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Supplement 1 

Methods Supplement – Datasets and Computational Methods 
 

1. Gold standard datasets for classification 

Our computational method uses a supervised learning framework to predict the receptor 

interactome, and therefore requires a training or reference set (gold standard set).   

 

A small number of interacting protein pairs have been experimentally validated in small 

scale experimental studies. This set served as a positive set for our learning task. The 

Human Protein Reference Database (HPRD [1,2]) contains 14608 pair-wise protein-

protein interactions (excluding self-interactions). These pairs were retrieved through 

experts’ critical reading of published literature. Among these, 2522 interactions contain at 

least one receptor protein. The list of receptors was retrieved from the HPMR [3]. We use 

these 2522 interactions as our gold standard positive set. Table S1.1 lists the number of 

proteins and number of pairs in each of these two sets.  

 

Table S1.1 Gold standard positive set. The second column lists the number of 

known protein and protein pairs in which at least one of the two proteins is receptor [3]. 

The third column lists the total number of proteins and protein pairs in HPRD [1,2].  

 
 Receptor Related 

(Gold Standard Positive) 

HPRD Full 

(Physical Interactions) 

Number of Protein Pairs 2522 14608 

Number of Proteins 1455 5712 

 
Unlike positive interactions, it is essentially not possible to rule out an interaction 

entirely. Considering the small fraction of interacting pairs in the total set of potential 

protein pairs, we use a random set of protein pairs excluding those known interacting 

pairs as the negative set instead. For the receptor related task, all protein pairs in the 

random negative set contain at least one receptor protein. Based on the histogram 

distribution of the number of interacting partners each receptor has in HPRD (data not 

shown), we estimated that roughly only 1 in ~1000 possible protein pairs is actually 

interacting. Thus, over 99.8% of our random data is indeed non-interacting, which is 

probably better than the accuracy of most training negative datasets. 

 

Combining the positive and negative pair sets, a reference set (also called gold standard 

set) is constructed and used to train/test our learning methods.  

 

 

2. Biological data sources for human protein interactions predictions 

 

In previous evidence integration efforts in yeast and human, data related directly 

and indirectly to protein-protein interactions (PPI) were combined. Due to the low 

coverage of membrane receptors in the currently available high throughput human 
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interaction datasets we could not use direct data as features. However, there are rich 

sources of biological data that might be indirectly related to membrane receptor PPIs. We 

collected feature attributes from eight different feature categories. Each of the collected 

data sets has its own representative form. For example, protein sequence is encoded in the 

form of a character string, which means the order of amino acids as they occur in a 

polypeptide chain. Gene expression data is usually a vector of expression values across 

multiple time points for a specific gene. To combine different forms of information, for 

each data set we determined a natural way to calculate the similarity between two 

proteins with respect to the evidence. Concatenating all these similarity values together 

resulted in a feature vector describing a receptor-protein pair. Biological insight was used 

to optimize the feature. 

 

In the final optimized feature set, the data was encoded as follows:  

 (a). Features 1-3: GO ontology. Three 'similarity' measures were derived from 

Gene Ontology (GO) [55], according to the proteins' positions in the three 

ontology hierarchies: biological process, molecular function and cellular 

component. For each candidate protein pair the feature describes how many times 

both proteins are in the same functional class of the GO slim level [55]. GO slims 

contain a subset of the terms in the full GO. They give a broad overview of the 

ontology content without the detail of the specific fine grained terms. For 

instance, there are 32 classes of cellular component in GO slim. If a candidate pair 

shares 2 of the 32 classes this pair is assigned the value 2 as its GO component 

feature.  

 (b). Feature 4: Tissue distribution. To describe whether two proteins appear in the 

same human tissues or not, we counted the number of tissues in which both are 

expressed and used this number as the feature.  

 (c). Features 5-21: Gene co-expression. Features were derived from sixteen 

expression sets (details in Supplement S1) downloaded from the NCBI Gene 

Expression Omnibus [56] database. Pearson’s correlation between two genes’ 

expression values (normalized first) are calculated and used as features.  

 (d). Feature 22: Sequence. Protein sequence alignment score was used as another 

similarity feature. We used NCBI’s PSI-BLAST [57] to align the two sequences 

of each pair. All BLASTP hits with E-value less than or equal to 0.001 are used. 

