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Abstract

Spark98 is a collection of sparse matrix kernels for shared memory and message passing systems. Our aim is to
provide system builders with a set of example sparse matrix codes that are simple, realistic, and portable. Each
kernel performs a sequence of sparse matrix vector product operations using matrices that are derived from a family
of three-dimensional finite element earthquake applications. We describe the computational structure of the kernels,
summarize their performance on a parallel system, and discuss some of the insights that such kernels can provide. In
particular we notice that efficient parallel programming of sparse codes requires careful partitioning of data references,
regardless of the underlying memory system. So on one hand, efficient shared memory programs can be just as difficult
to write as efficient message passing programs. On the other hand, shared memory programs are not necessarily less
efficient than message passing programs.

Effort sponsored in part by the Advanced Research Projects Agency and Rome Laboratory, Air Force Materiel Command,
USAF, under agreement number F30602-96-1-0287, in part by the National Science Foundation under Grant CMS-9318163, and in
part by a grant from the Intel Corporation. The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon. The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the
Advanced Research Projects Agency, Rome Laboratory, or the U.S. Government. Author’s email address: droh@cs.cmu.edu



Keywords: benchmark, finite element, parallel computing, sparse matrix



Contents

1 Introduction 1

2 The Spark98 meshes 3

3 The Spark98 programs 4
3.1 SMV: baseline sequential program 6
3.2 LMV: shared memory program using locks 7
3.3 RMV: shared memory program using reductions 7
3.4 MMV: message passing program 8
3.5 HMV: hybrid message passing/shared memory program 10

4 Discussion 11

5 Concluding remarks 13

i



About this Report

The Spark98 kernels (including an electronic copy of this report) can be obtained from the Web page
at www.cs.cmu.edu/˜quake/spark98.html.

ii



1 Introduction

The multiplication of a sparse matrix by a dense vector is central to many computer applications, including
scheduling applications based on linear programming and applications that simulate physical systems. For
example, the Quake project at Carnegie Mellon University uses a sequence of more than 16,000 sparse
matrix-vector product (SMVP) operations to simulate the motion of the ground during the first 40 seconds
of an aftershock of the 1994 Northridge earthquake in the San Fernando Valley [4, 3]. The sparse matrix
consists of over 13 million rows and 180 million nonzero entries, where each nonzero entry is a dense
3 3 submatrix of double precision floating point numbers. Repeated executions of a single SMVP routine
account for over 70% of the simulation’s computation time.

A sparse computation like the SMVP is fundamentally different from a dense matrix computation
because its memory reference pattern is irregular and depends on the nonzero structure of the sparse matrix,
which in turn depends on the physics of the underlying system and the goals of the simulation. For example,
the number and distribution of mesh nodes in an earthquake simulation is determined by both the density of
the soil and the frequencies of interest to the user.

The data-dependent nature of sparse computations presents difficulties for system builders who need
access to sparse codes in order to evaluate design options. A kernel must be simple enough that designers
can understand it without having to wade through masses of obscure code. If the code is simple then it can
be modified, and thus becomes a useful tool for experimentation. A kernel must also be realistic in that it
represents a larger class of applications. Finally, a kernel must also be portable so that it can be run without
modification on a large number of platforms.

Existing sparse matrix collections like the Harwell-Boeing suite [8] are important tools for designers
of numerical algorithms and partitioning algorithms. And existing software libraries that support sparse
matrix computations are useful tools for application programmers [2, 7, 11]. However, to date the designers
of parallel systems have not had access to a set of public domain sparse matrix kernels that are simple,
realistic, and portable. Towards that end, we introduce the Spark98 kernels, a set of 10 SMVP kernels for
shared memory and message passing systems.1 We expect that builders of cache coherent shared memory
multiprocessors [15, 6], distributed memory systems [22], message passing libraries [18], and distributed
shared memory libraries [1, 25] will find that the Spark98 kernels are useful tools for understanding the
performance of irregular codes on their systems. In our own experience with the Spark98 kernels we notice
that efficient parallel programming of sparse codes requires careful partitioning of data references, regardless
of the underlying memory system. Because equal care must be given to the partitioning of references, we
find that for sparse codes, efficient shared memory programs are just as difficult to write as efficient message
passing programs. On the other hand, shared memory programs are not necessarily less efficient than
message passing programs.

