Sparse Latent Semantic Analysis

Xi Chen1, Yanjun Qi2, Bing Bai2, Qihang Lin1, Jaime G. Carbonell1

1. Machine Learning Department, Carnegie Mellon University
2. Machine Learning Department, NEC Lab America

The work is done during the internship at NEC Lab America
Vector Space Model:

Document: \(\mathbf{x} = [w_1, \ldots, w_M] \in \mathbb{R}^M \) \(M \): vocabulary size

\(w_i \): normalized weight (tf-idf) of the \(i \)-th word

\(N \) Documents: \(\mathbf{X} = [\mathbf{x}^1, \mathbf{x}^2, \ldots, \mathbf{x}^N] \in \mathbb{R}^{N \times M} \): Document-Word matrix

Latent Semantic Analysis:

\(D \) latent topics (dimensionality of the latent space)

LSA applies SVD to construct a rank-\(D \) approximation:

\[
\mathbf{X} \approx \mathbf{U}_{N \times D} \mathbf{S}_{D \times D} (\mathbf{V}_{M \times D})^T, \quad \mathbf{U}^T \mathbf{U} = \mathbf{I}, \mathbf{V}^T \mathbf{V} = \mathbf{I}
\]

Projection Matrix: \(\mathbf{A} = \mathbf{S}^{-1} \mathbf{V}^T \in \mathbb{R}^{D \times M} \)

Dimension reduction for a new document \(q \): \(q \in \mathbb{R}^M \Rightarrow \hat{q} = \mathbf{A} q \in \mathbb{R}^D \)
Optimization Formulation for LSA

- **Latent Semantic Analysis**

\[X \approx U_{N \times D} S_{D \times D} (V_{M \times D})^T, \quad U^T U = I, V^T V = I \]

- **Relaxed Optimization Formulation:**

\[
\min_{U,A} \quad \frac{1}{2} \| X - U A \|_F^2 \\
\text{subject to:} \quad U^T U = I
\]

[K. Yu et al. 05]

- **Sparse Latent Semantic Analysis:**

 Add *sparsity* constraint on the project matrix \(A \):

\[
\min_{U,A} \quad \frac{1}{2} \| X - U A \|_F^2 + \lambda \| A \|_1 \quad \Rightarrow \quad \| A \|_1 = \sum_{d=1}^D \sum_{j=1}^M |a_{d,j}| \quad \ell_1\text{-regularization}
\]

\[U^T U = I \]
Sparse LSA

\[\min_{U,A} \quad \frac{1}{2} \| X - UA \|_F^2 + \lambda \| A \|_1 \]
subject to: \[U^T U = I \]

\[\begin{array}{c|c|c|c}
N & M & \approx & D \\
\end{array} \quad \begin{array}{c|c|c|c}
X & U & A & D - Latent Concepts \\
\end{array} \]

New Document \(q \): \[\hat{q} = Aq \in \mathbb{R}^D \]

Comparison to Sparse Coding

\[\min_{U,A} \quad \frac{1}{2} \| X - UA \|_F^2 + \lambda \| U \|_1 \]
subject to: \[\| A_j \|_2^2 \leq c, \quad j = 1, \ldots, M \]

New Document \(q \): \[\hat{q} = \arg\min_{\hat{q}} \frac{1}{2} \| q - A^T \hat{q} \| + \lambda \| \hat{q} \|_1. \]

Simple Projection, Computational Efficient

Lasso Problem
More Computation Time 😞
Advantage of Sparse LSA

- **Better Interpretability:**
 Sparse LSA selects most relevant words for each topic \(a_{dj} \neq 0\).
 Compact representation of topic-word relationship.

- **Efficient Projection:**
 Sparse \(A \implies\) Efficient Projection for new documents:
 \[
 \hat{q} = Aq \in \mathbb{R}^D
 \]

- **Cheap Storage:**
 Cheap storage for sparse \(A\).

