world,
constant factors and expected case behaviour are often more important than asymptotic, worst
case behaviour.

To keep the project manageable, we did not attempt to test all of the algorithmic options in the
literature. Discontinuity meshing, importance-driven radiosity, clustering, and distribution
raytracing [17], for example, were neglected. Specular radiosity and participating media were
also not examined. The accuracy of simulations was measured using a simple, view-independent
error metric, rather than attempt to account for perception [10]. We feel that error metrics that
model colour sensitivity and nonlinearity alone would not change our results significantly, but
that metrics that model sensitivity to spatial frequencies would emphasize shadow problems and
bring our objective error measure closer to a subjective one.

In our broader study, we selected matrix, progressive, and wavelet radiosity as the algorithms to
compare, and designed a series of experiments to test the algorithms’ ability to handle interreflec-
tion, occlusion, complexity, and several other attributes. In the tests, around 10 methods were run
on 7 different experimental scenes, each scene varied according to some parameter at, on average,
6 different settings. The parameters varied included geometric separation, reflectance, and the
number of objects. In all, 500 different experimental runs were executed, generating a total of 0.5
gigabytes of data and requiring a week of CPU time. The radiosity and testing software comprises
40,000 lines of C++ code. A more complete report on the full study is available [18]; in this paper
we summarize the most important results for progressive and wavelet radiosity.

2 Experimental Method

Designing the tests involved a choice of which algorithms to implement, what scenes to run them
on, and how to collect and compare results. We discuss each of these issues in turn below.

2.1 Implementation
The two algorithms examined in this paper:

Progressive radiosityiteratively “shoots” light from the brightest light sources and reflective sur-
faces, effectively computing one column of the form factor matrix at a time [3]. This method can
be made adaptive by the introduction of a two-level mesh; the coarser patches shoot light to a finer
set of adaptively refined elements [2]. This process is known as substructuring.

Wavelet Radiosity employs multilevel meshes to represent the radiosity function, and allows in-
ter-patch interactions to take place between arbitrary levels of the mesh hierarchy [9,8]. Theoret-
ically, wavelet algorithms have costO(k2+ n), wherek is the number of input surfaces, andn is
the number of elements.

Within the wavelet framework, radiosity functions can be represented with a variety of different
basis functions. We implemented the methods most widely discussed in the literature: the Haar
basis [15], flatlets of order 2 and 3 (F2, F3) [12], and multiwavelets, also of order 2 and 3 (M2,
M3) [8]. The lower-order methods are easier to integrate and require fewer coefficients per link,
while the higher order methods create sparser approximations to the kernel. We use multigridding
with brightness-weighted refinement.

In the remainder of this section we discuss the most salient of our implementation choices. Fur-
ther details can be found in [18].

Control Algorithms.  For progressive radiosity with substructuring, elements are subdivided un-
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til their radiosity gradient drops below a presetepsilon, and the algorithm is terminated when the
residual error drops below a preset fraction of the original residual error. In wavelet radiosity, re-
finement is controlled by the oracles described in the original papers, which also depend on a sin-
gle epsilon parameter. In regions of partial visibility this epsilon is reduced in order to encourage
subdivision around shadows [4]. The algorithm is terminated when no more links need refinement
and the residual error has dropped below a fraction of the original.

Visibility.  Ray-casting is used for all inter-patch visibility tests, in order to standardize visibility
testing between the algorithms. For the progressive methods, visibility is tested by casting a sin-
gle ray from a patch to each other element in the scene [16]. For the wavelet methods, a 4 × 4
jittered sampling scheme is used [14], along with triage [9]: refined links have their visibility re-
calculated only in areas of partial occlusion.

Meshing. For progressive radiosity, each polygon in the scene is subdivided into a mesh such that
the edge-lengths of all mesh elements are smaller than a specified maximum.

For methods using piecewise-constant basis functions, it is common to perform post-process
smoothing to eliminate step discontinuities. We use this approach for the progressive and Haar
wavelet methods. For multiwavelets, we display directly from the basis functions, as did Gortler
et al. [8]. The resulting functions will thus be piecewise linear or piecewise quadratic, with pos-
sible discontinuities between elements; we attempt to minimise these by ensuring the mesh is bal-
anced. Flatlets are first converted to the same order multiwavelet basis, and then displayed in a
similar manner, and thus may also exhibit discontinuities.

