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Abstract. Bio-relation extraction (bRE), an important goal in bio-text
mining, involves subtasks identifying relationships between bio-entities
in text at multiple levels, e.g., at the article, sentence or relation level.
A key limitation of current bRE systems is that they are restricted by
the availability of annotated corpora. In this work we introduce a semi-
supervised approach that can tackle multi-level bRE via string compar-
isons with mismatches in the string kernel framework. Our string kernel
implements an abstraction step, which groups similar words to gener-
ate more abstract entities, which can be learnt with unlabeled data.
Specifically, two unsupervised models are proposed to capture contex-
tual (local or global) semantic similarities between words from a large
unannotated corpus. This Abstraction-augmented String Kernel (ASK)
allows for better generalization of patterns learned from annotated data
and provides a unified framework for solving bRE with multiple degrees
of detail. ASK shows effective improvements over classic string kernels
on four datasets and achieves state-of-the-art bRE performance without
the need for complex linguistic features.

Keywords: Semi-supervised string kernel, Relation extraction, Sequence
classification, Learning with auxiliary information

1 Introduction

The task of relation extraction from text is important in biomedical domains,
since most scientific discoveries describe biological relationships between bio-
entities and are communicated through publications or reports. A range of text
mining and NLP strategies have been proposed to convert natural language
in the biomedical literature into formal computer representations to facilitate
sophisticated biomedical literature access [14]. However, the lack of annotated
data and the complex nature of biomedical discoveries have limited automatic
literature mining from having large impact.

In this paper, we consider “bio-relation extraction” tasks, i.e. tasks that
aim to discover biomedical relationships of interest reported in the literature
through identifying the textual triggers with different levels of detail in the
text [14]. Specifically we cover three tasks in our experiments associated with
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Table 1. Examples of sentence-level task and relation-level task.

Task 2: Sentence-level PPI extraction

Negative TH, AADC and GCH were effectively co-expressed in transduced cells
with three separate AAV vectors.

Positive This study demonstrates that IL - 8 recognizes and activates CXCR1,
CXCR2, and the Duffy antigen by distinct mechanisms .

Task 3: Relation-level PPI extraction

Input
Sentence

The protein product of c-cbl proto-oncogene is known to interact with
several proteins, including Grb2, Crk, and PI3 kinase, and is known
to regulate signaling...

Output
Interacting
Pairs

(c-cbl, Grb2),
(c-cbl, Crk),
(c-cbl, PI3).

one important biological relation: protein-protein-interaction (PPI). In order to
identify PPI events, the tasks aim to: (1) retrieve PubMed abstracts describing
PPIs; (2) classify text sentences as PPI relevant or not relevant; (3) when protein
entities have been recognized in the sentence, extract which protein-protein pairs
having interaction relationship, i.e. pairwise PPI relations from the sentence.
Table 2 gives examples of the second and third tasks. Examples of the first task
are long text paragraphs and are omitted due to space limitations.

There exist very few annotated training datasets for all three tasks above. For
bRE tasks at article-level, researchers [14] handled them as text categorization
problems and support vector machines were shown to give good results with
careful pre-processing, stemming, POS and named-entity tagging, and voting.
For bRE tasks at the relation level, most systems in the literature are rule-
based, cooccurrence-based or hybrid approaches (survey in [29]). Recently several
researchers proposed the all-paths graph kernel [1], or an ensemble of multiple
kernels and parsers [21], which were reported to yield good results.

Generally speaking, these tasks are all important instances of information ex-
traction problems where entities are protein names and relationships are protein-
protein interactions. Early approaches for the general “relation extraction” prob-
lem in natural languages are based on patterns [23], usually expressed as regular
expressions for words with wildcards. Later researchers proposed kernels for de-
pendency trees [7] or extended the kernel with richer structural features [23].
Considering the complexity of generating dependency trees from parsers, we try
to avoid this step in our approach. Also bRE systems at article/long-text levels
need to handle very long word sequences, which are problematic for previous
tree/graph kernels to handle.

Here we propose to detect and extract relations from biomedical litera-
ture using string kernels with semi-supervised extensions, named Abstraction-
augmented String Kernels (ASK). A novel semi-supervised “abstraction” aug-
mentation strategy is applied on a string kernel to leverage supervised event ex-
traction with unlabeled data. The “abstraction” approach includes two stages:
(1) Two unsupervised auxiliary tasks are proposed to learn accurate word rep-
resentations from contextual semantic similarity of words in biomedical liter-
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ature, with one task focusing on short local neighborhoods (local ASK), and
the other using long paragraphs as word context (global ASK). (2) Words are
grouped to generate more abstract entities according to their learned represen-
tations. On benchmark PPI extraction data sets targeting three text levels, the
proposed kernel achieves state-of-the-art performance and improves over classic
string kernels.