Each Spark98 kernel consists of a C program and a partitioned finite element mesh, which is described
by an input file. There are five programs (SMV, LMV, RMV, MMV, and HMV) and two meshes (sf10 and sf5),
for a total of ten kernels, which are summarized in Figure 1. In the figure, is the number of nodes, is
the number of nonzero entries in the corresponding sparse matrix (where each entry is a 3 3 submatrix of
double precision floating point numbers), and is the number of processing elements (PEs). (We use the
term processing element instead of the more common term node to avoid confusion with the nodes of finite
element meshes.) For reference, all of the symbols used in this paper are summarized in Figure 2.

1Spark is a loose acronym for “sparse kernels”, but actually the name reflects our hope that the kernels will spark interest in
sparse computations among system designers.
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Kernels based on mesh sf10 ( 7 294, 97 138)
Kernel name Description Number of PEs ( )

SMV/sf10 sequential 1
LMV/sf10 parallel, shared memory using locks 1
RMV/sf10 parallel, shared memory using reductions 1
MMV/sf10 parallel, message passing 1 2 4 8 128
HMV/sf10 parallel, hybrid shared memory and message passing 1 2 4 8 128

Kernels based on mesh sf5 ( 30 169, 410 923)
Kernel name Description Number of PEs ( )

SMV/sf5 sequential 1
LMV/sf5 parallel, shared memory using locks 1
RMV/sf5 parallel, shared memory using reductions 1
MMV/sf5 parallel, message passing 1 2 4 8 128
HMV/sf5 parallel, hybrid shared memory and message passing 1 2 4 8 128

Figure 1: The Spark98 kernels.

Symbol Description

number of subdomains or PEs
number of locks
nodes in mesh (and rows in matrix)
edges in mesh (including self-edges)
nonzero 3 3 submatrices, assuming nonsymmetric storage.
nodes in mesh (and rows in matrix) on subdomain
edges in subdomain (including self-edges)
nonzero 3 3 submatrices in the matrix on subdomain , assuming nonsymmetric storage

Figure 2: Summary of symbols used in this paper.

Each Spark98 program consists of roughly 1 000 lines of code, most of which serve to parse the input
files; the actual SMVP code is quite small. Kernels such as LMV and RMV use trivial partitioning algorithms
that are computed at runtime, and thus can run on an arbitrary number of PEs, as indicated in the rightmost
column of Figure 1. Other kernels like MMV and HMV rely on a partition that is precomputed offline and
stored in a file. For these kernels we provide precomputed partitions for 1 2 4 8 64 128 PEs.

The Spark98 meshes are called sf10 and sf5. They were developed by the Quake project at Carnegie
Mellon to model earthquake-induced ground motion in the San Fernando Valley of Southern California. Each
mesh is an unstructured three-dimensional finite element model of the earth underneath the San Fernando
Valley. Sf10 is a small-sized mesh ( 7 294, 97 138) and sf5 is moderate-sized ( 30 169,

410 923).

The Spark98 programs are written in ANSI C and consist of a baseline sequential program (SMV) and
four parallel programs (LMV, RMV, MMV, and HMV). Each program computes a sequence of SMVP pairs,

followed by , where and are symmetric sparse matrices with identical
nonzero structures, and , , , and are 1 dense vectors. Each vector entry is a 3 1 subvector
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of doubles. Each of the nonzero matrix entries is a 3 3 submatrix of doubles. In order to conserve
precious memory, matrices are stored in a compressed sparse row (CSR) format where only the submatrices
along the diagonal and in the upper triangle are actually stored in memory. As we will see in Section 3,
exploiting symmetry in this way makes the kernels much harder to parallelize because each diagonal nonzero
submatrix contributes to two subvectors of the output vector.

LMV and RMV are simple parallel shared memory programs based on locks and reductions, respectively.
Each uses a trivial partitioning algorithm whereby each thread is assigned a contiguous set of matrix rows
with roughly the same number of nonzeros. For LMV, each thread updates a shared output vector , which
is protected by locks. For RMV, each thread updates its own private copy of the output vector. These private
vectors are then summed to produce the final result vector . Because of the simple partitioning algorithm,
both LMV and RMV can run on an arbitrary number of processing elements (PEs).

MMV is a parallel message passing program that uses a partition precomputed by a sophisticated
geometric recursive bisection mesh partitioning algorithm [17]. HMV is a hybrid shared memory program
that employs the same mesh partition as MMV, but uses shared memory copy operations rather than sends
and receives to transfer data. Precomputed partitions are supplied for these kernels for 1 2 4 128 PEs.
The shared memory programs can be compiled to use either the Posix or SGI thread interfaces. The message
passing program is based on the industry standard MPI interface [18].

In sum, Spark98 is a set of sparse matrix kernels that are designed for system builders who want to
evaluate the performance of sparse codes on their systems. The kernels are small and easy to understand,
realistic in that the underlying meshes were developed by an application group, and portable in that they are
written in C using standard shared memory and message passing interfaces.

