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Abstract

Professional homepages of researchers contain metadata
that provides crucial evidence in several digital library
tasks such as academic network extraction, record linkage
and expertise search. Due to inherent diversity in values
for certain metadata fields (e.g., affiliation) supervised
algorithms require a large number of labeled examples for
accurately identifying values for these fields. We address
this issue withfeature labeling, a recent semi-supervised
machine learning technique.

We apply feature labeling to researcher metadata ex-
traction from homepages by combining a small set of
expert-provided feature distributions with few fully-labeled
examples. We study two types of labeled features: (1)
Dictionary features provide unigram hints related to specific
metadata fields, whereas, (2) Proximity features capture the
layout information between metadata fields on a homepage
in a second stage. We experimentally show that this
two-stage approach along with labeled features provides
significant improvements in the tagging performance. In
one experiment with only ten labeled homepages and22
expert-specified labeled features, we obtained a45% relative
increase in the F1 value for the affiliation field, while the
overall F1 improves by9%.
Keywords: metadata extraction, feature labeling, condi-
tional random fields

1 Introduction

Researcher homepages (also referred to as academic home-
pages or simply homepages in this paper) form an important
resource for information discovery and for obtaining, up-
dating and tracking document collections in digital libraries.
Academic homepages typically summarize research and aca-
demic interests of researchers and contain other metadata
used in tasks such as expertise search, academic network
extraction and name disambiguation [1, 16]. Consequently,
retrieval of such homepages and extraction of information
from them has been of interest, particularly in context of the
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academic web [3]. In this paper, we address the task of meta-
data extraction from homepages. That is, given a researcher
homepage, our goal is to identify values for a number of
pre-defined metadata fields:employment position, university
anddepartment affiliationsandcontact informationsuch as
email, phone and fax.

The homepage metadata extraction problem can be con-
verted to a sequence labeling (also known as tagging or an-
notation) problem in a straightforward manner: Given the
stream of tokens corresponding to the content on a home-
page (We consider textual content and whitespace tokeniza-
tion), assign to each token a tag/label from the set:{ AFFL,
EMAIL, FAX, PHN, POS, UNIV, O} where these labels cor-
respond to “affiliation”, “email id”, “fax number”, “phone
number”, “employment position”, “university” and “other”
fields respectively. An example is illustrated in Table 1.

Although semi-supervised approaches were not investi-
gated previously, metadata extraction from academic home-
pages was studied before using supervised machine learn-
ing [16, 17]. These studies showed that tagging or sequence
labeling approaches that capture dependencies among tags
out-perform classification-style approaches. This is not sur-
prising since researchers tend to observe certain conventions
while placing metadata on their homepages. For instance, it
is common to find phone and fax information close together
on a researcher homepage. Similarly, employment position
information is typically followed by the affiliation informa-
tion (e.g., “professor” in the “Computer Science department”
at “Stanford”). giving rise to dependencies among POS and
AFFL tags.

We highlight some challenges in tagging metadata fields
on homepages compared to common Natural Language Pro-
cessing (NLP) tasks such as parts-of-speech tagging that in-
volve tagging fields in general English text [14]:

1. Presence of cue words does not always indicate the
metadata of the person that the homepage is about.
Although ‘student’ and ‘professor’ are commonly seen
values for thepositionfield, in Table 1, only ‘student’
needs to be annotated with the ‘POS’ label since this
value corresponds to the “owner” of the homepage.

2. A related challenge pertains to similar words occurring
with multiple labels where certain labels are more com-
mon than the others. For instance, in the above snip-
pet, the first ‘State’ corresponds to auniversity field



I am a student at Penn State and work with
O O O POS O UNIV UNIV O O O
Professor Xxxxx Yyyyy on designing finite state automata . . .

O O O O O O O O

Table 1: Homepage Tagging Example

whereas the second ‘state’ refers to a research problem
the student is working on (to be marked as “other”).
Since webpages give rise to lengthy sequences of to-
kens with most of them being “other”, we found in
our experiments that discriminative terms such as “re-
search, department, student” occur more often with the
“other” tag. Learning algorithms that typically use co-
occurrence counts may not be able to model such pa-
rameters accurately.