Furthermore, we want to point out that ASK is a general sequence modeling
approach and not tied to the multi-level bRE applications. We show this gen-
erality by extending ASK to a benchmark protein sequence classification task
(the 4th dataset), and get improved performances over all tested supervised and
semi-supervised string kernel baselines.

2 String Kernels

All of our targeted bRE tasks can be treated as problems of classifying sequences
of words into certain types related to the relation of interest (i.e., PPI). For
example, in bRE tasks at the article-level, we classify input articles or long
paragraphs as PPI-relevant (positive) or not (negative). For the bRE task at
the sentence-level, we classify sentence into PPI-related or not, which again is a
string classification problem.

Various methods have been proposed to solve the string classification prob-
lem, including generative (e.g., HMMs) or discriminative approaches. Among
the discriminative approaches, string kernel-based machine learning methods
provide some of the most accurate results [27, 19, 16, 28].

The key idea of basic string kernels is to apply a mapping φ(·) to map text
strings of variable length into a vectorial feature space of fixed length. In this
space a standard classifier such as a support vector machine (SVM) can then be
applied. As SVMs require only inner products between examples in the feature
space, rather than the feature vectors themselves, one can define a string kernel
which implicitly computes an inner product in the feature space:

K(x, y) = 〈φ(x), φ(y)〉, (1)

where x, y ∈ S, S is the set of all sequences composed of elements which take on a
finite set of possible values, e.g., sequences of words in our case, and φ : S → Rm

is a feature mapping from a word sequence (text) to a m-dim. feature vector.
Feature extraction and feature representation play key roles in the effec-

tiveness of sequence analysis since text sequences cannot be readily described
as feature vectors. Traditional text categorization methods use feature vectors
indexed by all possible words (e.g., bag of words [25]) in a certain dictionary (vo-
cabulary D) to represent text documents, which can be seen as a simple form of
string kernel. This “bag of words” strategy treats documents as an unordered set
of features (words), where critical word ordering information is not preserved.
To take word ordering into account, documents can be considered as bags of
short sequences of words with feature vectors corresponding to all possible word
n-grams (n adjacent words from vocabulary D). With this representation, the
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Table 2. Subsequences considered for string matching in different kernels.

Type Parameters Subsequences to Consider

Spectrum
Kernel

k = 3 (SM binds RNA), (binds RNA in),
(RNA in vitro), ...

Mismatch
Kernel

k = 3, m = 1 (X binds RNA), (SM X RNA),
(SM binds X), (X RNA in),
( binds X in), (binds RNA X), ...

Gapped
Kernel

k = 3, m = 1 ( SM [ ] RNA in ), (binds RNA in [ ] ),
(binds [ ] in vitro), ...

high similarity between two text documents means they have many n-grams in
common. One can then define a corresponding string kernel as follows,

K(x, y) =
∑

γ∈Γ

cx(γ) · cy(γ), (2)

where γ is a n-gram, Γ is the set of all possible n-grams, and cx(γ) is the number
of occurrences (with normalization) of n-gram γ in a text string x. This is also
called the spectrum kernel in the literature [18]. More general, the so-called
substring kernels [27] measure similarity between sequences based on common
co-occurrence of exact sub-patterns (e.g., substrings).

Inexact comparison, which is critical for effective matching (similarity eval-
uation) between text documents due to naturally occurring word substitutions,
insertions, or deletions, is typically achieved by using different families of mis-
match [19]. The mismatch kernel considers word (or character) n-gram counts
with inexact matching of word (or character) n-grams. The gapped kernel cal-
culates dot-product of (non-contiguous) word (or character) n-gram counts with
gaps allowed between words. That is we revise cx(γ) as the number of sub-
sequences matching the n-gram γ with up to k gaps. For example, as shown in
Table 2, when calculating counts of trigram in a given sentence “SM binds RNA
in vitro ...” , three string kernels we tried in our experiments consider different
subsequences into the counts. As can be seen from examples, string kernels can
capture relationship patterns using mixtures of words (n-grams with gaps or
mismatch) as features.