The actual E-value was used as the feature.  

 (e). Feature 23-26: Homologous interactions in yeast. Homologous PPIs were 

derived based on if a candidate pair’s homologous proteins bind each other in 

another species or not. The homology between human proteins and yeast proteins 

is based on the sequence alignment scores from PSI-BLAST [57]. The yeast PPI 

data sets used include interactions from the DIP database and four other predicted 

PPI data sets, including computationally predicted co-complex pairs and physical 

binding pairs, which are either predicted by SVM or RF classifiers [39].  

 (f). Feature 27: Domain-domain interactions. These features were derived based 

on the hypergeometric distribution of domain-domain co-occurrences in receptor-

protein pairs. The domain composition evidence of each human protein was 

downloaded from the HPRD [4]. For every interacting
 
protein pair, each domain 

from protein A was connected to the
 
domains in protein B. The frequency of these 



 3 

domain pairs was
 
determined for all interacting protein pairs, as

 
well as all non-

interacting pairs. The
 
hypergeometric distribution was then used to determine 

which domain
 
pairs are enriched in interacting protein pairs (HPRD pairs that are 

not in our gold standard positive set) compared to
 
the non-interacting pairs 

(random pairs not in HPRD and also not in our gold-standard negative set). For a 

new candidate protein pair we used the smallest p-value from their related 

domain-domain pairs as features, the smaller the value the more significant the 

domain pair. 

 

 

Table S1.2 Feature set derived for pairwise protein-protein interaction prediction 

in human. We collected a total of 27 features from 8 different data sources. The second 

column lists the name of the feature source. The third column lists the number of 

attributes from each source. The fourth column describes the value property. The fifth 

column presents the average percentage of pairs for which information is available using 

this feature source. The last column gives the references of each data source. 

 

Source 

Index 

Feature Name Num of 

Feature 

Feature  

Property 

Average 

Coverage 

Ref-

erence 

1 GO Function 1 Non-negative Integer 0.3908 [8] 

2 GO Component 1 Non-negative  

Integer 

0.3627 [8] 

3 GO Process 1 Non-negative Integer 0.3756 [8] 

4 Co-Tissue 1 Non-negative Real 0.5712 [6] 

5 Co-Gene 

Expression 

16 Real between (-1, 1) 0.3401 [5] 

6 BlastP E-value 1 Non-negative Real 1 [9] 

7 Homologous 

protein interactions 

from Yeast 

5 Non-negative Real 1 [9,10,11] 

8 Domain-domain 

Interaction 

1 Non-negative Real 0.3769 [12, 1,2] 

 

 

Most biological datasets are noisy and contain many missing values (Table S1.2). The 

coverage of the 8 groups ranges from 34% for gene expression to 57% for tissue feature 

and reaches 100% only for sequence based features. Concatenating all these features 

together gives us the feature vector describing a protein-protein pair. 
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Table S1.3 Summary of the sixteen gene expression data sets we 

used. All were retrieved from the GEO [5] database.  

 

 

Sample 

Size 

Set Summary  GDS No. 

120 Acute lymphoblastic leukemia treatment responses  GDS330 
66 B-cells and acute renal allograft rejection  GDS365 

173 Multiple myeloma and bone lesions  GDS531 
75 Smoking-induced changes in airway transcriptome  GDS534 

158 Large-scale analysis of the human transcriptome (HG-

U133A)  

GDS596 

42 T lymphocyte activation gene identification  GDS601 
91 Lung neuroendocrine tumor classification  GDS619 
37 Heart failure arising from different etiologies  GDS651 
87 Acute myeloid leukemia cell differentiation induced by 

various drugs  

GDS715 

60 Estrogen positive breast cancer recurrence during 

tamoxifen therapy: whole tissue tumor  

GDS806 

60 Estrogen positive breast cancer recurrence during 

tamoxifen therapy: microdissected tumor  

GDS807 

44 Adult acute myeloid leukemia: bone marrow and 

peripheral blood expression profiles (SHCZ)  

GDS842 

49 Adult acute myeloid leukemia: bone marrow and 

peripheral blood expression profiles (SHDJ)  