3. Values for certain metadata fields exhibit diverse pat-
terns with cue words appearing in various forms and po-
sitions (e.g., affiliation valuesDepartment of Computer
Science, EECS Department, andComputer Science and
Electrical Engineering Dept). In addition, patterns with
certain cue words may occur rarely in a dataset. For in-
stance, in our dataset, we found that affiliation values
containing the term “department” occur about 30% of
the time whereas values that contain the term “centre”
only occur 1.3% of the time.

How can we account for imbalance in token-label pairs and
rare patterns without having to label more examples?For
instance, given that we know that the term, “centre” corre-
sponds to affiliation, can we use this information to guide
the training process? More generally,can we extract and
incorporate problem-specific hints while training annotation
models?We usefeature labeling, a recent advancement in
semi-supervised learning to answer these questions [8].

Contributions : We study the use of “labeled features”
for annotating metadata on researcher homepages. We
capture term and layout hints associated with metadata fields
via dictionary and proximity labeled features respectively.
These hints enable us to train annotation models with fewer
training instances. Our contributions are summarized below:

1. First, we propose and evaluate a set of basic features for
annotating homepages. In contrast with previous works
that use rule-based patterns, noun phrases and visual
information, our set of features is minimalistic with
domain information separated to dictionary features
alone [15, 17].

2. To the best of our knowledge, annotation of researcher
homepages using semi-supervised models was not stud-
ied before. We adopt the recently proposed feature la-
beling approach where supervision is provided using

(feature, label) distributions which are incorporated into
the training process viaposterior regularization. Our
experiments demonstrate the effectiveness of this ap-
proach when the number of annotated instances are few.

3. Finally, we study strategies to extract labeled features
when labeled training instances are available. In ab-
sence of a large number of labeled instances, we show
that automatic methods may not be capable of extract-
ing labeled features whose value is comparable to that
of expert-specified labeled features in terms of learning
better tagging models.

In the next section, we summarize the work closely related
to our contributions. In Sections 3 and 4, we describe our
methods. Section 5 covers our experimental setup, results
and observations while Section 6 concludes our paper.

2 Related work

Information extraction problems are of great interest in
the web and natural language processing communities [2,
12, 14]. In particular, metadata extraction from academic
homepages was studied for the ArnetMiner project1 [15] and
for CiteSeer2 [17]. Tang, et al. designed several sets of noun-
phrase, dictionary, pattern and term features for identifying
the metadata fields. Zheng, et al. instead classify the HTML
DOM nodes that correspond to metadata fields using visual
features such as font-style and position of the block in the
page after which a second stage inter-field probability model
is used for the final extraction.

Based on comparisons and observations from these pre-
vious studies, we chose Conditional Random Fields (CRFs)
for our annotation task. Linear-chain CRFs that address in-
formation extraction as sequence tagging problems where
models can be trained discriminatively using arbitrary fea-
tures are shown to be widely successful on various IE
tasks [14]. Our focus is on using simpler features and semi-
supervised learning with CRFs for homepage annotation.

A recent advance in machine learning pertains to the use
“labeled features” for training models [13, 6, 8]. Druck, et
al. and Mann, et al. proposed the Generalized Expectation
(GE) criterion for using labeled features within discrimina-
tive classifiers and taggers [7, 4]. Ganchev, et al. proposed
“Posterior Regularization”, (PR) a more general framework

1http://arnetminer.org/
2http://citeseerx.ist.psu.edu



for incorporating “side information” into models for struc-
tured prediction by imposing linear constraints on posterior
expectations [5]. We use the CRF, labeled features and the
PR framework implemented in Mallet, the information ex-
traction package provided by UMass3.

While the use of labeled features is also referred to as
“semi-supervised learning”, this is more due to the use of
supervision with labeled features as opposed to labeled in-
stances. Semi-supervised learning approaches where super-
vision is provided at the instance-level is not discussed inthis
paper. Instead, our focus is on capturing homepage-specific
aspects as labeled features for use within the PR framework.
Feature extraction for semi-supervised models was previ-
ously studied for classification [4, 11] and tagging [6, 7].
However, these works focus on term-based features that fre-
quently correspond to labels. In addition to term features,we
design “proximity” features that capture the layout of meta-
data fields on a homepage.