String kernel implementations in practice typically require efficient meth-
ods for dot-product computation without explicitly constructing potentially very
high-dimensional feature vectors. A number of algorithmic approaches have been
proposed [27, 24, 17] for efficient string kernel computation and we adopt a suf-
ficient statistic strategy from [16] for fast calculation of mismatch and gapped
kernels. It provides a new family of linear time string kernel computation that
scale well with large alphabet size and input length, e.g., word vocabulary in our
context.

3 ASK: Abstraction-augmented String Kernel

Currently there exist very few annotated training data for the tasks of bio-
relation extractions. For example, the largest (to the best of our knowledge)
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Fig. 1. Semi-supervised Abstraction-Augmented String Kernel. Both text sequence X
and learned abstracted sequence A are used jointly.

publicly available training set for identifying “PPI relations” from PubMed ab-
stracts includes only about four thousands annotated examples. This small set
of training data could hardly cover most of the words in the vocabulary (about
2 million words in PubMed, which is the central collection of biomedical pa-
pers). On the other hand, PubMed stores more than 17 million citations (pa-
pers/reports), and provides free downloads of all abstracts (with over ∼1.3G
tokens after preprocessing). Thus our goal is to use a large unlabeled corpus to
boost the performance of string kernels where only a small number of labeled
examples are provided for sequence classification.

We describe a new semi-supervised string kernel, called “Abstraction-augmented
String Kernel” (ASK). The key term “abstraction” describes an operation of
grouping similar words to generate more abstract entities. We also refer to the
resulting abstract entities as “abstraction”. ASK is accomplished in two steps:
(i) learning word abstractions with unsupervised embedding and clustering (Fig-
ure 2); (ii) constructing a string kernel on both words and word abstractions
(Figure 1).

3.1 Word Abstraction with Embedding
ASK relies on the key observation that individual words carry significant seman-
tic information in natural language text. We learn a mapping of each word to
a vector of real values (called an “embedding” in the following) which describes
this word’s semantic meaning. Figure 2 illustrates this mapping step with an ex-
emplar sentence. Two types of unsupervised auxiliary tasks are exploited to learn
embedded feature representations from unlabeled text, which aim to capture:
– Local semantic patterns: an unsupervised model is trained to capture words’

semantic meanings in short text segments (e.g. text windows of 7 words).
– Global semantic distribution: an unsupervised model is trained to capture

words’ semantic patterns in long text sequences (e.g. long paragraphs or full
documents).

Local Word Embedding (Local ASK) It can be observed that in most nat-
ural language text, semantically similar words can usually be exchanged with no
impact on the sentence’s basic meaning. For example, in a sentence like “EGFR
interacts with an inhibitor” one can replace “interacts” with “binds” with no
change in the sentence labeling. With this motivation, traditional language mod-
els estimate the probability of the next word being w in a language sequence. In



6 Semi-Supervised Abstraction-Augmented String Kernel

!"#$%&!'(#&(#)(*!

!!

!!"#$!!%&'(&)*$!!+,-!!./0&1$!!'$1(2$3!!4&0!!!5/63.!!!!7/!!!/55$'!888

98::

98;<

989;

!888

989;

98;=!

98>>!

!888

!98??

!989;

!989;

!888

98;;

98>:

98<9

!888

!!""" !!""" !!""" !!"""!98@;

!98;<

!98@>

!888 #!

Fig. 2. The word embedding step maps each word in an input sentence to a vector of
real values (with dimension M) by learning from a large unlabeled corpus.

a related task, [6] proposed a different type of “language modeling”(LM) which
learns to embed normal English words into a M dimensional feature space by
utilizing unlabeled sentences with an unsupervised auxiliary task. We adapt this
approach to bio-literature texts and train the language model on unlabeled sen-
tences in PUBMED abstracts.

We construct an auxiliary task which learns to predict whether a given text
sequence (short word window) exists naturally in biomedical literature, or not.
The real text fragments are labeled as positive examples, and negative text frag-
ments are generated by random word substitution (in this paper we substitute
the middle word by a random word). That is, LM tries to recognize if the word
in the middle of the input window is related to its context or not. Note, the end
goal is not the solution to the classification task itself, but the embedding of
words into an M -dimensional space that are the parameters of the model. These
will be used to effectively learn the abstraction for ASK.

Following [6], a Neural Network (NN) architecture is used for this LM em-
bedding learning. With a sliding window approach, values of words in the current
window are concatenated and fed into subsequent layers which are classical neu-
ral network (NN) layers (with one hidden layer and another output layer, using
sliding text windows of size 11). The word embeddings and parameters of the
subsequent NN layers are all automatically trained by backpropagation. The
model is trained with a ranking-type cost (with margin):

∑

s∈S

∑

w∈D
max (0, 1− f(s) + f(sw)) , (3)

where S is the set of possible local windows of text, D is the vocabulary of words,
and f(·) represents the output of NN architecture and sw is a text window where
the middle word has been replaced by a random word w (negative window as
mentioned above). These learned embeddings give good representations of words
where we take advantage of the complete context of a word (before and after)
to predict its relevance. The training is handled with stochastic gradient descent
which samples the cost online w.r.t. (s, w).

