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Abstract academic web [3]. In this paper, we address the task of meta-

Professional homepages of researchers contain metafata €xtraction from homepages. Thatis, given a researcher
that provides crucial evidence in several digital librafyomepage, our goal is to identify values for a number of
tasks such as academic network extraction, record linkdjg-defined metadata fieldsmployment positiquiniversity

and expertise search. Due to inherent diversity in vali@dddepartment affiliationsindcontact informatiorsuch as

for certain metadata fields (e.g., affiliation) supervisénail, phone and fax. _

algorithms require a large number of labeled examples for The homepage metadata extraction problem can be con-
accurately identifying values for these fields. We addre4dted to a sequence labeling (also known as tagging or an-

this issue withfeature labeling a recent semi-supervisediotation) problem in a straightforward manner: Given the
machine learning technique. stream of tokens corresponding to the content on a home-

page (We consider textual content and whitespace tokeniza-

We apply feature labeling to researcher metadata &#n). assign to each token a tag/label from the $&AFFL,
traction from homepages by combining a small set BMAIL, FAX, PHN, POS, UNIV, O} where these labels cor-

"o ”ou

expert-provided feature distributions with few fully-lled respond to “affiliation”, “email id", “fax number”, “phone
examples. We study two types of labeled features: gl)mber”, “employment position”, “university” and “other”
Dictionary features provide unigram hints related to sfiecii€lds respectively. An example is illustrated in Table 1.
metadata fields, whereas, (2) Proximity features captere th Although semi-supervised approaches were not investi-
layout information between metadata fields on a homepélj’éed previously, metadata extraction from academic home-
in a second stage. We experimentally show that t§ges was studied befqre using supervised. machine learn-
two-stage approach along with labeled features provided [16, 17]. These studies showed that tagging or sequence
significant improvements in the tagging performance. iaoeling approaches that capture dependencies among tags
one experiment with only ten labeled homepages 2hd ou_t—_perfqrm classification-style approaches. This is oot s
expert-specified labeled features, we obtainéda relative Prising since researchers tend to observe certain cooventi
increase in the F1 value for the affiliation field, while thwhile placing metadata on their homepages. For instance, it

overall F1 improves by%. is common to find phone and fax information close together
Keywords: metadata extraction, feature labeling, cond® & researcher homepage. Similarly, employment position
tional random fields information is typically followed by the affiliation inforax
tion (e.g., “professor”in the “Computer Science departthen
1 Introduction at “Stanford”). giving rise to dependencies among POS and
AFFL tags.

Researchgr homepages (alsp referred to as acadgmlc homewe highlight some challenges in tagging metadata fields
pages or simply homepages in this paper) form an important

resource for information discovery and for obtaining, u o’ homepages compared to common Natural Language Pro-

dating and tracking document collections in digital libeat cessing (NLP) tasks such as parts-of-speech tagging that in

Academic homepages typically summarize research and e\llé)all\-/e tagging fields in general English text [14]:

demic interests of researchers and contain other metadata Presence of cue words does not always indicate the
used in tasks such as expertise search, academic network metadata of the person that the homepage is about.
extraction and name disambiguation [1, 16]. Consequently, Although ‘student’ and ‘professor’ are commonly seen
retrieval of such homepages and extraction of information values for thepositionfield, in Table 1, only ‘student’
from them has been of interest, particularly in contextefth  needs to be annotated with the ‘POS’ label since this
value corresponds to the “owner” of the homepage.