Our proximity features are similar in spirit to self-
labeled features previously studied for tagging prob-
lems [10]. Qi, et al. proposed an iterative scheme, where
feature vectors in each iteration are augmented with the pre-
dicted word-level class label distributions from the previous
iteration in a semi-supervised manner. Similarly, we use pre-
dictions from a first-stage CRF for use as “labeled features”
in a second CRF, effectively combining the two ideas.

3 Methods

3.1 Motivation for a two-stage process
It is reasonable to assume that researchers do not arrange

their metadata on their professional homepages arbitrarily.
For example, it is unlikely that the phone contact informa-
tion appears at the top of the page while the fax informa-
tion appears towards the end. Similarly, it is common to find
employment information of a researcher closely listed with
the affiliation information (e.g. “I am an assistant professor
in the Computer Science department at Stanford”). Indeed,
researchers follow certain conventions in placing their meta-
data and this aspect was captured partially via visual depen-
dencies [17] and transition features [16] in previous research.
However, the proposed visual layout features are very intri-
cate while the transition features are limited to a single step
in linear-CRFs [14].

In initial experiments, we also noticed that values for
certain fields such as phone numbers and fax numbers are
often easier to extract than values pertaining to fields like
affiliation. Based on these intuitions and observations, we
ask the following question:can the knowledge of certain
fields aid in the identification of the other fields? We seek
to answer this question via a two-step approach as follows:

3http://mallet.cs.umass.edu/

token S1 preds S2 features
I O nws1POS
am O nws1POS
student POS s1POS, nws1UNIV
in O pws1POS, nws1UNIV
Penn UNIV s1UNIV, pws1POS
State UNIV s1UNIV
working O pws1UNIV
with O pws1UNIV
professor O O
. . .

Table 2: Example demonstrating features added for stage
2 based on stage 1 predicted tags and window size=3 (pw:
previous window, nw: next window, s1: stage 1)

1. Use the basic set of features (Table 4) to train a tagger
for the first stage.

2. Next, use predicted tags from the first stage tagger as
additional features to train a second-stage tagger.

We posit that this two-stage process is better in modeling
next labels in addition to previous labels as well as label
information within a window rather than just the previous
step label dependencies (as in the case of linear-chain CRFs).
More precisely, in the second stage, for every token position,
we add the closest tag within a window of positions with
respect to the current token position. An example is shown
in Table 2.

3.2 Stage 1: Training the first CRF tagger
We train a homepage tagger using features corresponding

to simple surface patterns, terms and dictionaries. In con-
trast with previous work that used intricate regular experes-
sion patterns and visual features, we chose simple unigram,
bigram features based on terms, surface patterns and dictio-
naries available for this task. We use the following features:

1. Canonical term features: These features refer to basic
terms corresponding to the textual content on a home-
page. We use whitespace tokenization and convert all
tokens to lowercase after removing punctuation.

2. Dictionary features: We use boolean features corre-
sponding to the presence in field-specific dictionaries.
These dictionaries were obtained from previous work
related to ArnetMiner where homepage annotation was
studied using CRFs and SVMs [16]. These dictionaries
comprise a total of 147 cue words often seen with meta-
data fields. For example, values for thephonefield usu-
ally appear as numeric strings following the cue words,
‘phone’ or ‘ph’ (sample words in Table 3).

3. Surface-form features: Surface patterns provide valu-



AFFL : center, centre, college, department, dept, dipartimento, laboratory
UNIV : universiteit, universitat, university, univ
PHN: cell, ext, extn, homephone, mobile, numbers, ph, phonefax, phone
FAX : ext, extn, facsimile, fax, faxno, faxnumber, telefax, tel/fax
EMAIL : contact, email, firstname, lastname, gmail, mail, mailbox, mailto
pre POS: administrative, affiliate, assistant, associate, asst, co, chief, deputy,
POS: president, prof, professor, gradstudent, researcher, scholar, scientist,

Table 3: Sample cue words for different fields

able hints in annotation tasks. For instance, phone
numbers are typically numeric fields and values for af-
filiation fields are often capitalized. We use boolean
features indicating if the token matches one of the
surface patterns: singleLetter, allletters-capitalized, is-
a-capitalized-word, all-digits-in-word, and word-has-
digits.