Global Word Embedding (Global ASK) Since the local word embedding
learns from very short text segments, it cannot capture similar words having
long range relationships. Thus we propose a novel auxiliary task which aims to
catch word semantics within longer text sequences, e.g., full documents.
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We still represent each word as a vector in an M dimensional feature space
as in Figure 2. To capture semantic patterns in longer texts, we try to model
real articles in an unlabeled language corpus. Considering that words happen
multiple times in documents, we represent each document as a weighted sum of
its included words’ embeddings,

g(d) =
∑

w∈d

cd(w)E(w) (4)

where scalar cd(w) means the normalized tf-idf weight of word w on document d,
and vector E(w) is the M -dim embedded representation of word w which would
be learned automatically through backpropagation. The M -dimensional feature
vector g(d) thus represents the semantic embedding of the current document d.

Similar to the LM, we try to force g(·) of two documents with similar mean-
ings to have closer representations, and force two documents with different mean-
ings to have dissimilar representations. For an unlabeled document set, we adopt
the following procedure to generate a pseudo-supervised signals for training of
this model. We split a document a into two sections: a0 and a1, and assume that
(in natural language) the similarity between two sections a0 and a1 is larger
than the similarity between ai (i ∈ {0, 1}) and one section bj (j ∈ {0, 1}) from
another random document b: that is

f(g(a0), g(a1)) > f(g(ai), g(bj)) (5)

where f(·) represents a similarity measure on the document representation g(·).
f(·) is chosen as the cosine similarity in our experiments. Naturally the above
assumption comes to minimize a margin ranking loss:

∑

(a,b)∈A

∑

i,j=0,1

max(0, 1− f(g(ai), g(a1−i)) + f(g(ai), g(bj))) (6)

where i ∈ {0, 1}, j ∈ {0, 1} and A represents all documents in the unlabeled set.
We train E(w) using stochastic gradient descent, where iteratively, one picks
a random tuple from (ai and bj) and makes a gradient step for that tuple.
The stochastic method scales well to our large unlabeled corpus and is easy to
implement.

Abstraction using Vector Quantization As we mentioned, “abstraction”
means grouping similar words to generate more abstract entities. Here we try to
group words according to their embedded feature representations from either of
the two embedding tasks described above. For a given word w, the auxiliary tasks
learn to define a feature vector E(w) ∈ RM . Similar feature vectors E(w) can
indicate semantic closeness of the words. Grouping similar E(w) into compact
entities might give stronger indications of the target patterns. Simultaneously,
this will also make the resulting kernel tractable to compute1.
1 One could avoid the VQ step by considering the direct kernel k(x, y) =∑

i,j exp(−γ||E(xi)−E(yj))||) that measures the similarity of embeddings between
all pairs of words between two documents, but this would be slow to compute.
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Table 3. Example words mapped to the same “abstraction” as the query word (first
column) according to two different embeddings. We can see that “local” embedding
captures part-of-speech and “local” semantics, while “global” embedding found words
semantically close in their long range topics across a document.

Query Local ASK Global ASK

protein ligand, subunit, proteins, cosNUM,
receptor, molecule phosphoprotein, isoform

medical surgical, dental, hospital, investigated,
preventive, reconstructive research, urology

interact cooperate, compete, interacting, interacts,
interfere, react associate, member

immunoprecipitation co-immunoprecipitation, EMSA, coexpression, two-hybrid,
autoradiography, RT-PCR phosphorylated, tbp

As a classical lossy data compression method in the field of signal process-
ing, Vector quantization (VQ) [10] is utilized here to achieve the abstraction
operation. The input vectors are quantized (clustered) into different groups via
“prototype vectors”. VQ summarizes the distribution of input vectors with their
matched prototype vectors. The set of all prototype vectors is called the code-
book. We use C to represent the codebook set which includes N prototype vectors,
C = {C1, C2, ..., CN}.

Formally speaking, VQ tries to optimize (minimize) the following objective
function, in order to find the codebook C and in order to best quantize each
input vector into its matched prototype vector,

∑

i=1...|D|
||E(wi)− Cn||2, n ∈ {1...N} (7)

where E(wi) ∈ RM is the embedding of word wi. Hence, our basic VQ is essen-
tially a k-means clustering approach.