"The Pennsylvania State University, PA, gsdas@cse psiRatitof this 5 - A related challenge pertains to similar words occurring
work was done at NEC Laboratories America.

fUniversity of Virginia, VA, yanjun@virginia.edu with multiple labels where certain Iabgls are more com-
1The Pennsylvania State University, PA, pmitra@ist.pau.ed mon than.the others. For instance, 'n.the ?—bqve snip-
§The Pennsylvania State University, PA, giles@ist.psu.edu pet, the first ‘State’ corresponds toumiversity field



| am a student at Penn State and work  with

o] o] @) POS o] UNIV UNIV O @] o]
Professor Xxxxx Yyyyy on designing finite state  automata ...
o] 0] @) o] 0] 0 o] 0]

Table 1: Homepage Tagging Example

whereas the second ‘state’ refers to a research problem (feature, label) distributions which are incorporatedint
the student is working on (to be marked as “other”). the training process viposterior regularization Our
Since webpages give rise to lengthy sequences of to- experiments demonstrate the effectiveness of this ap-
kens with most of them being “other”, we found in  proach when the number of annotated instances are few.
our experiments that discriminative terms such as “re-
search, department, student” occur more often with thé5 ’
“other” tag. Learning algorithms that typically use co-
occurrence counts may not be able to model such pa-
rameters accurately.

Finally, we study strategies to extract labeled features
when labeled training instances are available. In ab-
sence of a large number of labeled instances, we show
that automatic methods may not be capable of extract-
ing labeled features whose value is comparable to that
3. Values for certain metadata fields exhibit diverse pat- of expert-specified labeled features in terms of learning

terns with cue words appearing in various forms and po-  better tagging models.

sitions (e.g., affiliation valueBepartment of Computer

. . In the next section, we summarize the work closely related
Suen_ceEECS_ Dep_artmenandComputer Science e.mdto our contributions. In Sections 3 and 4, we describe our
Electrical Engineering Dept In addition, patterns with . .

. ) methods. Section 5 covers our experimental setup, results
certain cue words may occur rarely in a dataset. For in- . . :
. I and observations while Section 6 concludes our paper.
stance, in our dataset, we found that affiliation values
containing the term “department” occur about 30% %f
, Related work

the time whereas values that contain the term “centre _ ) _ _
only occur 1.3% of the time. Information extraction problems are of great interest in

the web and natural language processing communities [2,
How can we account for imbalance in token-label pairs ang 14]. In particular, metadata extraction from academic
rare patterns without having to label more exampleB8r homepages was studied for the ArnetMiner prdjéth] and
instance, given that we know that the term, “centre” corrgyr CiteSeet [17]. Tang, et al. designed several sets of noun-
SpOI’IdS to affi|iati0n, can we use this information to guiq‘ﬁ']rase’ dictionary’ pattern and term features for |de|“gy
the training process? More generaltgn we extract and the metadata fields. Zheng, et al. instead classify the HTML
incorporate problem-specific hints while training annat@t poM nodes that correspond to metadata fields using visual
models?We usefeature labeling a recent advancement ifeatures such as font-style and position of the block in the
semi-supervised learning to answer these questions [8]. page after which a second stage inter-field probability rhode

is used for the final extraction.
Contl’ibutionS: We Study the use Of Hlabeled features" Based on Comparisons and observations from these pre_
for annotating metadata on researcher homepages. WWs studies, we chose Conditional Random Fields (CRFs)
capture term and layout hints associated with metadatafigigk our annotation task. Linear-chain CRFs that address in-
via dictionary and proximity labeled features respecivekormation extraction as sequence tagging problems where

These hints enable us to train annotation models with fewggdels can be trained discriminatively using arbitrary- fea
tra|n|ng|nstances. Our contributions are Summar|zed\/me|ques are shown to be W|de|y successful on various IE

1. First, we propose and evaluate a set of basic featuredfiks [14]. Our focus is on using simpler features and semi-
annotating homepages. In contrast with previous worRgPervised learning with CRFs for homepage annotation.
that use rule-based patterns, noun phrases and visual A recent advance in machine learning pertains to the use
information, our set of features is minimalistic with!aPeled features” for training models [13, 6, 8]. Druck, et

domain information separated to dictionary featur& and Mann, et al. proposed the Generalized Expectation
alone [15, 17]. (GE) criterion for using labeled features within discrimin