The remainder of the paper is organized as follows. Sections 2 and 3 describe the Spark98 meshes and
programs in more detail. Section 4 summarizes the performance of the kernels on some parallel systems
and discusses some of the insights from using the kernels.

2 The Spark98 meshes

The Spark98 kernels are based on a pair of three-dimensional unstructured finite element meshes, called
sf10 and sf5, that model a volume of earth under the San Fernando Valley roughly 50 km x 50 km x 10 km
in size [16]. They are unstructured in the sense that the neighbors of a node cannot be determined implicitly
and must be determined explicitly from adjacency information stored in memory. Sf10 and sf5 are artifacts
of the CMU Quake project, which has developed computer techniques for predicting earthquake-induced
ground motion in large basins. The “sf” in the names is an abbreviation for San Fernando, and the digit
indicates the highest frequency seismic wave (in seconds) that the mesh is able to resolve. For example,
sf10 resolves waves with 10 second periods and sf5 resolves waves with 5 second periods. The sf10 mesh
is illustrated in Figure 3. Beverly Hills is in the lower right-hand corner. The town of San Fernando is in
the midst of the darkly shaded region near the upper left corner.

Sf10 and sf5 are composed of different sized tetrahedra (i.e., pyramids with triangular bases). Each
tetrahedron is called an element, and the vertices of the tetrahedra are called nodes. Edges are undirected,
and each node has an implied self-edge. Figure 4 summarizes the basic topological properties of the Spark98
meshes and their corresponding sparse matrices.

The Spark98 meshes are extremely sparse, with only 13-14 nonzero submatrices per row on average
and 30 nonzero submatrices per row at most. As we will see in the next section, the number of nonzero
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Figure 3: The Spark98 10-second San Fernando mesh.

Mesh Entities Nonzero submatrices
Mesh Description Nodes ( ) Edges ( ) Elements total( ) avg/row max/row

sf10 10-second San Fernando mesh 7,294 52,216 35,025 97,138 13 26
sf5 5-second San Fernando mesh 30,169 220,546 151,239 410,923 14 30

Figure 4: Basic properties of the Spark98 meshes and their matrices.

submatrices in each row determines the trip count of the inner loop of the basic SMVP algorithm. Sparse
rows result in short inner loops, which are hard to pipeline or vectorize.

Partitioned versions of the Spark98 meshes are provided for 1 2 4 64 128 PEs. These partitioned
meshes provide a wide range of computation to communication ratios (i.e., the number of floating point
operations per PE divided by the number of communicated words per PE), ranging from 500:1 for small
numbers of PEs down to 50:1 for large numbers of PEs [19]. The partitioned meshes also provide a
challenging communication pattern for the SMVP that lies somewhere between a simple nearest neighbor
pattern and a complete exchange [13]. See [19] for a complete characterization of the computation and
communication properties of the sf10 and sf5 partitioned meshes, along with some even larger meshes that
could appear in future versions of the Spark kernels.

3 The Spark98 programs

Each of the five Spark98 programs executes a sequence of SMVP pairs of the form
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<read input mesh>
<generate sparse matrices and vectors>
loop i = 1 to iters

w = K * v
w’ = K’ * v’

endloop

where and are sparse symmetric stiffness matrices and , , , and are dense vectors. Each
iteration consists of a pair of SMVP operations, rather than a single SMVP operation, to approximate the
worst case cache behavior of the SMVP when it is used in a real finite element application. In a real
application, SMVP operations are separated by references to other data structures and I/O operations which
can replace the cache lines associated with the matrix. So in the worst case, each SMVP operation in the
real application must reload its data into the cache, and alternating SMVP operations with different sparse
matrices in the kernels approximates this behavior.

A stiffness matrix can be likened to an adjacency matrix of the nodes of the mesh; contains a 3 3
submatrix for each pair of nodes connected by each of the edges of the mesh (including self-edges). If the
mesh has nodes, then has dimension 3 3 and each vector has dimension 3 1. (The constant
factors of 3 are due to the fact that the underlying quake simulations model the displacement of the ground
in each of three directions.) All scalars are double-precision floating-point numbers.

A stiffness matrix consists of 2 nonzeros, where and are the number of edges and
nodes respectively in the underlying mesh. However, because simulations are often memory bound, the
matrix coefficients are stored in a symmetric compressed sparse row (CSR) format where only the nonzero
submatrices on the diagonal and in the upper triangle are actually stored in memory. These nonzero
submatrices are stored row-wise in an -submatrix coefficient vector .