For a given word w we call the index of the prototype vector Cj that is closest
to E(w) its abstraction.

According to the two different embeddings, Table 3 gives the lists of example
words mapped to the same “abstraction” as the query word (first column). We
can see that “local” embedding captures part-of-speech and “local” semantics,
while “global” embedding found words semantically close in their long range
topics across a document.

3.2 Semi-Supervised String Kernel

Unlike standard string kernels which use words directly from the input text, semi-
supervised ASK combines word sequences with word abstractions (Figure 1).
The word abstractions are learned to capture local and global semantic patterns
of words (described in previous sections). As Table 3 shows, using learned em-
beddings to group words into abstractions could give stronger indications of the
target pattern. For example, in local ASK, the word “protein” is grouped with
terms like “ligand”, “receptor”, or “molecule”. Clearly, this abstraction could
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improve the string kernel matching since it provides a good summarization of
the involved parties related to target event patterns.

We define the semi-supervised abstraction-augmented string kernel as follows

K(x, y) =
〈(

φ(x), φ′(a(x))
)
,
(
φ(y), φ′(a(y))

)〉
(8)

where (φ(x), φ′(a(x))) extends the basic n-gram representation φ(x) with the
representation φ′(a(x)). φ′(a(x)) is a n-gram representation of the abstraction
sequence, where

a(x) = (a(x1), . . . , a(x|x|)) = (A1, . . . , A|x|) (9)

|x| means the length of the sequence and its ith item is Ai ∈ {1...N}. The
abstraction sequence a(x) is learned through the embedding and abstraction
steps.

The abstraction kernel exhibits a number of properties:

– It is a wrapper approach and can be used to extend both supervised and
semi-supervised string kernels.

– It is very efficient as it has linear cost in the input length.
– It provides two unsupervised models for word-feature learning from unla-

beled text.
– The baseline supervised or semi-supervised models can learn if the learned

abstractions are relevant or not.
– It provides a unified framework for bRE at multiple levels where tasks have

small training sets.
– It is quite general and not restricted to the biomedical text domain, since

no domain specific knowledge is necessary for the training.
– It can incorporate other types of word similarities (e.g., obtained from clas-

sical latent semantic indexing [8]).

4 Related Work

4.1 Semi-supervised Learning
Supervised NLP techniques are restricted by the availability of labeled exam-
ples. Semi-supervised learning has become popular, since unlabeled language
data is abundant. Many semi-supervised learning algorithms exist, including
self-training, co-training, Transductive SVMs, graph-based regularization [30],
entropy regularization [11] and EM with generative mixture models [22], see [5]
for a review. Except self-training and co-training, most of these semi-supervised
methods have scalability problems for large scale tasks.

Some other methods utilized auxiliary information from large unlabeled cor-
pora for training sequence models (e.g., through multi-task learning). Ando and
Zhang [2] proposed a method based on defining multiple tasks using unlabeled
data that are multi-tasked with the task of interest, which they showed to per-
form very well on POS and NER tasks. Similarly, the language model strategy
proposed in [6] is another type of auxiliary task. Both our local and global em-
bedding methods belong to this semi-supervised category.
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4.2 Semi-Supervised String kernel

For text categorization, the word sequence kernel proposed in [4] utilizes soft
matching of words based on a certain similarity matrix used within the strin
kernels. This similarity matrix could be derived from cooccurrence of words in
unlabled text, i.e. adding semi-supervision to string kernel. Adding soft matching
in the string kernel results qudratic complexity, though ASK does not add to
complexity more than a linear cost to the input length (in practice we observed
at most a factor of 1.5-2x slowdown compared to classic string kernels), while
improving predictive performance significantly (Section “Results”).

In terms of semi-supervised extensions of string kernels, another very sim-
ple method, called the “sequence neighborhood” kernel or “cluster” kernel has
been employed [28] previously. This method replaces every example with a new
representation obtained by averaging representations of the example’s neighbors
found in the unlabeled data using some standard sequence similarity measure.
This kernel applies well in biological sequence analysis since relatively accurate
measures exist (e.g., PSI-BLAST). Formally speaking, the sequence neighborhood
kernels take advantage of the unlabeled data using the process of neighborhood
induced regularization. But its application in most other domains (like text) is
not straightforward since no accurate and standard measure of similarity exists.