tive classifiers and taggers [7, 4]. Ganchey, et al. proposed

2. To the best of our knowledge, annotation of researchppsterior Regularization”, (PR) a more general framework
homepages using semi-supervised models was not stud-

ied_before. We adopt the recen.tly prpposed_ feature. & Thttp://ametminer.org/
beling approach where supervision is provided using ?http:/citeseerx.ist.psu.edu



for incorporating “side information” into models for struc token Slpreds S2 features

tured prediction by imposing linear constraints on posteri [ O nws1POS

expectations [5]. We use the CRF, labeled features and the am O nws1POS

PR framework implemented in Mallet, the information ex- student POS s1POS, nws1UNIV

traction package provided by UMdss in O pws1POS, nws1UNIV
While the use of labeled features is also referred to as  Penn UNIV S1IUNIV, pws1POS

“semi-supervised learning”, this is more due to the use of  State UNIV SIUNIV

supervision with labeled features as opposed to labeled in- working O pws1UNIV

stances. Semi-supervised learning approaches where super With O pws1UNIV

vision is provided at the instance-level is not discusséhis professor O @)

paper. Instead, our focus is on capturing homepage-specific

aspects as labeled features for use within the PR framework. _ )
Feature extraction for semi-supervised models was prel@Ple 2: Example demonstrating features added for stage

ously studied for classification [4, 11] and tagging [6, 7% Pased on stage 1 predicted tags and window size=3 (pw:
However, these works focus on term-based features that RE2vious window, nw: next window, s1: stage 1)
quently correspond to labels. In addition to term featunes,
design “proximity” features that capture the layout of meta j - yse the basic set of features (Table 4) to train a tagger
data fields on a homepage. for the first stage.

Our proximity features are similar in spirit to self-
labeled features previously studied for tagging prob-2. Next, use predicted tags from the first stage tagger as
lems [10]. Qi, et al. proposed an iterative scheme, where additional features to train a second-stage tagger.

feature vectors in each iteration are augmented with the p\ﬁ it that this two-st is better | deli
dicted word-level class label distributions from the pozis € posit that this two-stage process 1s betier in mogeiing

iteration in a semi-supervised manner. Similarly, we uge ppext labels in addition to previous labels as well as label

dictions from a first-stage CRF for use as “labeled featurégformat'on within a \{vmdow_ rather than JL.JSt the previous
in a second CRF, effectively combining the two ideas step label dependencies (as in the case of linear-chain)CRFs
' ' More precisely, in the second stage, for every token pasitio

3 Methods we add the closest tag within a window of positions with
. respect to the current token position. An example is shown
3.1 Moativation for a two-stage process in Table 2.

It is reasonable to assume that researchers do not arrange
their metadata on their professional homepages arbjtrary , Stage 1: Training the first CRF tagger

Eor example, it is unlikely that the phone contact i.nformawe train a homepage tagger using features corresponding
tion appears at the top of the page while the fax informgy gimple surface patterns, terms and dictionaries. In con-
tion appears towards the end. Similarly, itis common to find, s \ith previous work that used intricate regular expere

employment information of a researcher closely listed with, patterns and visual features, we chose simple unigram,
the affiliation information (e.g. “I am an assistant profess,;

; A ram features based on terms, surface patterns and-dictio
in the Computer Science department at Stanford”). _Indeﬂqqries available for this task. We use the following feagure
researchers follow certain conventions in placing theitame

data and this aspect was captured partially via visual deperd. Canonical term features These features refer to basic
dencies [17] and transition features [16] in previous resea terms corresponding to the textual content on a home-
However, the proposed visual layout features are very-intri  page. We use whitespace tokenization and convert all
cate while the transition features are limited to a singtg st tokens to lowercase after removing punctuation.

in linear-CRFs [14].