The nonzero structure of the stiffness matrix is represented by two integer vectors, and .
is an -element vector such that is the column number of submatrix , and is an
1 -element vector such that is the starting position in of row . marks the

end of the last row and is always set to 1. Note that while each Spark98 kernel requires two distinct
coefficient vectors, one for and the other for , it requires only a single pair of and vectors
because and have identical sparsity structure.

Figure 5 shows the sequential SMVP routine that lies at the heart of all of the Spark98 kernels. Note
that local smvp() actually peforms the operation rather than , because the former is
easier to implement than the latter. However, is always initially zero, so the effect is the same.

The pattern of data references in local smvp() is ideal in some ways and less than ideal in others. On
the one hand, it is ideal in the sense that it scans sequentially through the coefficient vector (indexed
by variable Anext in line 25 of Figure 5). The sequential access pattern provides good spatial locality and
minimizes memory bank conflicts in systems with interleaved memory systems.

On the other hand, the access pattern is less than ideal in the following sense. Suppose we are
manipulating some submatrix during the course of the sequential access of . Since we are using a
storage scheme that exploits symmetry, then we must be sure to use to record the contribution of both

and to the result. In particular, (lines 18-20, 27-29) and
(lines 22-24). The important implication is that some sets of references scan through and sequentially
(i.e., the references to and ), but other accesses are irregular (i.e., the references and ). The
impact of the irregular accesses of and is tempered somewhat by the fact that each vector entry is
really three numbers (recall that the underlying simulation has three degrees of freedom) and thus there is a
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1 void local smvp(int nodes, double (*A)[3][3], int *Acol, int *Aindex,
2 double (*v)[3], double (*w)[3], int firstrow, int numrows)
3 int i;
4 int Anext, Alast, col;
5 double sum0, sum1, sum2;
6
7 for (i = firstrow; i < (firstrow + numrows); i++)
8 Anext = Aindex[i];
9 Alast = Aindex[i + 1];
10
11 sum0 = A[Anext][0][0]*v[i][0] + A[Anext][0][1]*v[i][1] + A[Anext][0][2]*v[i][2];
12 sum1 = A[Anext][1][0]*v[i][0] + A[Anext][1][1]*v[i][1] + A[Anext][1][2]*v[i][2];
13 sum2 = A[Anext][2][0]*v[i][0] + A[Anext][2][1]*v[i][1] + A[Anext][2][2]*v[i][2];
14
15 Anext++;
16 while (Anext < Alast)
17 col = Acol[Anext];
18 sum0 += A[Anext][0][0]*v[col][0] + A[Anext][0][1]*v[col][1] + A[Anext][0][2]*v[col][2];
19 sum1 += A[Anext][1][0]*v[col][0] + A[Anext][1][1]*v[col][1] + A[Anext][1][2]*v[col][2];
20 sum2 += A[Anext][2][0]*v[col][0] + A[Anext][2][1]*v[col][1] + A[Anext][2][2]*v[col][2];
21
22 w[col][0] += A[Anext][0][0]*v[i][0] + A[Anext][1][0]*v[i][1] + A[Anext][2][0]*v[i][2];
23 w[col][1] += A[Anext][0][1]*v[i][0] + A[Anext][1][1]*v[i][1] + A[Anext][2][1]*v[i][2];
24 w[col][2] += A[Anext][0][2]*v[i][0] + A[Anext][1][2]*v[i][1] + A[Anext][2][2]*v[i][2];
25 Anext++;
26
27 w[i][0] += sum0;
28 w[i][1] += sum1;
29 w[i][2] += sum2;
30
31

Figure 5: Spark98 SMVP routine.

limited amount of spatial locality. Still, these irregular accesses are a fundamental reason that the SMVP is
a challenging and interesting computational kernel.

The SMVP becomes much easier to compute if we do not exploit symmetry and instead store the entire
matrix. In this case, each row of the matrix contributes to a unique subvector of . If we assign each thread
a disjoint set of matrix rows, then there is no contention among either the reads of or the writes to , and
the only possible contention occurs during the reads of . However, experience with applications groups
makes it very clear that memory efficiency is crucial, and thus the Spark98 kernels are based on the more
computationally interesting representation that exploits symmetry.

3.1 SMV: baseline sequential program

SMV is the baseline sequential program. Each SMVP is performed with the following procedure
calls:

zero vector(w, 0, n);
local smvp(n, A, Acol, Aindex, v, w, 0, n);

Zero vector(w, j, m) zeros out subvectors 1 , i.e., the first subvectors of starting
at position .
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Speedup numbers for the parallel Spark98 programs should always be reported with respect to SMV, not
the single-PE version of the parallel program.

