
 

Higher-Order Basis Functions in Radiosity.

 

The Galerkin [Zatz], Finite Element [Troutman] and Wavelet [Gortler] (all SIGGRAPH ‘93) radi-
osity methods are all based on the use of higher-order elements, rather than the constant elements
used by previous radiosity algorithms. Papers on these methods have concentrated on high-level
matters, leaving the mechanics of dealing with function bases as an exercise to the reader. Here I
present an quick, informal guide to using higher-order bases in a radiosity scheme. We'll take a look
at projecting functions onto function spaces, and at how to carry out the fundamental shooting or
gathering step common to all radiosity methods by using the 

 

matrix transport equation

 

.

 

Projection

 

We can represent the radiosity over a patch by a linear combination of basis functions. There are 

 

n

 

functions 

 

b

 

i

 

, and the radiosity is represented by storing the coefficients of these functions in an n-
element vector, . The radiosity function over the patch is then just . An obvious question
to ask is how we can convert (or 

 

project

 

) an arbitrary function 

 

f

 

 over the patch into this representa-
tion. 

Conceptually, we let 

 

A

 

 be the matrix containing 

 

b

 

i

 

 as columns. Note that as 

 

b

 

i

 

 are functions, we can-
not explicitly form 

 

A

 

. We wish to find the vector such that . Normally we could simply
invert 

 

A

 

 to do this, however, we cannot directly manipulate 

 

A

 

. We can only take the inner product
between two functions, as follows:

 

(1)

 

We circumvent this problem by multiplying through by 

 

A

 

t

 

, yielding:

 

(2)

 

Now the two matrices in the equation are real; we have  and , and we can
solve directly for . Thus the projection of a function onto a function space is found by taking its
inner product with each of the basis functions, and multiplying the resulting vector by 

 

D

 

-1

 

. This pro-
jection will not always be exact, as usually the basis doesn’t span all possible functions. In fact, the
process is analogous to least-squares fitting. 

The inner-product integrals can be calculated by hand, by using a symbolic computation system
such as Mathematica, or numerically, by using a 

 

quadrature rule

 

 of sufficient accuracy. We shall
learn more about quadrature rules in a couple of paragraphs.

 

The Gathering or Shooting Step

 

So how does this help us with our radiosity program? The central operation in radiosity programs
is a shoot or gather step, where the radiosity of one patch is used to calculate the resulting irradiance
of another patch. We need to find a way to take the radiosity coefficients of the source patch and
calculate coefficients for the destination patch that best match its irradiance. Conceptually this in-
volves reconstructing the radiosity function over the source patch, integrating it over a kernel func-

x
˜

bi xi
i

∑

x
˜

Ax
˜

f=

f g⋅ f x( )g x( ) xd∫=

At A( )x
˜

At f( )

Dx
˜

f
˜

=

=

Dij bi b j⋅= f i bi f⋅=
x
˜



 

tion to produce the irradiance on the destination patch, and then projecting that irradiance function
into the receiving patch’s basis. We can represent this process as:

 

, (3)

 

where 

 

K

 

(x, y)

 

 is the standard radiosity kernel,

 

, (4)

 

and 

 

s

 

 and 

 

d

 

 are the source and destination coefficients.

A quadrature rule lets us estimate the integral of a function by sampling it at a set of points, 

 

x

 

i

 

, and
forming the weighted sum of these samples, with weights 

 

w

 

i

 

. If we replace a function 

 

f

 

 we wish to
integrate with the vector , and form the vector , the integral of 

 

f

 

 according
to the quadrature rule is just . A quadrature rule is guaranteed to be exact under certain con-
ditions; the commonly-used n-point gaussian quadrature rule, for example, will be exact if the in-
tegrand is a polynomial of order 

 

2n-1

 

 or less. Applying such a rule to the inner integral of equation
(2) gives:

 

, (5)

 

where , and  is the vector of kernel samples from all quadrature points on
the source patch to quadrature point 

 

x

 

k

 

 on the receiving patch. We can rewrite this as , where
. If we perform the same process on the outer integral. We find that:

 

(6)

 

where . This is the 

 

matrix transport equation

 

.

We can precalculate the matrices to the left and right of the kernel matrix in this equation. During
the radiosity simulation, each time we form a new link between patches, we calculate 

 

K

 

 by sam-
pling the kernel between each pair of quadrature points on the two patches, and then perform two
matrix multiplies to get the transport matrix 

 

T

 

 for that link. From then on, each gather operation
across that link is a single matrix multiply: .

We have assumed here that all patches share the same basis and use the same quadrature method.
This is not always the case: we might use both quadrangles and triangles as elements in the simu-
lation, or use different quadrature rules for some patches to address the singularity in 

 

K

 

. This is sim-
ply addressed: we form a different 

 

M

 

 for each basis and quadrature pair, and keep in mind that in
the transport equation the matrices to the left of 

 

K

 

 (

 

D

 

-1

 

 and 

 

M

 

t

 

) are in terms of the basis and quad-
rature rule of the destination patch, and the matrix to the right (

 

M

 

) to the right is in terms of the basis
and rule of the source patch. 

dj bj K x y,( )bi x( )si xd
x S∈
∫

i
∑ 

  yd
y R∈
∫=

K x y,( )
θx θycoscos

πr xy
2

-----------------------------=

f
˜

f xi( )[ ]= w
˜

wi[ ]=
w
˜

f
˜

⋅

w
˜

sib˜ i k
˜k•( )⋅

i
∑

ai[ ] bi[ ]• aibi[ ]= k
˜k

kj
t

˜
Ms

˜Mij wj Bij=

d
˜

D
1–
M

t
KMs

˜
=

Kij K xi
r

xj
s,( )=

d
˜

Ts
˜

=