In initial experiments, we also noticed that values for
certain fields such as phone numbers and fax numbers are
often easier to extract than values pertaining to fields like
affiliation. Based on these intuitions and observations, we
ask the following questionan the knowledge of certain
fields aid in the identification of the other fieRISNe seek
to answer this question via a two-step approach as follows:

2. Dictionary features: We use boolean features corre-
sponding to the presence in field-specific dictionaries.
These dictionaries were obtained from previous work
related to ArnetMiner where homepage annotation was
studied using CRFs and SVMs [16]. These dictionaries
comprise a total of 147 cue words often seen with meta-
data fields. For example, values for {hleonefield usu-

ally appear as numeric strings following the cue words,
‘phone’ or ‘ph’ (sample words in Table 3).

3http://mallet.cs.umass.edu/ 3. Surface-form features Surface patterns provide valu-



AFFL : center, centre, college, department, dept, dipartimédalboratory
UNIV : universiteit, universitat, university, univ

PHN: cell, ext, extn, homephone, mobile, numbers, ph, phonetacne
FAX: ext, extn, facsimile, fax, faxno, faxnumber, telefax/feed

EMAIL : contact, email, firstname, lastname, gmail, mail, mailloailto
pre POS administrative, affiliate, assistant, associate, asstltief, deputy,
POS president, prof, professor, gradstudent, researchao)ag scientist,

Table 3: Sample cue words for different fields

able hints in annotation tasks. For instance, phone Unigram features  Fj, i = {—2,...2}
numbers are typically numeric fields and values for af- Bigram features F_1FyandFyFy
filiation fields are often capitalized. We use boolean Skip features F_1Fy

features indicating if the token matches one of the Conjunction features F_;Gy andFyG;
surface patterns: singleLetter, allletters-capitaljzse i={-1,0,1}
a-capitalized-word, all-digits-in-word, and word-has-

digits. Table 4: Feature templates for Stage-1

4. Name-based featuresTo capture the empirical obser- L o ) -
vation that most metadata fields on a homepage appd;gyslUNIV indicates that within the_ previous positions,
in close proximity with the researcher name, we indil'® stage 1 tagger marked a token with the “UNIV”tag.
cate the presence of a researcher name within a neigh- 1he set of features for stage 2 are generated using

borhood of five lines within the line containing the totN® conjunction feature templates by combining the pre-
ken via this feature. dicted tags from stage 1 with term, dictionary and sur-

face pattern features. For example, the features added
5. Sentence delimiter featuresWe add sentence boundin stage 2 for the token “Penn” in the example from Ta-
ary features indicating whether the token starts, is inle 2 are:penn_s1UNI V, capitalizeds1UN Vand
side or ends a sentence. These features are designetth ct S1UNI V.
capture the observation that labels do not often extend
across line boundaries. 4 Feature labeling to improve tagging

Given a string of terms corresponding to the content of - Motivation

homepage, let’, G represent feature-types described above. e further study techniques to improve the tagging perfor-

We use subscripts to denote the feature corresponding {gce Orll thaﬁ:‘“atlorllt' poks)Ltl(_)n gndgnlvtehr5|:yf|elds. fAn h
particular position in the text. The feature templates deed error analysis ot results obtained using the taggers fram

training the initial classifier are listed in Table 4. We "efe%arewo?slgegnon |r:jd|fate:1 _tWO reasons for low numbers on
to a CRF model trained on these features as “Basic CRF3FS€ fields in our datasets:

“Stage 1 or S1”in Section 5. 1. Cue words that are indicative of metadata fields occur
o with the “other” tag more often than with the specific
3.3 Stage 2: Training the second CRF tagger field potentially making it hard for the model to estimate

In our initial experiments with basic features, we found weights for the associated parameters accurately. For
that the tagger was able to accurately identify fields corre- instance. the term. “student” occurs with the “POS” tag
sponding to phone, fax and e-mail but was not very accurate only 23% of the time in our dataset, whereas the term
on fields such as affiliation, position and university (Sec-  «ypjversity” occurs with the “UNIV” tag about 36% of

tion 5.3). The second-stage tagger is designed to avail the he time. The remaining percent corresponds to their
“most likely correct” fields identified in stage 1 to zeroinon  5ccurrence with the “O” tag.