Form-Factors. While a closed-form solution for the double integral that defines the area-to-area
form factor exists [12], it is too expensive to use in most situations. We follow the standard prac-
tice of approximating the form factor by its point-to-point counterpart, which works well when
two patches are sufficiently far apart. There are potential difficulties; when two patches are not
sufficiently far apart for the approximation to hold, and in particular asr gets small, the term goes
to infinity. In either of these cases, we switch to the polygon-to-point form factor, which is more
accurate and contains no singularity, but is more expensive [4, 18].

Multiwavelets require quadrature rules to calculate the coupling coefficients between basis func-
tions. The presence of a singularity in the form-factor kernel where surfaces touch can cause
problems, because the function diverges from the lower-order-polynomial assumption of these
rules [20]. In such situations we swap to the C-C transfer functions [11].

2.2 Test Scenes
We chose test scenes that explore among others the following properties:

• Interreflection. High reflectance makes some algorithms quite slow, and exposes flaws in
others.

• Occlusion. Hard shadows are a difficult test for most radiosity algorithms.

• Complexity. Some algorithms have a cost linear in scene complexity, while others are quad-
ratic.

To test these properties, we constructed a number of experiments, each of which consisted of a
scene, and some parameter of that scene which could be varied. The radiosity algorithms were
then run against each of the scene variants in turn. Representative images of the various scenes
used can be seen in Figure 1, and the experiments are summarised below.

Experiment Parameter Varied Property Tested

Blocker Blocker height Occlusion

Tube Reflectance Multi-bounce interreflection

Complex Number of chairs Geometrical complexity
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The first experiment tests occlusion from sharp-edged shadows (obscuring polygon close to the
receiving polygon) to very soft shadows (where the occluder is close enough to the source for the
umbra to vanish on the receiver). The tube experiment consists of a long tube with a light at one
end. It tests interreflection between long chains of patches. The complex experiment tests geo-
metrical complexity by varyingm, the number of chairs. There are 5 + 27m polygons in this
scene, and the room’s surface area scales in proportion tom. We scale the geometry as the com-
plexity grows because we feel that this is typically the way detail is added to a scene. Elsewhere
we examined an unscaled scene [18].

2.3 Testing
The testing process involved applying a subset of the radiosity methods available to us to each
scene variant in each experiment. A batch renderer was used to produce radiosity simulations and
statistics for each of the experiments’ scenes. The renderer takes a scene description, as well as a
number of parameters describing which method and settings to use. Rather than an image, the
renderer outputs a scene file containing a description of the mesh used, and the radiosity distribu-
tion over that mesh. Once computed and stored, this output mesh can later be retrieved and
viewed in a scene viewer, compared with another mesh file, or rendered to an image file.

Checkpointing. For each radiosity simulation, the algorithm is checkpointed a number of times
over the life of its run, in order to see how the algorithms behave over time. At each of the check-
point times, we write out the current state of the solution along with other pertinent statistics. Pro-
gressive and wavelet radiosity are inherently iterative, so for these algorithms we get a picture of
how quickly they converge.

Reference Solutions. To measure the error in the current solution at each of the checkpoints (a
post-process), we compare it to a reference solution which is either “exact”, or much more accu-
rate than any method we are testing. Validation against analytic solutions was done where possi-
ble (on scenes with no interreflection), including the blocker experiment. To generate a reference
solution for the tube experiment, we used matrix radiosity, with analytical patch-to-point form
factors, and a mesh with at least four times as many elements as any of the solution meshes that
were generated. Matrix radiosity was used because it produces close to an exact solution for a

Fig. 1. From left to right: blocker experiment, separations of 1.4 (top) and 0.7 (bottom), tube
experiment, reflectance of 0.3 (top) and 0.9 (bottom), complex experiment, 6 chairs (top) and
20 chairs (bottom).
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given mesh. We regard this as an improvement over previous comparisons, which have typically
used a “converged” solution on the same mesh as a reference.

While we could afford to run the reference solutions for much longer than we ran the experimen-
tal solutions, for the complex experiment, the matrix radiosity method proved too memory inten-
sive for the available hardware. Instead, we generated our reference solutions using the
progressive radiosity algorithm; the algorithm was run long enough to generate a solution of ac-
curacy equal to the matrix algorithm, and again, a denser mesh was used.