- **Sparse Projected Documents:**
 \[
 \text{sparse } \hat{q} = Aq
 \]

- **Document-Topic Relationship:**
 \[
 \hat{q}_d = 0 \iff \hat{q} \text{ not belong to } d\text{-th topic}
 \]

- **Advantage as compared to PCA:**
 Do not need to centralize \(X \implies\) destroy the sparsity of \(X\).
 Do not need the covariance matrix \(X^TX \in \mathbb{R}^{M \times M}\) may not fit in the memory for large vocabulary size.
Optimization Method

Alternating Approach

Fix U and optimize with respect to A:

$$
\min_{A} \frac{1}{2} \|X - UA\|_F^2 + \lambda \|A\|_1
$$

subject to: $U^TU = I$

Fix A and optimize with respect to U:

$$
\min_{U} \frac{1}{2} \|X - UA\|_F^2 \iff \text{tr}(U^TXA^T)
$$

subject to: $U^TU = I$

Closed-form Solution:

Let $V = XA^T$ (projected documents onto the latent space)

Perform SVD on V: $V = P\Delta Q \iff U^* = PQ$

Note: SVD on $V \in \mathbb{R}^{M \times D}$ is much cheaper than that on $X \in \mathbb{R}^{N \times M}$
Algorithm 1 Optimization Algorithm for Sparse LSA

Input: X, dimensionality of the latent space D, regularization parameter λ

Initialization: $U^0 = \begin{pmatrix} I_D \\ 0 \end{pmatrix}$

Iterate until convergence of U and A:

1. Compute A by solving M independent lasso problems via coordinate descent
2. Project X onto the latent space: $V = XA^T$.
3. Compute the SVD of V: $V = P\Delta Q$ and let $U = PQ$.

Output: Sparse projection matrix A.
Extension I : Nonnegative Sparse LSA

Constraint: \(A \geq 0 \):

\[
\min_{U, A} \quad \frac{1}{2} \| X - UA \|_F^2 + \lambda \| A \|_1 \\
\text{subject to:} \quad U^T U = I, \quad A \geq 0.
\]

Simulate the probability of the word \(w_j \) given the topic \(t_d \):

Normalize each row: \(\tilde{a}_{dj} = \frac{a_{dj}}{\sum_{j=1}^{M} a_{dj}} \sim \mathbb{P}(w_j | t_d) \)

Optimization with respect to \(A \):

\[
\min_{A_{j \geq 0}} f(A_{j}) = \frac{1}{2} \| X_j - UA_j \| + \lambda \sum_{d=1}^{D} a_{dj}. \quad j = 1, \ldots, M
\]

Optimize via the coordinate descent approach:
Iterating over \(d \): fix \(a_{\hat{d}j} \) for \(\hat{d} \neq d \) and optimize over \(a_{dj} \)

\[
a_{dj}^* = \begin{cases} \frac{b_d - \lambda}{c_d} & b_d > \lambda \\ 0 & b_d \leq \lambda \end{cases}
\]

\[
c_d = \sum_{i=1}^{N} u_{id}^2, \quad b_d = \sum_{i=1}^{N} u_{id}(x_{ij} - \sum_{k \neq d} u_{ik} a_{kj}).
\]
Application: latent gene-function identification: determine relevant pathways (groups of genes) to a latent gene function (topic)

Group Structured Sparse LSA:
The set of groups of input features \(G = \{g_1, \ldots, g_{|G|}\} \) (available as a priori)

\[
\min_{U,A} \quad \frac{1}{2} \|X - UA\|_F^2 + \lambda \sum_{d=1}^{D} \sum_{g \in G} w_g \|A_{dg}\|_2
\]

subject to: \(U^T U = I \).