other fields in the next round. We obtain the set of predicted
tags from the Stage 1 CRF to form the second-set of featureés The affiliation, position and university fields exhibit

for each token position on a homepage. various patterns in their values with a severe imbalance
Table 2 shows an example for generating additional in the training examples for each pattern. For example,

features using predicted tags for a window of size In there are about 300 labeled instances having affiliation

this table, “pw” and “nw” indicate respectively, the previ field values with the term “department”, whereas only

and next positions within the specified window size, where 14 labeled instances have the term “centre” in their
the stage 1 tagger labeled a metadata field. For example, affiliation values.



Supervised learning algorithms require a number of labeled The regularized, conditional log likelihood function op-
instances to estimate accurately the weights correspgtalintimized in CRFs is given by:

feature parameters. For taggers, edge transition paresnete

need to be additionally estimated. Compared to classificati N N K 02

tasks where labels are assigned at an instance level (#.g., {4.2) 1(0) = Z log p(y"x"")) — Z 292

document or an image), labeling examples for sequence tag- =1 k=1

ging where _each token PF)S'“O” in the sequence needs tqbge apove equation, Euclidean norm is used for regular-
marked up involves considerably more human effort. How;n4 the parameter vectof, with the regularization factor
ever, recent research indicated that while labeling 'mangiven byQ%. In posterior regularization framework, data-

. ; ) . : L

is hard, labeling features is considerably easier andrféste jonendent constraints are encoded as model posteriors on th
an expertin the domain [11]. .observed data. Using the Markov assumption, the feature ex-

_ Given the advancement in semi-su_perviseo! Ieam'BgctationSin CRF can be written B, po (y[x) Fi (x, ) —
with labeled features, we ask the questioNhat kind of ; » s v 1%) fi (e, o1 yx 0
_t Yt ,Yt—1 y It Ity Jt—15 3 .

hints can we provide via labeled features to the learning
gorithms to enable better tagging of researcher metadata on

a homepage? > pely[x)Fi(x,y) =
y
4.2 Background
Labeled features were studied by Mann, Druck and Mc- Z Z Pt Ye—11%) i (e, ye—1, %, 1)
Callum for both classification and tagging problems [7, 4]. toysYe-1

They proposed adding “supervision” to learning algorithmge distributions specified via labeled features are caeder
by providing (feature, label) affinities rather than fullymto expectation constraints in the PR framework as foltows
annotated instances. Consider the example in Table 1. Eygh (., y) represent the value of the feature expectation
without annotating the entire snippet, from domain knowkstimated by the model when = v. If b represents the

edge, one can expect the correct label for the token “stlidegiget expectation, the constraints correspondingdan be
to be “POS”, “most” of the time. This hint can be imposegitten as

as a soft preference or a constraint by specifying the (featu

label) distribution. F_or example, the labeled feat_uredem Quy = {00, (¥) : Eg[d(z0,y)] < b}

POS:0.8, 0:0.2" indicates a preference for marking thertoke

“student” with the label “POS” 80% of the time. Generaltet X, Y represent the training instances apgthe desired

ized Expectation (GE) and Posterior Regularization (PR) afistribution space representing all constraints, theaivje

two frameworks studied previously for imposing such prefier PR captures the KL-divergence betwegand the model

erences in discriminative models [8, 5]. We choose the PBsteriors to be minimized as:

framework since it handles more general constraints and was

found to be better performing in our experiments. In the ngxt 3) Jqo(0) =1(0) — KL(Q||ps(Y|X))

subsection, we briefly describe posterior regularizatiith w

labeled features for completeness. The posterior expectations are specified as linear contgrai

during the parameter estimation process in the PR frame-

4.2.1 Posterior Regularization work. More details on PR, optimization issues and other
Using the notation from [14], let the pdix, y) represent an forms of the objective function are described in [5].

instance for sequence labeling whereorresponds to the to-

ken sequence angdrepresents the label sequencesfoThe 4.3 Labeled features for homepages

feature functions in CRFs take the fortfi(y:, y:—1,x,t). If ~ We study two types of labeled features:

0 = {\.} represents the parameter vector correspondingto
k= 1...K features, for a linear-chain CRF the conditional 1+ Dictionary features capture terms that commonly oc-
distribution is given by: cur with certain fields. For example, (studgmisition),

(dept,affiliation), etc.