4.3 Word Abstraction Based Models

Several previous works ([20]) tried to solve information extraction tasks with
word clustering (abstraction). For example, Miller et al. [20] proposed to aug-
ment annotated training data with hierarchical word clusters that are automati-
cally derived from a large unannotated corpus according to occurrence. Another
group of closely related methods treat word clusters as hidden variables in their
models. For instance, [12] proposed a conditional log-linear model, with hidden
variables representing the assignment of atomic items to word clusters or word
senses. The model learns to automatically make the cluster assignments based
on a discriminative training criterion. Furthermore, researchers proposed to aug-
ment probabilistic models with abstractions in a hierarchical structure [26]. Our
proposed ASK differs by building words similarity from two unsupervised models
to capture auxiliary information implicit in large text corpus and employs VQ
to build discrete word groups for string kernels.

5 Experimental Results

We now present experimental results for comparing ASk to classic string kernels
and the state-of-art bRE results at multiple levels. Moreover to show generality,
we extend ASK and apply it to a benchmark protein sequence classification
dataset as the fourth experiment.

5.1 Three Benchmark bRE Data Sets

In our experiments, we explore three benchmark data sets related to PPI re-
lation extractions. (1) The first one was provided from BioCreative II [13], a
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Table 4. Size of datasets used in three “relation extraction” tasks

Dataset Labeled Unlabeled

BioCreativeII IAS Train 5495 (abstracts)1142559(tokens) 4.5M (abstracts)∼1.3G (tokens)
BioCreativeII IAS Test 677 (abstracts)143420 (tokens)

AIMED Relation 4026 (sentences) 143774 (tokens) 4.5M (abstracts)∼1.3G (tokens)

AIMED Sentence 1730 (sentences)50675 (tokens) 4.5M (abstracts)∼1.3G (tokens)

competition in 2006 for the extraction of protein-protein interaction (PPI) an-
notations from the literature. The competition evaluated multiple teams’ submis-
sions against a manually curated “gold standard” carried out by expert database
annotators. Multiple subtasks were tested and we choose one specific task called
“IAS” which aims to classify PubMed abstracts, based on whether they are rel-
evant to protein interaction annotation or not. (2) The second data set is the
“AIMED PPI sentence classification” data set. Extraction of relevant text seg-
ments (sentences) containing reference to important biomedical relationships is
one of the first steps in annotation pipelines of biomedical database curation.
Focusing on PPI, this step could be accomplished through classification of text
fragments (sentences) as either relevant (i.e. containing PPI relation) or not rel-
evant (non-PPI sentences). Sentences with PPI relations in the AIMED dataset
[3] are treated as positive examples, while all other sentences (without PPI) are
negative examples. In this data set, protein names are not annoated. (3) The
third data set is called “AIMED PPI Relation Extraction”, which uses a bench-
mark set aiming to extract binary protein-protein interaction (PPI) pairs from
bio-literature sentences [3]. An example of such extraction is listed in Table 2.
In this set, the sentences have been annotated with protein names if any. To en-
sure generalization of the learned extraction model, protein names are replaced
with PROT1, PROT2 or PROT, where PROT1 and PROT2 are the pair of
interests. The PPI relation extraction task is treated as a binary classification,
where protein pairs that are stated to interact are positive examples and other
co-occurring pairs negative. This means, for each sentence,

(
n
2

)
relation exam-

ples are generated, with n as the number of protein names in the sentence. We
downloaded this corpus from [9].

We use over 4.5M PubMed abstracts from 1994 to 2009 as our unlabeled
corpus for learning word abstractions. The size of the training/test/unlabeled
sets is given in Table 4.

Baselines As each of these datasets has been used extensively, we will also
compare our methods with the best reported results in the literature (see Table 5
and 7). In the following, we also compare global and local ASK with various
other baselines string kernels, including fully-supervised and semi-supervised
approaches.

Method We used the word n-grams as base features with ASK. Note we did not
use any syntactic or linguistic features (e.g., no POS, chunk types, parse tree
attributes, etc).
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Table 5. Comparison with previous results and baselines on IAS task.