3.2 LMV: shared memory program using locks

LMV is a parallel program based on a shared memory model, where a program consists of a collection of
threads that share a single address space. The number of threads is arbitrary and can be specified at runtime.
Each thread is assigned a disjoint and contiguous set of rows of the sparse matrix so that each set has
roughly the same number of nonzeros. Since there are on the order of thousands of rows and only tens of
nonzeros per row, it is trivial to generate good partitions. Thread performs the SMVP on its set of rows,
using the following call sequence:

barrier();
zero vector(w, firstrow[i], numrows[i]);
barrier();
local smvp(n, A, Acol, Aindex, v, w, firstrow[i], numrows[i]);

Firstrow[i] and numrows[i] describe the set of rows assigned to thread , barrier() performs a barrier
synchronization among all of the threads. Since different threads might update the same subvector of , a
set of 0 locks guarantees consistent updates of :

setlock(col % L);
22 w[col][0] += A[Anext][0][0]*v[i][0] + ...
23 w[col][1] += A[Anext][0][1]*v[i][0] + ...
24 w[col][2] += A[Anext][0][2]*v[i][0] + ...

unsetlock(col % L);

setlock(i % L);
27 w[i][0] += sum0;
28 w[i][1] += sum1;
29 w[i][2] += sum2;

unsetlock(i % L);

If lock is unset, then setlock(k) atomically sets lock and returns. Otherwise, setlock(k) waits until the
lock becomes unset, then atomically sets it. Unsetlock(k) unsets lock . In general, more locks means fewer
synchronizations between threads, with the best case being a unique lock for each subvector. However, most
systems limit the number of locks. Thus the number of locks can be specified at runtime.

It is interesting to observe that the only reason we need locks in the first place is because we are exploiting
the symmetry of the coefficient matrix by storing only the diagonal and upper triangle. If we were to store the
entire sparse matrix, then each thread would update a disjoint portion of the result vector, and the program
would be trivially parallelized. This is a classic space/time tradeoff that makes the symmetric version of the
SMVP much more interesting than the usual nonsymmetric case.

3.3 RMV: shared memory program using reductions

A simple modification to the LMV program eliminates the need for the locks, but increases the memory
requirement and introduces an extra reduction operation. The idea is for each thread to update its own
private vector. These private vectors are then summed (reduced) to form the final result vector .

barrier();
zero vector(privatew[i], 0, n);
local smvp(n, A, Acol, Aindex, v, privatew[i], firstrow[i], numrows[i]);
barrier();
add vectors(privatew, w, firstrow[i], numrows[i]);
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1 void add vectors(double (**tmpw)[3], double (*w)[3], int firstrow, int numrows)
2 int i, j;
3 double sum0, sum1, sum2;
4
5 for (i = firstrow; i < (firstrow+numrows); i++)
6 sum0 = sum1 = sum2 = 0.0;
7 for (j=0; j< threads; j++)
8 sum0 += tmpw[j][i][0];
9 sum1 += tmpw[j][i][1];
10 sum2 += tmpw[j][i][2];
11
12 w[i][0] = sum0;
13 w[i][1] = sum1;
14 w[i][2] = sum2;
15
16

Figure 6: Reduction operation for RMV.

Privatew is an array of private vectors, where are summed by the add vectors() routine to produce
the final result vector . The code for the add vectors() routine is shown in Figure 6. Notice that each thread
sums the subvectors in rows of private vectors, for a total of subvectors per thread, independent of
the number of threads. This suggests that RMV will not scale well as we increase the number of threads.

3.4 MMV: message passing program

The MMV program is based on a message passing model where PEs have private memories and use standard
MPI message passing primitives to transfer data between the memories [18]. Unlike LMV and RMV, which
are parallelized at runtime using a trivial partitioning algorithm, MMV is parallelized at compile time by
a sophisticated partitioning algorithm that partitions the mesh into disjoint sets of tetrahedral elements.
Each such set is called a subdomain and is assigned to exactly one PE (we use the terms subdomain, PE, and
thread interchangeably). The partitioner is based on a recursive geometric bisection algorithm that divides
the elements equally among the subdomains while attempting to minimize the total number of nodes that
are shared by subdomains, and hence minimize the total communication volume [17, 21]. The algorithm
enjoys provable upper bounds on the volume of communication, and in practice [10] generates partitions
that are comparable to those produced by other modern partitioners [5, 9, 12, 20, 23].