4. Name-based features: To capture the empirical obser-
vation that most metadata fields on a homepage appear
in close proximity with the researcher name, we indi-
cate the presence of a researcher name within a neigh-
borhood of five lines within the line containing the to-
ken via this feature.

5. Sentence delimiter features: We add sentence bound-
ary features indicating whether the token starts, is in-
side or ends a sentence. These features are designed to
capture the observation that labels do not often extend
across line boundaries.

Given a string of terms corresponding to the content of a
homepage, letF,G represent feature-types described above.
We use subscripts to denote the feature corresponding to a
particular position in the text. The feature templates usedfor
training the initial classifier are listed in Table 4. We refer
to a CRF model trained on these features as “Basic CRF” or
“Stage 1 or S1” in Section 5.

3.3 Stage 2: Training the second CRF tagger
In our initial experiments with basic features, we found

that the tagger was able to accurately identify fields corre-
sponding to phone, fax and e-mail but was not very accurate
on fields such as affiliation, position and university (Sec-
tion 5.3). The second-stage tagger is designed to avail the
“most likely correct” fields identified in stage 1 to zero in on
other fields in the next round. We obtain the set of predicted
tags from the Stage 1 CRF to form the second-set of features
for each token position on a homepage.

Table 2 shows an example for generating additional
features using predicted tags for a window of size3. In
this table, “pw” and “nw” indicate respectively, the previous
and next positions within the specified window size, where
the stage 1 tagger labeled a metadata field. For example,

Unigram features Fi, i = {−2, . . .2}
Bigram features F−1F0 andF0F1

Skip features F−1F1

Conjunction features F−iG0 andF0Gi

i = {−1, 0, 1}

Table 4: Feature templates for Stage-1

“pws1UNIV” indicates that within the previous3 positions,
the stage 1 tagger marked a token with the “UNIV” tag.

The set of features for stage 2 are generated using
the conjunction feature templates by combining the pre-
dicted tags from stage 1 with term, dictionary and sur-
face pattern features. For example, the features added
in stage 2 for the token “Penn” in the example from Ta-
ble 2 are:penn s1UNIV, capitalized s1UNIV and
nodict s1UNIV.

4 Feature labeling to improve tagging

4.1 Motivation
We further study techniques to improve the tagging perfor-

mance on theaffiliation, position, anduniversityfields. An
error analysis of results obtained using the taggers from the
previous section indicated two reasons for low numbers on
these fields in our datasets:

1. Cue words that are indicative of metadata fields occur
with the “other” tag more often than with the specific
field potentially making it hard for the model to estimate
weights for the associated parameters accurately. For
instance, the term, “student” occurs with the “POS” tag
only 23% of the time in our dataset, whereas the term
“university” occurs with the “UNIV” tag about 36% of
the time. The remaining percent corresponds to their
occurrence with the “O” tag.

2. The affiliation, position and university fields exhibit
various patterns in their values with a severe imbalance
in the training examples for each pattern. For example,
there are about 300 labeled instances having affiliation
field values with the term “department”, whereas only
14 labeled instances have the term “centre” in their
affiliation values.



Supervised learning algorithms require a number of labeled
instances to estimate accurately the weights corresponding to
feature parameters. For taggers, edge transition parameters
need to be additionally estimated. Compared to classification
tasks where labels are assigned at an instance level (e.g., for a
document or an image), labeling examples for sequence tag-
ging where each token position in the sequence needs to be
marked up involves considerably more human effort. How-
ever, recent research indicated that while labeling instances
is hard, labeling features is considerably easier and faster for
an expert in the domain [11].

Given the advancement in semi-supervised learning
with labeled features, we ask the question:What kind of
hints can we provide via labeled features to the learning al-
gorithms to enable better tagging of researcher metadata on
a homepage?