Error Measure. The radiosity algorithms we consider here are all view-independent global illu-
mination techniques, so we use a view-independent error measure, as opposed to an image-based
one. To this end we compute the relative error between the experimental solution and the refer-
ence solution. Both share the same set of base polygons, so we first define the absolute error to
be the area-weighted RMS radiosity difference over all pairs of base polygons. To compute this
we used Monte Carlo sampling over the base polygons. As the total emitted radiosity in the scene
scales any error, we then define the relative error as the absolute error divided by the average re-
flected radiosity over the reference solution [18]. Parameters were typically set to drive the rela-
tive error below 5% or so. We do not use the residual as our error measure, as some previous
studies have done, because it does not support comparison of solutions from different meshes
well.

Equalised Plots. For each experiment we run, we can produce a plot of the solution error over
time for every combination of scene and method (Figure 2, left). Each curve is a run, and each
data-point is a snapshot of that run at some point in time. The right-most point shows the error at
convergence (when the algorithm terminates). To fairly compare methods with varying time and
accuracy, we produce a time-equalised error plot. For a plot of a given set of methods, we find the
minimum convergence time of any method, and then find the error of each method at that time by
interpolation. This is illustrated generically in Figure 2: in the graph on the left for parameter val-
ue 12, the substructuring method terminates first at 144 seconds, so all the other methods are
‘rolled back’ to this point, and the resulting interpolated error values used to produce the high-
lighted data points at parameter value 12 in the graph on the right. In order to clarify equalised
plots, we label each set of data points on them with their corresponding time at the top.

3 Results

Our final results comprised a large database of statistics and stored radiosity representations. In
this section we present the most interesting of the graphs and images produced, and discuss their
implications.
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3.1 Time and Error
The time-equalised plot of Figure 3, left summarises the performance of progressive and wavelet
radiosity in the complex experiment.The substructuring and Haar wavelet methods have much the
same error until the last two scenes, where the Haar method gains the edge. Noticeably, the trend
for the wavelet methods is towards lower errors at this point, whereas the trend for the progressive
methods is towards higher errors. (We stop at 36 chairs, or 1000 polygons, because here the high-
er-order methods run out of memory.) The M2 basis does not perform as well as Haar in this plot
because of poor visibility handling, as we will see later, and the M3 basis is hampered by its extra
time and space overhead.

The reason that hierarchical radiosity starts to do better than substructuring radiosity is apparent
from the time-to-convergence graph shown in Figure 3, right. Whereas the convergence times of
the progressive methods increase quadratically, the convergence time of wavelet radiosity with
the Haar basis is linear with scene complexity, as is the M2 basis. This qualitative difference in
speeds of the two methods is one of the most interesting results from the complex experiment.

For this experiment, as complexity increases, the progressive methods spend more and more time
shooting light from the walls of the scene, which are increasing in area, whereas the wavelet
methods use roughly a constant number of links between a wall and other parts of the scene. We
have observed that for an unscaled complex scene, where room size does not increase with the
number of chairs, progressive radiosity is not penalised so heavily in this way, and outperforms
hierarchical radiosity.

3.2 Wavelet Memory Use
We found that higher-order wavelet radiosity techniques consume excessive memory. To some
extent this is true of Haar as well. As Figure 4 shows, the memory consumption of the wavelet
algorithms is large, especially compared to the 1Mb at most used by the progressive radiosity al-
gorithm. In this particular run, the M3 basis reached 550MB of storage. An obvious argument
here is that for some of these runs we have chosen too high an accuracy, and created too many
links. We tried to choose epsilon to achieve a reasonable time/error trade-off. The higher order
methods produced a scene with higher error than the Haar basis, so they were not trying to do too
much work compared to Haar.

Clustering has been shown to help this problem; in particular Gibson et al. [6] have impressive
results for high-complexity scenes, and have managed to run wavelet radiosity with the Haar basis
against a 225,000 polygon scene in 180Mb of memory. Unfortunately, clustering techniques have
not yet been applied to higher-order methods, only the Haar basis. Even assuming linear storage
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complexity is achieved with such clustering methods, our results lead us to predict that memory
consumption would be over 2Gb if the M3 basis were used on a similar scene.

3.3 Empirical Complexity of Wavelet Radiosity
We observed strong effects of complexity on time and memory use in our experiments. The most
interesting of these relations were:

• #links = σk2 + βk. The number of initial links in the wavelet radiosity methods isσk2, where
k is the number of polygons, andσ is the visual density of the scene (the average fraction of
scene polygons visible from a particular scene polygon). The number of extra links created
during refinement isΘ(k); evidence of this can be seen in Figure 5 for the higher order wave-
let methods. Time and memory use are both linear in the number of links as epsilon is var-
ied. Interestingly, for the scenes tested, the extra link term dominated for Haar (hence its
linear time cost in Figure 3) and the initial links dominated for the higher order methods,
yielding near-quadratic time cost.These results extend the existing theoretical analysis [9].