To compute on a set of PEs, we must consider the data distribution by which vectors and
matrices are stored. The vectors and are stored in a distributed fashion according to the mapping of
nodes to PEs induced by the partition of elements among PEs. If a node resides in several PEs (because
is a vertex of several elements mapped to different PEs), the values and are replicated on those PEs.
The matrix is distributed so that resides on any PE on which nodes and both reside. Figure 7
demonstrates this method of distributing data.

Given this method of distributing data, the multiplication is performed in two steps: (1)
Computation step: each PE independently computes a local matrix-vector product over the subdomain that
resides on that PE. (2) Communication step: PEs that share nodes communicate and sum their nodal
values into correct global values for each node. In Figure 7, PEs 1 and 2 must exchange the values of the
interface nodes 4, 5, and 6. This exchange-and-add process is also referred to as full assembly. The code
for each PE has the following form:
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1

2

4

5

3 6

4

8

7

5

6

   1 2 3 4 5 6
1  x x x x
2  x x x x x x
3  x x x     x
4  x x   x x
5    x   x x x
6    x x   x x

PE 1 PE 2

    4 5 6 7 8
4   x x   x
5   x x x x
6     x x x x
7   x x x x x
8       x x x

K1 K2

Figure 7: A finite element mesh and corresponding stiffness matrix , distributed among two PEs. Xs
represent nonzero 3 3 submatrices. Note that some nodes are shared by both PEs, as are some submatrices
(corresponding to shared edges).

zero vector(w, 0, n);
local smvp(n, A, Acol, Aindex, v, w, 0, n);
full assemble(w);

The variable on PE is the number of nodes assigned to PE . Similarly, the vector holds the
nonzero submatrices of sparse coefficient matrix that are assigned to PE .

All communication between PEs occurs during the full assemble() routine, which resolves the values of
the interface nodes using MPI message passing primitives. Full assemble() has access to communication
schedules on each PE that tell it which nodes are shared with other PEs, which PEs those nodes are shared
with, and how to map between nodes and values included in each message.

Full assemble() consists of two steps. Step 1: After an initial barrier synchronization (to ensure that the
previous computation step has finished on each PE), each PE posts an asynchronous receive operation for
each message that it expects to receive from other PEs. Messages are maximally aggregated, and thus each
PE receives at most one message from any other PE. The asynchronous receive operations are non-blocking,
and their purpose is to tell the message passing system where to store arriving messages in user memory.
Each message is stored in its own memory; messages do not share storage. Step 2: After another barrier
synchronization (to ensure that all PEs have posted their receive operations), each PE sends a message to
every PE with which it shares mesh nodes. After the messages are sent, each PE waits for all of the expected
messages to arrive, and then sums the values in the messages into the appropriate nodal values. This two-step
communication pattern, which is an example of deposit model communication [24], ensures that user-level
memory exists for every message and thus avoids unnecessary copying by the message passing system.
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3.5 HMV: hybrid message passing/shared memory program

MMV is distinguished by the aggressive way that it partitions its data references. HMV is a hybrid shared
memory program that achieves an equivalent effect by using arrays to simulate the private local data
structures. For example, the local coefficient matrix on PE in the MMV message passing program
becomes in the shared memory program. Similarly, the number of nodes on PE becomes . If
we use shared memory copy operations instead of message passing transfers to implement the full assembly
phase, then the SMVP on each thread has the following form:

zero vector(w[i], 0, n[i]);
local smvp(n[i], A[i], Acol[i], Aindex[i], v[i], w[i], 0, n[i]);
shmem full assemble(w, i);

HMV is a hybrid in the sense that it combines aggressive partitioning of references from the message
passing program with the shared memory mechanism for the full assembly step.

For both MMV and HMV, the computational load on each PE (or thread) is proportional to the number of
nonzero submatrices assigned to each PE. If there are edges and nodes assigned to subdomain , then
there are a total of 2 nonzero submatrices. Since each nonzero submatrix requires a 3 3
dense matrix-vector product operation, subdomain performs a total of 18 floating point operations.
Figure 8 shows the distribution of nonzeros for partitioned meshes distributed with the Spark98 kernels.
However, since symmetry is exploited in the implementation, only nonzero submatrices are actually
stored in memory.

In Figure 8, we see that the load is reasonably well distributed for smaller numbers of processors, but that
for larger numbers of processors, the load between two PEs can differ by as much as 20%. This imbalance,
which is due to the fact that the partitioner distributes mesh elements rather than mesh edges, highlights
an interesting tradeoff. On the one hand, if the partitioner distributes mesh elements, then the local sparse
matrix coefficients can be generated independently on each PE using legacy sequential code. On the other
hand, the amount of work on each processor is more directly related to the number of nonzeros on each
processor than the number of elements, which suggests that the partitioner should distribute mesh edges
rather than mesh elements. The Quake project opted to simplify the generation of the local stiffness matrices
by distributing mesh elements. This is the approach we have taken with the Spark98 kernels, at the cost of
non-optimal load balancing.