Method Precision Recall F1 ROC Accuracy

Baseline 1: BioCreativeII compet. (best) 70.31 87.57 78.00 81.94 75.33

Baseline 2: BioCreativeII compet. (rank-2) 75.07 81.07 77.95 84.71 77.10

Baseline 3: TF-IDF 66.83 82.84 73.98 79.22 70.90

Spectrum (n-gram) kernel 69.29 80.77 74.59 81.49 72.53

Mismatch kernel 69.02 83.73 75.67 81.70 73.12

Gapped kernel 67.84 85.50 75.65 82.01 72.53

Global ASK 73.59 84.91 78.85 84.96 77.25

Local ASK 76.06 84.62 80.11 85.67 79.03

For global ASK, we use PubMed abstracts to learn word embedding vec-
tors using a vocabulary of the top 40K most frequent words in PubMed. These
word representations are clustered to obtain word abstractions (1K prototypes).
Similarly, local ASK learns word embeddings on text windows (11 words, with
50-dim. embedding) extracted from the PubMed abstracts. Word embeddings
are again clustered to obtain 1K abstraction entities. We set parameters of the
string kernels to typical values, with spectrum n-gram using k = 1 to 5, the
maximum number of mismatches is set to m = 1 and the maximum number of
gaps uses up to g = 6).

Metric The methods are evaluated using F1 score (including precision and recall)
as well as ROC score. (1) For BioCreativeII IAS, evaluation is performed at the
document level. (2) For two “AIMED” tasks, PPI extraction performance is
measured at the sentence level for predicted/extracted interacting protein pairs
using 10-fold cross-validation.

5.2 Task 1: PPI extract at article-level: IAS

The lower part of Table 5 summarizes results for the IAS task from Global and
Local ASK to baseline methods (spectrum n-gram kernel, n-gram kernel with
mismatches, and gapped n-gram kernel using different base feature sets (words
only, stems, characters)). Both Local and Global ASK provide improvements
over baseline n-gram based string kernels.

Using word and character n-gram features, the best performance obtained
with global ASK (F1 78.85), and the best performance by local ASK (F1 80.11)
are superior to the best performance reported in the BioCreativeII competition
(F1 78.00), as well as baseline bag-of-words with TF-IDF weighting (F1 73.98)
and the best supervised string kernel result in the competition (F1 77.17). Ob-
served improvements are significant, e.g., local ASK (F1 80.11) performs better
than the best string kernel (F1 77.17), with p-values 5.8e-3 (calculating with
standard z-test).

Note that all the top systems in the competition used more extensive feature
sets than ours, including protein names, interaction keywords, part of speech tags
and/or parse trees, etc. Thus, in summary, ASK effectively improves interaction
article retrieval and achieves state-of-the-art performance with only plain words
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Table 6. AIMED PPI sentence classification task (F1 score). Both local ASK and
global ASK improve over string kernel baselines.

Method Baseline +Global ASK +Local ASK

Words 61.49 67.83 69.46

Words+Stems 65.94 67.99 70.49

Table 7. Comparison with previous results and baselines on AIMED relation-leve data

Method Precision Recall F1 ROC Accuracy

Baseline 1: Bag of words 41.39 62.46 49.75 74.58 70.22

Baseline 2: Transductive SVM [9] 59.59 60.68 59.96 - -

Spectrum n-gram 58.35 62.77 60.42 83.06 80.57

Mismatch kernel 52.88 59.83 56.10 77.88 71.89

Gapped kernel 57.33 64.35 60.59 82.47 80.53

Global ASK 60.68 69.08 64.54 84.94 82.07

Local ASK 61.18 67.92 64.33 85.27 82.24

as features. We also note that using both local and global ASK together (multiple
kernel) provides further improvements in performance compared to individual
kernel results (e.g., we observe an increase in F1 score to 80.22)

5.3 Task 2: PPI extraction sentence level: AIMED PPI sentence

For the third benchmark task, “Classification of Protein Interaction Sentences”,
we summarize comparison results of both local and global ASK in Table 6.

The task here is to classify sentences as containing PPI relations or not. Both
ASK models effectively improve over the traditional spectrum n-gram string
kernels. For example, F1 70.49% from local ASK is significantly better than F1
65.94% from the best string kernel.

5.4 Task 3: PPI extraction relation-level: AIMED

Table 7 summarizes the comparison results between ASK to baseline bag-of-
words and supervised string kernel baselines. Both local and global ASK show
effective improvements over the word n-gram based string kernels. We find that
the observed improvements are statistically significant with p < 0.05 for the
case with the best performance (F1 64.54) achieved by global ASK. One state-
of-the-art relation-level bRE system (as far as we know) is listed as “baseline 2”
in Table 7, which was tested on the same AIMED dataset as we used. Clearly
our approach (with 64.54 F-score) performs better than this baseline (59.96
F-score) while using only basic words. Moreover, this baseline system utilized
many complex, expensive techniques such as, dependency parsers, to achieve
good performance.