4.2 Background
Labeled features were studied by Mann, Druck and Mc-

Callum for both classification and tagging problems [7, 4].
They proposed adding “supervision” to learning algorithms
by providing (feature, label) affinities rather than fully-
annotated instances. Consider the example in Table 1. Even
without annotating the entire snippet, from domain knowl-
edge, one can expect the correct label for the token “student”
to be “POS”, “most” of the time. This hint can be imposed
as a soft preference or a constraint by specifying the (feature,
label) distribution. For example, the labeled feature “student
POS:0.8, O:0.2” indicates a preference for marking the token
“student” with the label “POS” 80% of the time. General-
ized Expectation (GE) and Posterior Regularization (PR) are
two frameworks studied previously for imposing such pref-
erences in discriminative models [8, 5]. We choose the PR
framework since it handles more general constraints and was
found to be better performing in our experiments. In the next
subsection, we briefly describe posterior regularization with
labeled features for completeness.

4.2.1 Posterior Regularization
Using the notation from [14], let the pair(x,y) represent an

instance for sequence labeling wherex corresponds to the to-
ken sequence andy represents the label sequence forx. The
feature functions in CRFs take the form:fk(yt, yt−1,x, t). If
θ = {λk} represents the parameter vector corresponding to
k = 1 . . .K features, for a linear-chain CRF the conditional
distribution is given by:

(4.1) pθ(y|x) =
1

Z(x)
exp

(

∑

k

λkFk(x,y)

)

whereFk(x,y) =
∑

t fk(x, yt, yt−1, t) and the partition

functionZ(x) =
∑

y

exp

(

∑

k

λkFk(x,y)

)

.

The regularized, conditional log likelihood function op-
timized in CRFs is given by:

(4.2) l(θ) =
N
∑

i=1

log p(y(i)|x(i))−
K
∑

k=1

θ2k
2σ2

In the above equation, Euclidean norm is used for regular-
izing the parameter vector,θ with the regularization factor
given by 1

2σ2 . In posterior regularization framework, data-
dependent constraints are encoded as model posteriors on the
observed data. Using the Markov assumption, the feature ex-
pectations in CRF can be written as

∑

y
pθ(y|x)Fk(x,y) =

∑

t

∑

yt,yt−1
p(yt, yt−1|x)fk(yt, yt−1,x, t).

∑

y

pθ(y|x)Fk(x,y) =

∑

t

∑

yt,yt−1

p(yt, yt−1|x)fk(yt, yt−1,x, t)

The distributions specified via labeled features are converted
into expectation constraints in the PR framework as follows:
Let φ(xv,y) represent the value of the feature expectation
estimated by the model whenx = v. If b represents the
target expectation, the constraints corresponding tox can be
written as

Qxv
= {qxv

(y) : Eq[φ(xv,y)] ≤ b}

Let X,Y represent the training instances andQ, the desired
distribution space representing all constraints, the objective
for PR captures the KL-divergence betweenQ and the model
posteriors to be minimized as:

(4.3) JQ(θ) = l(θ)− KL(Q||pθ(Y|X))

The posterior expectations are specified as linear constraints
during the parameter estimation process in the PR frame-
work. More details on PR, optimization issues and other
forms of the objective function are described in [5].

4.3 Labeled features for homepages
We study two types of labeled features:

1. Dictionary features capture terms that commonly oc-
cur with certain fields. For example, (student,position),
(dept,affiliation), etc.

2. Proximity features capture the layout conventions on
researchers homepages. For example, using the nota-
tion described in Section 3.1, (departmentpws1POS,
affiliation) indicates a preference foraffiliation if the
current token is “department” and previous tokens
within a window were marked asposition.



In the description above, we specified the majority labels
for the features. More generally, labeled features refer
to label-probability distributions. For example, “(student
position:0.9, other:0.1)” indicates a distribution on labels,
position and other. Mann and McCallum showed that
given limited annotation time, models that were trained
using expert-specified labeled features out-perform other
semi-supervised approaches that use fully-labeled instances
in their experiments [4]. Sample expert-designed features
pertaining toaffiliation are shown in Table 5.