(4.1)  pe(ylx) = Lexp Z/\ka(x’Y) 2. Proximity features capture the layout conventions on
Z(x) % researchers homepages. For example, using the nota-

tion described in Section 3.1, (departmemis1POS,
where Fi,(x,y) = >, fu(x, v+, y:—1,t) and the partition affiliation) indicates a preference faffiliation if the

. B current token is “department” and previous tokens
functionZ (x) = zyjexp <Zk:/\ka (x, Y)) ' within a window were marked gsosition



In the description above, we specified the majority labelsstribution (MAJ) where the majority label associated with
for the features. More generally, labeled features refefeature gets the majority of probability mass whereas the
to label-probability distributions. For example, “(stude remaining mass is distributed uniformly among the remain-
position0.9, other.0.1)” indicates a distribution on labelsjng labels; (2) Schapire distributio&CH) where the major-
position and other. Mann and McCallum showed thaity of the mass is uniformly distributed among all labelsaass
given limited annotation time, models that were trainagated with a feature while the remaining mass is uniformly
using expert-specified labeled features out-perform othli#stributed among the non-associated labels [13]; and (3)
semi-supervised approaches that use fully-labeled insganFeature-voted VOTE) distributions where co-occurrence
in their experiments [4]. Sample expert-designed featuiesunts of (feature, label) pairs in the training data are nor

pertaining taaffiliation are shown in Table 5. malized to obtain probability distributions. We also prepo
and evaluate two variant schemes: (MAJ*) is a varia-
Dictionary features  Proximity features tion of MAJ where only associated labels in the training data
laboratory NWS1UNIV are taken into account. That is, among the associated Jabels
centre capitalizeghws1POS the winning label gets the majority of the probability mass,
college capitalizedws1UNIV whereas the remaining mass is distributed uniformly among
department daffbws1POS the remaining associated labels, and (@A0 **) is similar
dipartimento capitalizepws1UNIV to MAJ* except that the winning label gets the majority of
institute sciencaws1UNIV the mass only if it is a clear winner (has co-occurrence with

the feature more than or equal to twice that of other associ-

Table 5: Expert-specified dictionary and proximity fesated labels).

tures for affiliation values. sdrefers to the predicted  As an example, let4, 10), B, 6), (C, 0) (D, 0) be the

label obtained from the first-stage CRF. For examplgg-occurrence counts in the training data for a feature for

“daffl_pws1POS” reads as the token is found in the affilisthich a distribution is to be generated for laba|$3, C and

tion dictionary and has a predicted tag, POS from stagd1If we choose majority probability mass value to 0,

within the previous window the label distributions obtained with the different scheme
are given by:

. ) e MAJ: {A:0.9 B:0.033 C:0.033, D:0.033
4.4 Extracting labeled features automatically

A labeled feature is a specification of a feature along withe SCH: {A:0.45 B:0.45 C:0.05, D:0.05
a probability distribution related to labels associatethviti
Is it possible to extract labeled features automaticallyegi ~ ® VOTE: {A:0.625 B:0.37§
labeled data?T'his question was briefly addressed in context . A ]
of classification by using mutual information between the * MAJ": {A:0.9B:0.1
features and Ia_lbels and Latent D|r!chlet AIIocatlc_)n [4].. N ¢ MAJ**: {A:0.5B:0.5)
context of tagging, frequently occuring features with aegiv
label “that do not also occur frequently with other labeldJsing the (feature, label) co-occurrences in training data
were used to extract features automatically [6, 7]. we study feature extraction with (1) Information Gai{,