Furthermore as pointed out by [1], though the AIMED corpus has been
applied in numerous evaluations for PPI relation extraction, the datasets used in
different papers varied largely due to diverse postprocessing rules used to create
the relation-level examples. For instance, the corpus used to test our ASK in
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Table 7 was downloaded from [9] which contains 4026 examples with 951 as
positive and 3075 as negatives. However, the AIMED corpus used in [1] includes
more relation examples, i.e. 1000 positive relations and 4834 negative examples.
The difference between the two reference sets make it impossible to compare our
results in Table 7 to this state-of-the-art bRE system as claimed by [1] (with 56.4
F-score). Therefore we re-experiment ASK on this new AIMED relation corpus
with both local and global ASK using the mismatch or spectrum kernel. Under
the same (abstract-based) cross-validation splits from [1], our best performing
case could achieve 54.7 F-score from local ASK on spectrum n-gram kernel with
k from 1 to 5. We conclude that using only basic words ASK is comparable
(slightly lower) to the bRE system from [1] where complex POS tree structures
were used.

5.5 Task 4: Comparison on biological sequence task

As mentioned in the introduction, the proposed ASK method is general to any
sequence modeling problem, and good for cases with few labeled examples and
a large unlabeled corpus. In the following, we extend ASK to biological domain
and compare it with semi-supervised and supervised string kernels . The related
work Section pointed out that the “Cluster kernel” is the only realistic semi-
supervised competitor we know so far proposed for string kernels. However it
needs a similarity measure specific to “protein sequences”, which is not applicable
to most sequence mining tasks. Three benchmark datasets evaluated above are
all within the scope of text mining, where the cluster kernel is not applicable.
In this experiment, we compare ASK with the cluster kernel and other string
kernels in the biological domain on the problem of structural classification from
protein sequences.

Measuring the degree of structural homology between protein sequences (also
known as remote protein homology prediction) is a fundamental and difficult
problem in biomedical research. For this problem, we use a popular benchmark
dataset for structural homology prediction (SCOP) that corresponds to 54 re-
mote homology detection experiments [28, 17]. We test local ASK (with local
embedding trained on a UNIPROT dataset, a collection of about 400,000 pro-
tein sequences) and compare with the supervised string kernels commonly used
for the remote homology detection [19, 28, 15, 17]. Each amino acid is treated as
a word in this case. As shown in Table 8, local ASK effectively improves the per-
formance of the traditional string kernels. For example, the mean ROC50 score
(commonly used metric for this task) improves from 41.92 to 46.68 in the case of
the mismatch kernel. One reason for this may be the use of the abstracted alpha-
bet (rather than using standard amino-acid letters) which effectively captures
similarity between otherwise symbolically different amino-acids. We also observe
that adding ASK on the semi-supervised cluster kernel approach [28] improves
over the standard mismatch string kernel-based cluster kernel. For example, for
the cluster kernel computed on the unlabeled subset (∼ 4000 protein sequences)
of the SCOP dataset, the cluster kernel with ASK achieves mean ROC50 70.14
compared to ROC50 67.91 using the cluster kernel alone.
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Table 8. Mean ROC50 score on remote protein homology problem. Local ASK im-
proves over string kernel baselines, both supervised and semi-supervised.

Method Baseline +Local ASK

Spectrum (n-gram)[18] 27.91 33.06

Mismatch [19] 41.92 46.68

Spatial sample kernel [15] 50.12 52.75

Semi-supervised Cluster kernel [28] 67.91 70.14

Furthermore the cluster kernel introduces new examples (sequences) and re-
quires semi-supervision at testing time, while our unsupervised auxiliary tasks
are feature learning methods, i.e. the learned features could be directly added
to the existing feature set. From the experiments, it appears that the learned
features from embedding models provide an orthogonal method for improving
accuracy, e.g., these features could be combined with the cluster kernel to further
improve its performance.

6 Conclusion

In this paper we propose to extract PPI relationships from sequences of biomed-
ical text using a novel semi-supervised string kernel. The abstraction-augmented
string kernel tries to improve supervised extractions with word abstractions
learned from unlabeled data. Semi-supervision relies on two unsupervised aux-
iliary tasks that learn accurate word representations from contextual semantic
similarity of words. On three bRE data sets, the proposed kernel matches state-
of-the-art performance and improves over all string kernel baselines we tried
without the need to get complex linguistic features. Moreover, we extend ASK
to protein sequence analysis and on a classic benchmark dataset we found im-
proved performance compared to all existing string kernels we tried.

Future work includes extension of ASK to more complex data types that
have richer structures, such as graphs.
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