Dictionary features Proximity features
laboratory nws1UNIV
centre capitalizedpws1POS
college capitalizednws1UNIV
department dafflpws1POS
dipartimento capitalizedpws1UNIV
institute sciencenws1UNIV

Table 5: Expert-specified dictionary and proximity fea-
tures for affiliation values. s1∗ refers to the predicted
label obtained from the first-stage CRF. For example,
“daffl pws1POS” reads as the token is found in the affilia-
tion dictionary and has a predicted tag, POS from stage-1
within the previous window

4.4 Extracting labeled features automatically
A labeled feature is a specification of a feature along with

a probability distribution related to labels associated with it.
Is it possible to extract labeled features automatically given
labeled data?This question was briefly addressed in context
of classification by using mutual information between the
features and labels and Latent Dirichlet Allocation [4]. In
context of tagging, frequently occuring features with a given
label “that do not also occur frequently with other labels”
were used to extract features automatically [6, 7].

To obtain label-probability distributions automatically,
a few options were studied in the same works: (1) Majority

distribution (MAJ ) where the majority label associated with
a feature gets the majority of probability mass whereas the
remaining mass is distributed uniformly among the remain-
ing labels; (2) Schapire distribution (SCH) where the major-
ity of the mass is uniformly distributed among all labels asso-
ciated with a feature while the remaining mass is uniformly
distributed among the non-associated labels [13]; and (3)
Feature-voted (VOTE ) distributions where co-occurrence
counts of (feature, label) pairs in the training data are nor-
malized to obtain probability distributions. We also propose
and evaluate two variant schemes: (4) (MAJ ∗) is a varia-
tion of MAJ where only associated labels in the training data
are taken into account. That is, among the associated labels,
the winning label gets the majority of the probability mass,
whereas the remaining mass is distributed uniformly among
the remaining associated labels, and (5) (MAJ ∗∗) is similar
to MAJ∗ except that the winning label gets the majority of
the mass only if it is a clear winner (has co-occurrence with
the feature more than or equal to twice that of other associ-
ated labels).

As an example, let (A, 10), (B, 6), (C, 0) (D, 0) be the
co-occurrence counts in the training data for a feature for
which a distribution is to be generated for labelsA, B, C and
D. If we choose majority probability mass value to be0.9,
the label distributions obtained with the different schemes
are given by:

• MAJ: {A:0.9 B:0.033 C:0.033, D:0.033}

• SCH:{A:0.45 B:0.45 C:0.05, D:0.05}

• VOTE: {A:0.625 B:0.375}

• MAJ∗: {A:0.9 B:0.1}

• MAJ∗∗: {A:0.5 B:0.5}

Using the (feature, label) co-occurrences in training data
we study feature extraction with (1) Information Gain (IG ),
and (2) Frequency (TF). We found that Mutual Information
(MI ) selected rare words for each label, such as univerisity
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names among the top words and did not benefit from PR.
This “known” issue with MI and details on IG and MI
can be found in [9]. Sample dictionary features chosen
using these strategies based on the instances in our dataset
(Section 5) are shown in Table 6. In our experiments section,
we compare the features extracted using different extraction
methods and probability distribution options with the expert-
designed labeled features.

Rank TF MI IG
1 university bogazici professor
2 professor fudan university
3 department patras associate
4 computer sofia assistant
5 associate ogi department
6 assistant bozen director
7 science bolzano computer
8 research hokkaido science
9 engineering tung student
10 student albany researcher
26 phd marie graduate
27 graduate kth phd
28 center harbor center
29 california potsdam electrical
30 scientist clara member

Table 6: Sample terms based on frequency (TF), mutual
information (MI) and information gain (IG) are shown in this
table.

5 Experiments

5.1 Datasets and settings
We summarize our experiments on the ArnetMiner profile

tagging dataset.This dataset comprises of898 annotated re-
searcher pages collected by Tang, et al. for studying record
linkage across homepages and DBLP records [15, 16]. To
the best of our knowledge, this is the onlypublicly-available
dataset available for our problem4. All experiments were
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Figure 5: PR (dictionary constraints) with different number
of training iterations (Time in minutes vs. F1).