• #links = Θ(1/epsilon). For small enough epsilon, the number of links generated by the
wavelet methods for a fixed scene is proportional to 1/epsilon, as we see in Figure 5. As
epsilon is increased, and the total number of links approaches the minimum,σk2, the rela-
tionship becomes sublinear, approachingO(1) as epsilon approaches 1. This relationship is
useful when setting epsilon for a wavelet radiosity solution: as a rule of thumb, halving epsi-
lon will double the time and memory cost of the algorithm.
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3.4 Progressive and Hierarchical Shadow Handling
The blocker scene was used as a simple test of shadowing. From the error plot in Figure 6 we see
that whereas substructuring achieves the lowest error when the blocker is closer to the receiver,
and hierarchical radiosity the worst, this order is reversed as the blocker approaches the source.
Significantly, the cross-over point occurs almost exactly when the umbra disappears, at a separa-
tion of . Although hierarchical radiosity achieves the best results when the shadows are softer,
it takes much longer to do so, as can be seen from the time graph in Figure 6, because it is trying
to solve a harder problem. Whereas substructuring will only subdivide the receiver, hierarchical
radiosity can also subdivide the source, and in this case it must subdivide heavily; the source is
only a little larger than the blocker, so source elements must be quite small for them to be close
to completely visible from the elements of the receiver.

3.5 Wavelet Shadow Handling
We tried two quadrature methods for the higher order wavelets,fractional visibility, which scales
the results of quadrature with the estimated visibility between two patches [9,8], andvisibility-in-
quadrature, which leaves visibility in the integrand [5]. Neither of these methods performed par-
ticularly well in the complex experiment. The bottom-left image in Figure 7 shows a solution us-
ing the M2 basis and the fractional-visibility method, where visibility is factored out of the
quadrature: it is overly blocky. The bottom-right image shows the same basis with the visibility-
in-quadrature approach, which looks smoother, but still has large discontinuities between ele-
ments. We found that the objective error of both these solutions (and those for other complex
scenes) were much the same. Both methods are clearly subjectively inferior to the reference so-
lution (upper left) and the Haar basis (upper-right).

The cause of the problems with the fractional-visibility approach is that it assumes visibility is
constant across the element, even though with the higher-order methods the radiosity is no longer
constant. The visibility-in-quadrature approach we used handles the variation of visibility across
individual elements better, but because it samples visibility on a 2 × 2 grid, rather than a 4 × 4
grid, it suffers more from aliasing problems. This is exacerbated by triage, as aliasing can occur
at higher levels in the hierarchy; to produce the image in Figure 7, we had to disable triage to pre-
vent large ‘dropouts’ in the shadow.

A solution to these problems is to subdivide even more heavily in areas of partial visibility. How-
ever, this wastes transfer and basis coefficients, especially for higher order wavelets. Slusallek et
al. [13] have addressed this problem by applying the shadow masks proposed by Zatz [20]; this
is a generalisation of fractional visibility in which visibility is evaluated at a finer resolution,
smoothed by interpolation, and multiplied into the radiosity function. But visibility and irradiance
are not independent, so a more correct approach would be to use visibility-in-quadrature with dis-
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continuity meshing and continuous wavelet basis functions, to avoid the problems seen above.
However, this may well have too large an overhead to be practical.

3.6 Reflectance
In the tube experiment, high reflectance coupled with the large number of abutting patches in the
scene acted to retard the adaptive methods so that they performed worse than vanilla progressive
radiosity. Substructuring is slow, and Haar has large error, for high reflectance values (Figure 8).
The tube experiment highlights how touching or close-proximity surfaces are a problem for wave-
let methods; many links are created in these cases, slowing them down markedly.

The substructuring method’s problems were caused by a phenomenon we refer to asoverrefine-
ment, which occurs with high reflectance scenes and lights that touch another surface at a reflex
corner. During early shooting steps, the illumination gradient is high near the bottom of the tube,
causing that area to be heavily refined, even though later shooting steps will “fill in” the tube’s
illumination, smoothing the gradient and eliminating the need for such a fine mesh. This effect is

Fig. 7. Upper-left: reference solution, upper-right: the Haar basis, lower-left: the M2 basis
(fractional visibility), lower-right: the M2 basis (visibility incorporated into the quadra-
ture). The split views show the solution on the left, and the mesh on the right.
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demonstrated in Figure 9; in the first picture, only the right hand part of the light source has been
shot, and the algorithm has meshed finely around this initial bright spot. In the second picture we
see that after the algorithm has run further, the entire area in front of the light source has been
smoothly illuminated, and in fact this area could have been meshed relatively coarsely.