Another important mesh property is the number of nonzero submatrices per row, which determines the
length of the inner loop of the local SMVP routine. Longer inner loops are generally more efficient because
the loop and pipeline overheads can amortized better. The statistics for the partitioned meshes distributed
with the Spark98 kernels are shown in Figure 9, assuming nonsymmetric storage. The important point about
these numbers is that they show us how sparse the matrices really are: no row in any matrix has more than
30 nonzero submatrices, and on average has a paltry 13.

The duration of the communication phase is determined by both the number and size of the messages
transferred by each PE. These statistics for the partitioned meshes distributed with the Spark98 kernels are
summarized in Figures 10 and 11. The interesting point is that the communication phase tends to consist
of a large number of fairly short messages. Thus, message overhead matters, and we cannot count on huge
messages to amortize this cost.
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subdomains sf10 sf5

1 97,138 410,923
min 48,488 207,201

2 avg 49,493 208,226
max 49,498 209,252
min 25,043 104,584

4 avg 25,218 105,522
max 25,403 107,135
min 12,849 52,609

8 avg 13,087 53,930
max 13,225 54,740
min 6,608 26,927

16 avg 6,819 27,604
max 7,108 28,227
min 3,447 13,953

32 avg 3,610 14,278
max 3,784 14,811
min 1,806 7,123

64 avg 1,942 7,468
max 2,158 8,232
min 967 3,696

128 avg 1,053 3,942
max 1,208 4,278

Figure 8: Distribution of nonzero 3 3 subma-
trices ( 2 ) per subdomain, assuming
nonsymmetric storage. Only nonzero subma-
trices are actually stored in memory.

subdomains sf10 sf5
min 4 5

1 avg 13 13
max 26 30
min 4 4

2 avg 13 13
max 26 30
min 4 4

4 avg 13 13
max 26 28
min 4 4

8 avg 13 13
max 25 27
min 4 4

16 avg 12 12
max 23 26
min 4 4

32 avg 12 12
max 23 23
min 4 4

64 avg 10 11
max 19 22
min 4 4

128 avg 9 11
max 22 24

Figure 9: Distribution of nonzero submatrices
per row for the subdomain with the fewest aver-
age submatrices per row (assuming nonsymmetric
storage).

4 Discussion

The Spark98 programs are points on a continuum that is defined by how well each program partitions its
data references among computational threads. At one end of the continuum is SMV, which by definition
makes no attempt to partition references because it consists of a single thread. For the SMVP operation

, LMV has a better partition than SMV, with disjoint references of and non-disjoint references of
and . RMV has a better partition than LMV because it replaces non-disjoint references of with disjoint

ones; however, references to are still non-disjoint. Finally, MMV and HMV use the best partitions, with
disjoint references to , , and .

The quality of the partition is directly related to the difficulty of developing and parallelizing the program.
For example, the sequential SMV program is the simplest program to develop because by definition it does not
partition any references. LMV is only a little harder to write than SMV, requiring only simple changes to SMV:
assigning rows of to threads, creating the threads, and protecting updates to the result vector with locks.
RMV requires only simple modifications to LMV: defining an array of vectors and modifying the call to the
local SMVP routine. MMV and HMV are much more difficult to develop because they require a sophisticated
partitioner, computation of global-to-local node and element mappings for each PE, computation of the
sparse matrix structure for each PE, and a communication schedule for each PE.
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subdomains sf10 sf5

min 2 2
2 avg 2 2

max 2 2
min 4 2

4 avg 5 4
max 6 6
min 4 4

8 avg 8 7
max 12 12
min 4 4

16 avg 10 11
max 18 20
min 6 6

32 avg 16 14
max 30 30
min 6 8

64 avg 19 18
max 38 40
min 6 8

128 avg 25 21
max 62 52

Figure 10: Number of messages per subdomain.

subdomains sf10 sf5

min 1,716 5,052
2 avg 1,716 5,052

max 1,716 5,052
min 1,344 2,592

4 avg 1,839 5,160
max 2,352 7,746
min 1,152 3,258

8 avg 1,905 4,893
max 2,550 7,080
min 942 2,028

16 avg 1,617 3,849
max 2,208 5,292
min 750 1,926

32 avg 1,362 3,045
max 2,172 4,476
min 492 1,026

64 avg 1,110 2,382
max 1,764 4,296
min 396 762

128 avg 885 1,797
max 1,740 3,360

Figure 11: Communication words per subdomain.