4Datasets and code are available upon request.

performed on a 16-core, 800MHz, 32GB RAM, AMD
Opteron, Linux server with default parameter settings in
Mallet (Section 2). First, the stage 1 CRF is trained with
the basic set of features described in Section 3.2. Next, pre-
dictions from stage 1 are used to generate additional features
for the stage 2 CRF. Predictions on the test data are made
in a transductive setting with PR. That is, the PR framework
treats the test instances as unlabeled instances and imposes
the labeled feature constraints during training. The model
obtained after this phase is used to obtain predictions for the
test instances.

The dictionary labeled features can be used with PR for
both the stage 1 and stage 2 CRFs whereas by design, the
proximity features can be used only in the second stage.
We train the CRF until convergence is obtained on the
training split of the data in each experiment. For about 600
training instances, the CRF training time was 30 minutes on
average for both stage 1 and stage 2 CRFs. An EM-style
optimization algorithm is used in the posterior regularization
framework [5]. We analyzed the performance versus running
time trade-off for a few sample runs (Figure 5) and set the
number of iterations for the PR part to50 in the rest of the
experiments. The window size was set to10 for stage 2
experiments since the expert-labeled features were generated
based on this size.

As is common in annotation evaluation [9], we use the
F1 measure that provides a single metric capturing both
precision and recall to compare models. In all experiments
we show the aggregate performance over all fields (entries
marked by ‘AGG’). For some experiments, we highlight
performance on the affiliation field since we found it to be the
most difficult to extract among all the fields (entries marked
by ‘AFFL’).

5.2 Expert-labeled features
Theaffiliation anduniversityfield-specific dictionary terms

obtained from ArnetMiner (Section 3.2) were directly used
as dictionary labeled features. For proximity features, we
manually examined the homepages in the dataset to derive a
list of common layout conventions. For example, “affiliation
fields are often preceded by position and followed by uni-
versity information”, or “phone information is usually listed
before fax information”. Next, dictionary terms and surface
patterns were used to form conjunctions within a window
with the label setT = {AFFL, POS,UNIV } (e.g., cap-
italized pwPOS, departmentnwPHN). This list was manu-
ally examined to obtain a subset of features that satisfy the
layout conventions. These “expert” lists of22 dictionary and
20 proximity features along with their label distributions are
available upon request (Table 5 contains a sample).

5.3 Results and observations
Figures 1 and 2 illustrate the benefits of using expert-



Field Precision Recall F1
Basic Best Basic Best Basic Best

AFFL 0.6670 0.4571 0.4302 0.7095 0.5219 0.5554(+6.4%)
EMAIL 0.9178 0.8889 0.8136 0.8693 0.8624 0.8788 (+1.9%)
FAX 0.9543 0.9501 0.9295 0.9406 0.9417 0.9453
PHN 0.9370 0.9310 0.8899 0.9296 0.9128 0.9303 (+1.9%)
POS 0.8048 0.7470 0.5995 0.6835 0.6870 0.7138(+3.9%)
UNIV 0.7203 0.6596 0.5827 0.7336 0.6432 0.6940(+7.9%)

Table 7: F1 values (three-fold cross-validation) for basicand the “best” performing set of features. The best performance
was obtained by imposing all constraints in stage 2 using predictions from stage 1 with dictionary PR.

specified dictionary labeled features to provide “supervi-
sion” when the number of labeled homepage instances to
train the initial CRF is small. In this situation, as the plots
indicate, (feature, label) distributions are able to effectively
boost the tagging performance. The figures show improve-
ments in affiliation F1 from 0.1438 to 0.2088 and in aggre-
gate F1 from 0.4222 to 0.4601 when only ten labeled ex-
amples are available. As the number of labeled examples
increase, the initial CRF becomes more accurate, with a re-
duction in the boost with PR.