The problem could be solved using a multigrid approach. If the scene is first illuminated with a
coarse mesh and with substructuring turned off, then, when the substructuring method is run us-
ing that mesh as a starting point, patches that are shot early on will not overrefine areas where the
final radiosity gradient is smooth.

We have observed significantaccumulated projection error when wavelet radiosity with constant
basis functions (Haar, F2 or F3) is applied to medium to high-reflectance scenes. This leads to
bright strips of light where two patches meet along an edge. The radiosity function should go to
zero along such an edge if the source element itself does not touch it, but when the function is
projected into a constant basis, this no longer occurs. These edge errors accumulate as the link
hierarchy deepens, so that the more heavily the mesh is subdivided, the worse the problem gets.
This phenomenon has also been observed by Slusallek et al. [13], who propose as a solution split-
ting the form-factor into constant and cos(θ) dependent parts, and re-evaluating the latter at lower
levels of the hierarchy. An alternative is to ensure that links to elements adjacent to the source
patch are always within a few levels of the leaf nodes, thus limiting the depth of the hierarchy. It
is not clear to us which is the most efficient approach.
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Fig. 9. Over-refinement in Progressive Radiosity. On the left, the first shots from emitter
patches cause heavy subdivison, because most of the receiver is still unilluminated. On the
right, shots from the rest of the emitter have illuminated the rest of the receiver, making some
of the earlier refinement redundant.
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4 Conclusions

Our main conclusions are:

• For moderately complex scenes, wavelet radiosity using the Haar basis is often best.
For our ‘complex’ experiment, Haar did the best or near best of the methods we tested (Fig-
ure 3). Also, for the complex scene, its time cost appeared to grow linearly, while the cost of
progressive radiosity with substructuring appeared to be quadratic. For a given amount of
time, Haar often gave the most accurate results. However ...

• Wavelet methods use an immense amount of memory, so for very complex scenes they
become impractical. Empirically, the memory requirements for wavelet methods grow quad-
ratically with scene complexity (Figure 4). Also, the higher-order methods require many
times more memory than Haar. Recall that wavelet methods of orderM useO(M2) memory
per element andO(M4) memory per link. Furthermore, in contrast to time, memory is a finite
resource.When the scene is too complex for wavelet methods, substructuring becomes a
better choice.

• Higher-order wavelet methods as implemented look poor on scenes with occlusion.
With either the fractional visibility method or the visibility-in-quadrature method, shadows
appear extremely blocky (Figure 7) unless heavy subdivision occurs. Higher-order wavelets
currently handle visibility poorly, preventing them from achieving their potential accuracy.

• For hard shadows, substructuring is recommended.Objectively, on the blocker scene we
observed that substructuring is the most accurate method when a shadow contains an umbra
(Figure 6). Because wavelet methods typically refine less than substructuring near shadow
boundaries, their shadows appear blurrier or blockier.

It should be noted that our conclusions are based on our experimental scenes, and the basic radi-
osity methods as we have implemented them. While we have attempted to devise the tests, to
choose algorithms, and to implement them in an unbiased way, one should use caution in gener-
alizing our conclusions. We would expect the use of clustering and other advanced techniques to
alter these conclusions.

Future Work
Now that we have our testbed in place, and have completed our initial investigation of radiosity
methods, there are a number of avenues for future work. These include:

• Implementing and investigating clustering for all wavelet methods [14].

• Testing more sophisticated meshing schemes.

• Evaluating the effect a final-gather pass has on the accuracy of the simulation.

• Investigating performance on a range of complex real-world scenes, such as architectural
models.

• Comparing the radiosity approaches investigated here to Ward’s RADIANCE system [17].

• Producing results for the standard library of scene files due to Rushmeier et. al. [10].

• Considering perceptually-based error measures.

To assist others in the research community with the investigation of these areas, and for evaluation
of our experiments, we plan to place our radiosity renderer and experimental system on the inter-
net at the following URL:http://www.cs.cmu.edu/~radiosity/ .

Substruct. Haar F2 & M2 F3 & M3 Matrix

Memory for ‘complex’,
36 chairs

0.8 MB 44 MB 150 MB 550 MB 1000 MB
(estimate)
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