To obtain label-probability distributions automaticallyand (2) FrequencylF). We found that Mutual Information

a few options were studied in the same works: (1) Majorifivl ) selected rare words for each label, such as univerisity
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names among the top words and did not benefit from Rserformed on a 16-core, 800MHz, 32GB RAM, AMD
This “known” issue with Ml and details on IG and MIOpteron, Linux server with default parameter settings in
can be found in [9]. Sample dictionary features choséfallet (Section 2). First, the stage 1 CRF is trained with
using these strategies based on the instances in our dathsdbasic set of features described in Section 3.2. Next, pre
(Section 5) are shown in Table 6. In our experiments sectiai;tions from stage 1 are used to generate additional fesitur
we compare the features extracted using different extnactfor the stage 2 CRF. Predictions on the test data are made
methods and probability distribution options with the estpe in a transductive setting with PR. That is, the PR framework
designed labeled features. treats the test instances as unlabeled instances and isnpose

the labeled feature constraints during training. The model

Rank | TF M IG obtained after this phase is used to obtain predictionsier t

1 university | bogazici | professor test instances.

2 professor | fudan university The dictionary labeled features can be used with PR for
3 department| patras associate both the stage 1 and stage 2 CRFs whereas by design, the
4 computer | sofia assistant proximity features can be used only in the second stage.
5 associate | ogi department We train the CRF until convergence is obtained on the
6 assistant bozen director training split of the data in each experiment. For about 600
7 science bolzano | computer training instances, the CRF training time was 30 minutes on
8 research hokkaido | science average for both stage 1 and stage 2 CRFs. An EM-style
9 engineering| tung student optimization algorithm is used in the posterior reguldiaa

10 student albany researcher framework [5]. We analyzed the performance versus running
26 phd marie graduate time trade-off for a few sample runs (Figure 5) and set the
27 graduate kth phd number of iterations for the PR part 50 in the rest of the

28 center harbor center experiments. The window size was setlio for stage 2

29 california potsdam | electrical experiments since the expert-labeled features were gexera
30 scientist clara member based on this size.

As is common in annotation evaluation [9], we use the

Table 6: Sample terms based on frequency (TF), mutgal measure that provides a single metric capturing both
information (M) and information gain (IG) are shown in thigrecision and recall to compare models. In all experiments

table.

5 Experiments

5.1 Datasets and settings

we show the aggregate performance over all fields (entries
marked by ‘AGG’). For some experiments, we highlight
performance on the affiliation field since we found it to be the
most difficult to extract among all the fields (entries marked
by ‘AFFL).

We summarize our experiments on the ArnetMiner profile
tagging dataset.This dataset comprise8% annotated re- 5.2 Expert-labeled features
searcher pages collected by Tang, et al. for studying recomheaffiliation anduniversityfield-specific dictionary terms
linkage across homepages and DBLP records [15, 16]. distained from ArnetMiner (Section 3.2) were directly used
the best of our knowledge, this is the oplyblicly-available as dictionary labeled features. For proximity features, we
dataset available for our problém All experiments were manually examined the homepages in the dataset to derive a
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list of common layout conventions. For example, “affiliatio
fields are often preceded by position and followed by uni-
versity information”, or “phone information is usually tesl
before fax information”. Next, dictionary terms and sudac
patterns were used to form conjunctions within a window
with the label sefl’ = {AFFL, POS,UNIV} (e.g., cap-
italized pwPOS, departmemtwPHN). This list was manu-
ally examined to obtain a subset of features that satisfy the
layout conventions. These “expert” lists2f dictionary and

20 proximity features along with their label distributiongar

Figure 5: PR (dictionary constraints) with different numb&vailable upon request (Table 5 contains a sample).
of training iterations (Time in minutes vs. F1).

“Datasets and code are available upon request.