The quality of the partition is also directly related to performance. This can be seen quite clearly in
Figure 12 for the Spark98 sf5 kernels. The kernels were run on 1, 2, 4, and 8 PEs of a 12-PE SGI Power
Challenge, a bus based cache coherent shared memory system that supports both shared memory and MPI
message passing primitives. The LMV program was run using 1 2 4 512 locks, where 512 is
the maximum (power of two) number of locks allowed by the system. The performance of the baseline
sequential SMV program is shown as a single dot in the lower lefthand corner of the graph. Performance is
reported in absolute throughput units of Mflop/s (millions of floating point operations per sec).2

Figure 12 shows how performance improves as programs do a better job of partitioning their data
references. MMV and HMV are faster than RMV, which is faster than all instances of LMV. Although the
single-PE LMV kernel is slower than the purely sequential SMV program because of lock overheads, given
enough locks and threads its performance quickly surpasses that of SMV. However, for small numbers of
locks, LMV actually experiences a slowdown as the number of threads increase, due to excessive contention
for locks. Also, notice how poorly the performance of RMV scales, as we predicted in Section 3.

Conventional wisdom maintains that shared memory programs are easier to write, but less efficient, than
message passing programs. This statement is certainly true for LMV and RMV, which are simpler to write
than MMV and provide less than half the performance. However, the statement is not true for HMV, which is
just as difficult to write as MMV and has equivalent performance. Thus, on the one hand an efficient shared
memory program is not necessarily easier to write than a message passing program, but on the other hand it
is not necessarily slower either.

Although MMV and HMV enjoy the best performance, Figure 12 shows that the performance curve is
flattening as the number of PEs increases to 8 PEs, a very small number of PEs indeed. This type of

2We use Mflop/s rather than MFLOPS, as suggested by [14].
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Figure 12: Performance of the Spark98 sf5 kernels on an SGI Power Challenge (195 MHz MIPS R10000,
32 Kbyte Icache, 32 Kbyte L1 Dcache, 2 Mbyte L2 Dcache, cc -O2). Sample points are at 1, 2, 4, and 8
PEs. LMV/sf5 was measured using 1, 2, 4, 8, 16, 32, 64, 128, 256, and 512 locks. SMV/sf5 performance is
39 Mflop/s.

scalability problem does not arise in every system, as shown in Figure 13 for the identical MMV/sf5 kernel
running on the Cray T3E, which uses a torus instead of a shared bus to connect the PEs. Designers can
use the kernels in this way to help them identify limitations in the communication systems of their parallel
computers.

Finally, the sequential SMV program illustrates an interesting property of modern compilers and proces-
sors. It is not unreasonable to wonder if more aggressive use of temporary variables in the local smvp()
routine might improve performance by eliminating the possibility of pointer aliasing. Interestingly enough,
though, loading every input value into a temporary scalar variable makes almost no difference in perfor-
mance on a modern system. For example, on an SGI Power Challenge, rewriting local smvp() to use as
many temporaries as possible raises the measured performance of the SMV/sf5 kernel from 39 Mflop/s to
40.5 Mflop/s, an improvement of only 4%.

5 Concluding remarks

Our purpose in developing Spark98 is to give system builders access to parallel sparse matrix kernels
that are realistic, and yet fairly small and easy for one person to understand, modify, and experiment
with. The kernels are based on a baseline sequential SMVP program, three shared memory programs, and
a message passing program, along with two unstructured three-dimensional meshes from an earthquake
ground modeling application. The programs represent points along a continuum that is defined by the care
with which data references are partitioned among PEs.
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Figure 13: Performance of the Spark98 SMV/sf5 and MMV/sf5 kernels on a Cray T3E (450 MHz Alpha
21164, 8 Kbyte Icache, 8 Kbyte L1 Dcache, 96 Kbyte L2 Dcache, cc -O2). Sample points are at 1, 2, 4, and
8 PEs. SMV/sf5 performance is 57 Mflop/s.

Although we expect that the current set of kernels will be quite useful, there are some limitations that we
might want to address in the future. First, as we have already discussed, the Spark98 programs are points
along a continuum defined by how well they partition data references among their computational threads.
We don’t claim to have provided complete coverage of parallel SMVP algorithms, and there are surely other
approaches that would be interesting to add to the mix of programs.

Second, it might be useful to include other computations beside the SMVP in the kernels. For example,
examples of direct methods for solving sparse linear systems would be helpful.

Finally, the current set of kernels are based on two finite element meshes from the CMU Quake project.
It might be useful to include meshes from other types of applications such as computational fluid dynamics.
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