Optimization with respect to A:

Optimize via the coordinate descent approach:

\[
A_{dg}^* = \begin{cases}
\frac{B_{dg}(\|B_{dg}\|_2 - \lambda w_g)}{C_d\|B_{dg}\|_2} & \|B_{dg}\|_2 > \lambda w_g \\
0 & \|B_{dg}\|_2 \leq \lambda w_g
\end{cases}
\]

\[
C_d = \sum_{i=1}^{N} u_{id}^2, \quad (B_{dg})_{j \in g} = \sum_{i=1}^{N} u_{id}(x_{ij} - \sum_{k \neq d} u_{ik} a_{kj}).
\]
Experimental Setup

Methods Compared

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional LSA</td>
<td></td>
</tr>
<tr>
<td>Sparse Coding (Code from Lee et. al. 07)</td>
<td></td>
</tr>
<tr>
<td>Latent Dirichlet allocation (LDA) (Code from Blei et. al. 03)</td>
<td></td>
</tr>
<tr>
<td>Sparse LSA</td>
<td></td>
</tr>
<tr>
<td>Nonnegative Sparse LSA (NN Sparse LSA)</td>
<td></td>
</tr>
</tbody>
</table>

Text Classification Data

<table>
<thead>
<tr>
<th>Data Set</th>
<th>N (No. of Documents)</th>
<th>M (Vocabulary Size)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 news group (20NG)</td>
<td>1,425</td>
<td>17,390</td>
</tr>
<tr>
<td>(alt.atheism vs talk.religion.misc)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCV1 (20 classes)</td>
<td>15,564</td>
<td>7,413</td>
</tr>
</tbody>
</table>

Topic-Word Relationship Data

<table>
<thead>
<tr>
<th>Data Set</th>
<th>N (No. of Documents)</th>
<th>M (Vocabulary Size)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIPS Proceedings from 98 to 99</td>
<td>1,714</td>
<td>13,649</td>
</tr>
</tbody>
</table>
Text Classification Performance

20NG

<table>
<thead>
<tr>
<th>Dimension</th>
<th>10</th>
<th>50</th>
<th>100</th>
<th>500</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sparse LSA</td>
<td>1.48</td>
<td>0.80</td>
<td>0.74</td>
<td>0.32</td>
<td>0.18</td>
</tr>
<tr>
<td>NN Sparse LSA</td>
<td>1.44</td>
<td>0.72</td>
<td>0.55</td>
<td>0.31</td>
<td>0.17</td>
</tr>
<tr>
<td>Other Methods</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

20NG: Density of A (%) ($\lambda=0.05$)

RCV1

<table>
<thead>
<tr>
<th>Dimension</th>
<th>10</th>
<th>50</th>
<th>100</th>
<th>500</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sparse LSA</td>
<td>13.52</td>
<td>7.46</td>
<td>7.40</td>
<td>2.71</td>
<td>1.13</td>
</tr>
<tr>
<td>NN Sparse LSA</td>
<td>11.65</td>
<td>4.97</td>
<td>0.40</td>
<td>1.91</td>
<td>0.79</td>
</tr>
<tr>
<td>Other Methods</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

RCV1: Density of A (%) ($\lambda=0.05$)

Conclusion: For large D, the classification performance of Sparse LSA is almost the same as LSA but with a much more sparse projection matrix A.

[Image of bar charts and tables showing classification accuracy for different methods and dimensions.]
Efficiency and Storage