We summarize our three-fold cross-validation experi-
ments comparing Stage 1 and Stage 2 CRF in Table 9. About
600 labeled examples are available in each run and the over-
all boost in F1 is not as high as in the previous experiment.
However, notice the field-specific improvements obtained by
enforcing the expert-specified feature label constraints using
PR in Figure 4. Both dictionary and proximity features pro-
vide improvements over that obtained using CRF alone for
both the stages. A comparison of the F1 values between
the “S1” and “S2” rows of Table 9 validates our intuition
regarding the use of two stages for annotating homepages
(Section 3.1). It appears that performance-wise a two-staged
approach along with proximity constraints is comparable to
using a single stage process with dictionary constraints and
combination schemes do not provide large enhancements.
The field-specific improvements comparing the basic stage 1
CRF and our best-performing model are shown in Table 7.
The entries where the improvement in F1 is more than 2%

are marked in bold in this table. Using a paired t-test, the
improvements inF1 values are statistically significant for
p-value= 0.05. Imposing constraints via labeled features in-
creases recall for all the fields at the cost of a dip in precision,
with the F1 improving for all the fields.

Our experiments with the feature extraction and distri-
bution assignment schemes described in Section 4 are sum-
marized in Table 8 for dictionary labeled features. Using in-

Setting AFFL Agg Agg/O
Basic CRF 0.5219 0.7937 0.7615

Posterior Regularization
Expert 0.5548 0.8124 0.7835
IG (VOTE) 0.5493 0.8059 0.7757
IG (MAJ) 0.5224 0.7944 0.7623
IG (SCH) 0.5512 0.8062 0.7760
IG (MAJ∗) 0.5230 0.7944 0.7623
IG (MAJ∗∗) 0.5423 0.8046 0.7742
TF (VOTE) 0.5415 0.8030 0.7723
TF (MAJ) 0.5173 0.7903 0.7576
TF (SCH) 0.5514 0.8061 0.7759
TF (MAJ∗) 0.5261 0.7966 0.7649
TF (MAJ∗∗) 0.5459 0.8048 0.7745

Table 8: Three-fold cross-validation F1 values for top-30
dictionary labeled features (#expert features=22).

formation gain along with feature-voted distribution seems
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Figure 4: F1 variation across folds foraffiliation, universityandpositionfields.



to be the best performing scheme among all the configura-
tions although this is lower than that obtained with expert-
specified features. Increasing the number of IG features does
not help as can be observed in Figure 3. It is likely that IG
features might get more accurate when a large amounts of
labeled data is available for estimating them. However, the
boost obtained using labeled features via the PR framework
seems to reduce as more labeled instances become available
(Figure 1).

Setting AFFL Agg Agg/O
S1 0.5219 0.7937 0.7615
S1+PR (Dictionary) 0.5548 0.8124 0.7835

Predictions from Stage 1 (basic)
S2 0.5431 0.7974 0.7656
S2+PR (Proximity) 0.5679 0.8047 0.7743
S2+PR (All) 0.5527 0.8065 0.7767

Predictions from Stage 1 (basic + dict PR)
S2 0.5303 0.8001 0.7689
S2+PR (Proximity) 0.5621 0.8082 0.7784
S2+PR (All) 0.5554 0.8147 0.7862

Table 9: Three-fold cross-validation F1 values for Stage 1
(S1) and Stage 2 (S2) models. Expert-specified labeled
features were used.

6 Conclusions

We studied feature labelingfor annotating metadata on
researcher homepages. We proposed dictionary-based
features to capture field-specific hints whereas proximity
features capture the layout information among metadata
fields. Our proximity features are different from labeled
features typically studied in previous work in that they
are designed to be used in a second-stage model using
predictions from a first-stage model. We showed that pos-
terior regularization can effectively impose the dictionary
and proximity hints during the training process to obtain
significant improvements in tagging performance when the
labeled examples available are limited.

To the best of our knowledge, we are the first to inves-
tigate feature labeling for its application for metadata
extraction on webpages as opposed to NLP tasks studied be-
fore. We complement term features with problem-specific,
layout-based labeled features using predictions from a
first-stage tagger. In addition, we showed experimentally
that unlike NLP tasks investigated previously, a large
amount of tagged data might be required for extracting
labeled features using automatic methods that match the
performance obtained with expert-specified labeled features.
However, this requirement invalidates the benefit of labeled
features since supervised methods can be directly used when
large amount of tagged data is available.
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