Higher-Order Basis Functions in Radiosity.

The Galerkin [Zatz], Finite Element [Troutman] and Wavelet [Gortler] (all SIGGRAPH ‘93) radi-
osity methods are all based on the use of higher-order elements, rather than the constant elements
used by previous radiosity algorithms. Papers on these methods have concentrated on high-level
matters, leaving the mechanics of dealing with function bases as an exercise to the reader. Here |
present an quick, informal guide to using higher-order bases in a radiosity scheme. We'll take a look
at projecting functions onto function spaces, and at how to carry out the fundamental shooting or
gathering step common to all radiosity methods by usingtiiex transport equation

Projection

We can represent the radiosity over a patch by a linear combination of basis functions. Trhere are
functionsb;, and the radiosity is represented by storing the coefficients of these functions in an n-
element vectory . The radiosity function over the patch is thenyusi; . An obvious question
to ask is how we can convert @ojec) an arbitrary functiom over e patch into this representa-
tion.

Conceptually, we IeA be the matrix containing as columns. Note that Bsare functions, we can-
not explicitly formA. We wish to find the vectax suchthak = f . Normally we could simply
invert A to do this, however, we cannot directly manipukat®Ve can only take the inner product
between two functions, as follows:

FLg = [T(x)g(x)dx (D)
We circumvent this problem by multiplying through Ay yielding:
(A'A)X = (A'F) @
Dx = f
Now the two matrices in the equation are real; we lizye= b; [b; famdb; Cf , and we can

solve directly forx . Thus the projection of a function onto a function space is found by taking its
inner product with each of the basis functions, and multiplying the resulting ve@dr bhis pro-

jection will not always be exact, as usually the basis doesn’t span all possible functions. In fact, the
process is analogous to least-squares fitting.

The inner-product integrals can be calculated by hand, by using a symbolic computation system
such as Mathematica, or numerically, by usirguadrature ruleof sufficient accuracy. We shall
learn more about quadrature rules in a couple of paragraphs.

The Gathering or Shooting Step

So how does this help us with our radiosity program? The central operation in radiosity programs
is a shoot or gather step, where the radiosity of one patch is used to calculate the resulting irradiance
of another patch. We need to find a way to take the radiosity coefficients of the source patch and
calculate coefficients for the destination patch that best match its irradiance. Conceptually this in-
volves reconstructing the radiosity function over the source patch, integrating it over a kernel func-



tion to produce the irradiance on the destination patch, and then projecting that irradiance function
into the receiving patch’s basis. We can represent this process as:
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whereK(x, y)is the standard radiosity kernel,

cosb, cosB,
K(xy) = ——=5—, @
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ands andd are the source and destination coefficients.

A quadrature rule lets us estimate the integral of a function by sampling it at a set okpainds,
forming the weighted sum of these samples, with weight$ we replace a functiohwe wish to
integrate with the vectof = [f(x;)] , and form the veator [w;] , the integrbhotording

to the quadrature rule is jugtlif . A quadrature rule is guaranteed to be exact under certain con-
ditions; the commonly-used n-point gaussian quadrature rule, for example, will be exact if the in-
tegrand is a polynomial of ord2n-1or less. Applying such a rule to the inner integral of equation

(2) gives:
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where[a] « [b] = [ab;] , andk, is the vector of kernel samples from all quadrature points on
the source patch to quadrature pajnbn the receiving patch. We can rewrite thig: , Where
Mij = W BIJ . If we perform the same process on the outer integral. We find that:

d = D*M'KMs ©6)
WhereKij = K(xir, x]-c') . This is thenatrix transport equation

We can precalculate the matrices to the left and right of the kernel matrix in this equation. During
the radiosity simulation, each time we form a new link between patches, we catcblatam-

pling the kernel between each pair of quadrature points on the two patches, and then perform two
matrix multiplies to get the transport matfixor that link. From then on, each gather operation
across that link is a single matrix multiply:= Ts

We have assumed here that all patches share the same basis and use the same quadrature method.
This is not always the case: we might use both quadrangles and triangles as elements in the simu-
lation, or use different quadrature rules for some patches to address the singidarityisis sim-

ply addressed: we form a differevitfor each basis and quadrature pair, and keep in mind that in

the transport equation the matrices to the leK @b-* andM?) are in terms of the basis and quad-

rature rule of the destination patch, and the matrix to the MjiHb(the right is in terms of the basis

and rule of the source patch.