<table>
<thead>
<tr>
<th>20NG</th>
<th>Proj. Time (ms)</th>
<th>Storage (MB)</th>
<th>Density of Proj. Doc. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sparse LSA</td>
<td>0.25 (4.05E-2)</td>
<td>0.6314</td>
<td>35.81 (15.39)</td>
</tr>
<tr>
<td>NN Sparse LSA</td>
<td>0.22 (2.78E-2)</td>
<td>0.6041</td>
<td>35.44 (15.17)</td>
</tr>
<tr>
<td>LSA</td>
<td>31.6 (1.10)</td>
<td>132.68</td>
<td>100 (0)</td>
</tr>
<tr>
<td>Sparse Coding</td>
<td>1711.1 (323.9)</td>
<td>132.68</td>
<td>86.94 (3.63)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RCV1</th>
<th>Proj. Time (ms)</th>
<th>Storage (MB)</th>
<th>Density of Proj. Doc. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sparse LSA</td>
<td>0.59 (7.36E-2)</td>
<td>1.3374</td>
<td>55.38 (11.77)</td>
</tr>
<tr>
<td>NN Sparse LSA</td>
<td>0.46 (6.66E-2)</td>
<td>0.9537</td>
<td>46.47 (11.90)</td>
</tr>
<tr>
<td>LSA</td>
<td>13.2 (0.78)</td>
<td>113.17</td>
<td>100 (0)</td>
</tr>
<tr>
<td>Sparse Coding</td>
<td>370.5 (23.3)</td>
<td>113.17</td>
<td>83.88 (2.11)</td>
</tr>
</tbody>
</table>

Conclusion: Sparse LSA or NN Sparse LSA

- Efficient projection with less time
- Less storage for the projection matrix A
- Sparse projected documents: more efficient for subsequent retrieval tasks, e.g. ranking, text categorization, etc

$D = 1,000, \lambda = 0.05$
Table entry: mean (std)
Topic–Word Relationship

Nonnegative Sparse LSA

<table>
<thead>
<tr>
<th>Topic 1</th>
<th>Topic 2</th>
<th>Topic 3</th>
<th>Topic 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>network</td>
<td>learning</td>
<td>network</td>
<td>model</td>
</tr>
<tr>
<td>neural</td>
<td>reinforcement</td>
<td>learning</td>
<td>data</td>
</tr>
<tr>
<td>networks</td>
<td>algorithm</td>
<td>data</td>
<td>models</td>
</tr>
<tr>
<td>system</td>
<td>function</td>
<td>neural</td>
<td>parameters</td>
</tr>
<tr>
<td>neurons</td>
<td>rule</td>
<td>training</td>
<td>mixture</td>
</tr>
<tr>
<td>neuron</td>
<td>control</td>
<td>set</td>
<td>likelihood</td>
</tr>
<tr>
<td>input</td>
<td>learn</td>
<td>function</td>
<td>distribution</td>
</tr>
<tr>
<td>output</td>
<td>weight</td>
<td>model</td>
<td>gaussian</td>
</tr>
<tr>
<td>time</td>
<td>action</td>
<td>input</td>
<td>em</td>
</tr>
<tr>
<td>systems</td>
<td>policy</td>
<td>networks</td>
<td>variables</td>
</tr>
</tbody>
</table>

LDA

<table>
<thead>
<tr>
<th>Topic 1</th>
<th>Topic 2</th>
<th>Topic 3</th>
<th>Topic 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>learning</td>
<td>figure</td>
<td>algorithm</td>
<td>single</td>
</tr>
<tr>
<td>data</td>
<td>model</td>
<td>method</td>
<td>general</td>
</tr>
<tr>
<td>model</td>
<td>output</td>
<td>networks</td>
<td>sets</td>
</tr>
<tr>
<td>training</td>
<td>neurons</td>
<td>process</td>
<td>time</td>
</tr>
<tr>
<td>information</td>
<td>vector</td>
<td>learning</td>
<td>maximum</td>
</tr>
<tr>
<td>number</td>
<td>networks</td>
<td>input</td>
<td>paper</td>
</tr>
<tr>
<td>algorithm</td>
<td>state</td>
<td>based</td>
<td>rates</td>
</tr>
<tr>
<td>performance</td>
<td>layer</td>
<td>function</td>
<td>features</td>
</tr>
<tr>
<td>linear</td>
<td>system</td>
<td>error</td>
<td>estimated</td>
</tr>
<tr>
<td>input</td>
<td>order</td>
<td>parameter</td>
<td>neural</td>
</tr>
</tbody>
</table>

Conclusion

The topics learned by **NN Sparse LSA** are discriminative while the topics learned by **LDA** are all closely related to **neural network**.
Thank You!