5.3 Results and observations
Figures 1 and 2 illustrate the benefits of using expert-



Field Precision Recall F1

Basic Best Basic Best Basic | Best

AFFL 0.6670| 0.4571| 0.4302| 0.7095| 0.5219| 0.5554(+6.4%)
EMAIL | 0.9178| 0.8889| 0.8136| 0.8693| 0.8624| 0.8788 (+1.9%)
FAX 0.9543| 0.9501| 0.9295| 0.9406| 0.9417| 0.9453

PHN 0.9370| 0.9310| 0.8899| 0.9296| 0.9128| 0.9303 (+1.9%)
POS 0.8048| 0.7470| 0.5995| 0.6835| 0.6870| 0.7138(+3.9%)
UNIV 0.7203| 0.6596| 0.5827| 0.7336| 0.6432| 0.6940(+7.9%)

Table 7: F1 values (three-fold cross-validation) for basid the “best” performing set of features. The best perfocea
was obtained by imposing all constraints in stage 2 usindiptiens from stage 1 with dictionary PR.

specified dictionary labeled features to provide “supendre marked in bold in this table. Using a paired t-test, the
sion” when the number of labeled homepage instancesitprovements inf'1 values are statistically significant for
train the initial CRF is small. In this situation, as the glotp-value= 0.05. Imposing constraints via labeled features in-
indicate, (feature, label) distributions are able to dffety creases recall for all the fields at the cost of a dip in prenisi
boost the tagging performance. The figures show improweéith the F1 improving for all the fields.

ments in affiliation F1 from 0.1438 to 0.2088 and in aggre- Our experiments with the feature extraction and distri-
gate F1 from 0.4222 to 0.4601 when only ten labeled edtion assignment schemes described in Section 4 are sum-
amples are available. As the number of labeled exampiearized in Table 8 for dictionary labeled features. Using in
increase, the initial CRF becomes more accurate, with a re-

duction in the boost with PR. Setting AFFL Agg | Agg/O
We summarize our three-fold cross-validation experi- Basic CRF | 0.5219| 0.7937| 0.7615
ments comparing Stage 1 and Stage 2 CRF in Table 9. About Posterior Regularization
600 labeled examples are available in each run and the over- Expert 0.5548]| 0.8124| 0.7835
all boost in F1 is not as high as in the previous experiment. IG (VOTE) | 0.5493] 0.8059]| 0.7757
However, notice the field-specific improvements obtained by IG (MAJ) 0.5224| 0.7944| 0.7623
enforcing the expert-specified feature label constraisitsgu IG (SCH) 0.5512| 0.8062| 0.7760
PR in Figure 4. Both dictionary and proximity features pro- IG (MAJ*) | 0.5230| 0.7944| 0.7623
vide improvements over that obtained using CRF alone for IG (MAJ**) | 0.5423| 0.8046| 0.7742
both the stages. A comparison of the F1 values between TF (VOTE) | 0.5415| 0.8030]| 0.7723
the “S1” and “S2” rows of Table 9 validates our intuition TF (MAJ) 0.5173| 0.7903| 0.7576
regarding the use of two stages for annotating homepages TF (SCH) 0.5514| 0.8061| 0.7759
(Section 3.1). It appears that performance-wise a twoestag TF (MAJ*) | 0.5261| 0.7966| 0.7649
approach along with proximity constraints is comparable to TF (MAJ*) | 0.5459| 0.8048| 0.7745

using a single stage process with dictionary constraings an
combination schemes do not provide large enhancemei&hle 8: Three-fold cross-validation F1 values for Rip-
The field-specific improvements comparing the basic stagdidtionary labeled features (#expert features=22).

CRF and our best-performing model are shown in Table 7.

The entries where the improvement in F1 is more than 2%mation gain along with feature-voted distribution ssem

AFFL UNIV POS

F1

Fold Fold Fold

Figure 4: F1 variation across folds faffiliation, universityandpositionfields.
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