GDS843 

41 Kidney transplant response to calcineurin inhibitor-free 

immunosuppression using sirolimus  

GDS987 

35 Normal tissues of diverse types (SHBW)  GDS1085 
38 Normal tissues of diverse types (SHCN)  GDS1086 
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3.  The random forest classifier  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The Random Forest (RF) [38] consists of a collection of independent decision 

trees. Decision trees are grown using a training set. At each node the algorithm searches 

for an attribute that best separates all instances in that node. If the attribute perfectly 

classifies all instances so that all instances in one of the two descendent nodes have the 

same label then this node becomes a terminal node with the appropriate label. Otherwise, 

the above process is repeated until all instances are at terminal nodes. 

In the RF, each tree is grown on a bootstrap sample of the training set. For each 

node in the tree the split is chosen from a fixed number of features that are selected at 

random out of the total attributes. RF performs better than a single decision tree because 

RF can utilize randomization and redundant features. This is important if a pair has 

values for one redundant feature but not the other (many biological datasets are expected 

to be correlated and have noise and missing values). RF classifier used in this work was 

implemented by modifying the Berkeley Random Forest package [38]. Two hundred 

trees were grown for training. For the number of variables randomly selected at each 

node we used the default value that was equal to the square root of the feature dimension. 

 

 

From various biological data sources, we construct an M-dimensional input feature vector 

X for every pair of proteins. Given these vectors, the task of receptor interactome 

prediction can be presented as a binary classification problem. That is, given X does this 

pair interact (Y=1) or not (Y= -1).  

 

Figure S1.1 Random forest classifier for PPI prediction. To generate the 
random forest, we select for each tree a bootstrap sample of the training data. Next, 
for every node in these trees a random subset of the attributes is chosen and the 
attribute achieving the best division is selected. Once model trees are grown, protein 
pairs are propagated down and the 'votes' from all trees are used to compute 
interaction scores. [13] 
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Decision tree:  A decision tree is a binary tree with nodes corresponding to attributes in 

the input vectors. Tree nodes are used to determine how to propagate a given attribute set 

down the tree. Nodes can either be threshold nodes or categorical nodes. Decision trees 

also contain terminal (or leaf) nodes that are labeled as -1 or 1. In order to classify a 

protein pair as interacting or not, this pair is propagated down the tree and decision is 

made based on the terminal node that is reached. Decision trees are grown using a 

training set. At each node the algorithm searches for an attribute that best separates all 

instances in that node. If the attribute perfectly classifies all instances so that all instances 

in one of the two descendent nodes have the same label then this node becomes a 

terminal node with the appropriate label. Otherwise, the above process is repeated until 

all instances are at terminal nodes.  

 

Random forest: The Random Forest (RF [13]) classifier is one of the most effective and 

widely used machine learning techniques. RF uses a collection of independent decision 

trees instead of one tree, where each tree grown on a bootstrap sample of the training set 

(this helps in avoiding overfitting). A number m << M (M is the total number of 

attributes) is specified, and for each node in the tree, the split is chosen from m variables 

that are selected at random out of the total M attributes. To classify a new example, put 

its feature vector down each of the trees in the forest. Each tree gives a classification, and 

the tree "votes" for that class. The forest chooses the classification having the most votes 

(over all the trees in the forest). RF used in this paper was implemented by using the 

Berkeley Random Forest package [13]. One of the main reasons random forests perform 

better than a single decision tree is their ability to utilize redundant features and the 

independence of the different classifiers (trees) used.  

 

Feature importance estimation using Gini criterion: The RF classifier uses a splitting 

function called the Gini index to determine which attribute to split on during the tree 

learning phase. The Gini index measures the level of impurity / inequality of the samples 

assigned to a node based on a split at its parent. Let p represent the fraction of interacting 

pairs assigned to node m and 1-p the fraction of the non interacting pairs. Then, the Gini 

index at node m is defined as: )1(2 ppGm  . The purer a node is, the smaller the Gini 

value. Every time a split of a node is made using a certain feature attribute, the Gini value 

for the two descendant nodes is less than the parent node. The decrease in the sum of 

these Gini values (from parent to children) for each feature over all trees in the forest 

provides a simple and reliable estimate of the feature importance for this prediction task.  

 

4. Performance evaluation  

Comparison to other classifiers: We compared the RF classifier with three other 

popular classifiers: Naïve Bayes (NB), Logistic Regression (LR) and Support Vector 

Machine (SVM).  (1). Naïve Bayes (NB) is a probabilistic classifier that uses the joint 

probabilities of features and categories to estimate the conditional probabilities of 

categories given feature evidence. The NB classifier was obtained from the WEKA 

machine learning [15] tool box using supervised discretization to process numeric 

attributes.  (2). Logistic Regression (LR) is a generalized linear statistical model that can 

predict a discrete outcome from a set of variables that may be continuous, discrete, 
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dichotomous, or a mixture of these types. The LR classifier was also obtained from the 

WEKA tool box and it uses a ridge estimator for building a multinomial LR model.  (3). 

Support Vector Machines (SVM) is a popular learning approach for solving two-class 

pattern recognition problems. It is based on the structure risk minimization principle for 

which error-bound analysis has been theoretically motivated. We used the SVMLight tool 

box with linear kernel [12], an implementation of SVMs in C. (4). For RF, we grew 200 

trees during each training procedure and used the square root of the feature dimension 

(default) as the number of attributes (m) to select from for each node. 

 

Training/testing procedures: Performance comparisons were based on the following 

training and testing procedures. Parameter optimization was carried out in all cases using 

separate training and validation datasets. We randomly sampled a training set containing 

80,000 protein pairs to learn the prediction model. Then we sampled a test set (another 

80,000 pairs) from the remaining protein pairs, and used the trained model to evaluate the 

performance of the classifier. The above steps were repeated 12 times for each classifier 

and average values are reported. Based on the estimated ratio (1:1000 true to negative 

interactions) we have ~80 positive PPIs in each test set. For the training set, we down-

sampled [18,19] the negative examples in a pre-processing step. We tested different ratios 

for training the classifiers. Regardless of the ratio of the training data, the ratio of the test 

data was always fixed at 1 to 1000. The best ratio for training turned out to be 1 to 100,   

which resulted in roughly ~800 positive examples in each training run. The down-

sampling strategy addresses the problem of too few positive examples in the training set. 

 

Evaluation measures: We used three well established measures to evaluate prediction 

performance: Prediction accuracy versus Sensitivity (also called Precision vs. Recall) 

curves and full or partial areas under Receiver Operator Characteristic (AUC) curves 

[16,17].  

 

 Prediction accuracy vs. Sensitivity curve – This curve is also called Precision vs. 

Recall curve in information retrieval [16]. Prediction accuracy (Precision) refers to 

the fraction of interacting pairs predicted by the classifier that are truly interacting. 

Sensitivity (Recall) measures how many of the known pairs of interacting proteins 

have been identified by the learning model. The Prediction accuracy vs. Sensitivity 

(Precision vs. Recall curve) is then plotted for different cutoffs on the predicted score. 

 AUC scores - Receiver Operator Characteristic (ROC) [17] curves plot the true 

positive rate against the false positive rate for different cut-off values of the predicted 

score. ROC curves therefore measure the trade-off between sensitivity and specificity. 

The area under the ROC curve (AUC) is commonly used as a summary measure of 

diagnostic accuracy. It can take values from 0.0 to 1.0. AUC values are interpreted as 

the probability that a randomly selected "event" will be regarded with greater 

suspicion (in terms of its continuous measurement) than a randomly selected "non-

event". In some cases, rather than looking at the area under the entire ROC curve, it is 

more informative to only consider the area under a portion of the curve. 

 Partial AUC scores - In PPI prediction, we are interested in performance of our 

models under conditions where the false positive rate is very low. Other false positive 

rates, even those that seem low such as FP = 0.1 are not meaningful for the task we 



 8 

consider. For such a FP rate, a testing set of size 80,000 will yield roughly 8000 

negative misclassified samples. Even if the true positive examples (about 80 

examples) are all correctly classified (which is often impossible), the precision of this 

prediction is just 0.01. AUC n (where n is an integer) reports the percentage of 

recovered interactions up to n false positives.  

 

Investigating of different gold standard positive or different gold standard negative: 

Please see Supplementary S2 for our comparisons.  
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