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Abstract

This report characterizes a family of unstructured 3D finite element simulations that are partitioned for execution on
a parallel system. The simulations, which estimate earthquake-induced ground motion in the San Fernando Valley of
Southern California, range in size from 10,000–1,000,000 nodes and are partitioned for execution on 4–128 processors.
The purpose of the report is to help researchers better understand the properties of unstructured tetrahedral finite element
meshes and the sparse matrix vector product (SMVP) operations that are induced from them. The report is designed
to serve as a comprehensive reference that researchers can consult for answers to the following kinds of questions:
For a tetrahedral mesh with a particular number of nodes, how many elements and edges does it have? What is the
distribution of node degrees in a tetrahedral mesh? What fraction of nodes in a partitioned mesh are interface nodes?
What is the communication volume in a typical parallel SMVP? How many messages are there? How big are the
messages? How many nonzeros are contained in the rows of a sparse matrices induced from tetrahedral meshes? The
partitioned meshes described in the paper are available electronically.
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1 Introduction

The multiplication of a sparse matrix by a dense vector is central to many computer applications that simulate
physical systems. However, the run-time properties of sparse matrix-vector product (SMVP) operations
are poorly understood by researchers. For example, conventional wisdom holds that SMVP operations are
communication intensive. However, when we measure the computation/communication ratios in realistic
sparse codes, we find that these ratios can be quite large, as high as 50:1 even for simulations partitioned
across 128 processing elements (PEs).

One reason for the generally poor understanding of SMVP operations is that performance depends
heavily on the nonzero structure of the sparse matrix, and this structure depends on the physical system
being simulated. Without access to real physical simulations, it is impossible to create credible SMVP test
cases. The same is not true of dense matrix operations, where performance is independent of the data.

This report describes the properties of four unstructured tetrahedral finite element meshes partitioned
for execution on 4, 8, 16, 32, 64, and 128 PEs. The meshes come from finite element simulations of
earthquake-induced ground motion in the San Fernando Valley [1] and are partitioned using a recursive
geometric bisection algorithm [7, 8]. Because the simulations model earthquakes, we refer to them as the
Quake simulations and their corresponding meshes as the Quake meshes.

Our purpose is to help researchers better understand the properties of unstructured tetrahedral finite
element meshes and the SMVP operations that are induced from them. The report is designed to serve as a
comprehensive reference that researchers can consult for answers to the following kinds of questions: For
a linear tetrahedral mesh with a particular number of nodes, how many elements and edges does it have?
What is the distribution of node degrees in a tetrahedral mesh when the mesh is partitioned among multiple
processors? What fraction of nodes are interface nodes? What is the communication volume in a typical
parallel SMVP? How many messages are there? How big are the messages? How many nonzeros are in the
rows of a sparse matrix induced from a tetrahedral mesh?

Section 2 describes the Quake meshes and their corresponding simulations. Section 3 details the basic
structural properties of the Quake meshes. Sections 4 and 5 describe the communication and computation
properties of SMVP operations that are induced from the Quake meshes.

2 The Quake simulations

There are four Quake simulations, denoted sf10, sf5, sf2, and sf1. The “sf” in the names is an abbreviation for
San Fernando. The digit in the names indicates the highest frequency wave (in seconds) that the simulation
is able to resolve. For example, sf10 resolves waves with 10 second periods, sf5 resolves waves with 5
second periods, and so on. Each program simulates 60 seconds of shaking as shock waves travel through
a model of the San Fernando Valley. Each model employs a three-dimensional unstructured finite element
mesh composed of thousands or millions of tetrahedra (i.e., pyramids with triangular bases). The mesh for
sf10 is illustrated in Figure 1. The model corresponds to a volume of earth roughly 50 km x 50 km x 10
km. Beverly Hills is in the lower right-hand corner The town of San Fernando is in the midst of the darkly
shaded region near the upper left corner.

Each tetrahedron in Figure 1 is called an element, and the vertices of the tetrahedra are called nodes.
Some finite element simulations use structured meshes constructed from regular grids; however, the Quake
simulations require unstructured meshes, which can accommodate the wildly varying densities of the soils
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Figure 1: Finite element mesh for the sf10 model of the San Fernando Valley (side view).

in the valley. Wavelengths are shorter in softer soils, thus softer soils need a higher density of nodes and
elements. The unstructured nature of the meshes can be seen clearly in Figure 1.

A Quake simulation estimates the ground motion during 60 seconds of shaking. Each simulated second
consists of 100 time steps, for a total of 6000 time steps. During each time step, the simulation executes
three sparse matrix-vector product (SMVP) operations of the form , where and are vectors of
length 3 (representing three degrees of freedom— , , and displacements—for each node of the mesh),
and is a sparse 3 3 stiffness matrix. can be likened to an adjacency matrix of the nodes of the
mesh; contains a 3 3 submatrix for each pair of nodes connected by an edge of the mesh (including
self-edges).

The simulations are parallelized using a domain-specific tool chain for finite element problems called
Archimedes [1]. To generate a simulation that will run on PEs, Archimedes partitions the mesh into
disjoint sets of elements. Each set is called a subdomain and is assigned to some PE (We will use the
terms subdomain and PE interchangeably). The partitioner is based on a recursive geometric bisection
algorithm [7, 8] that divides the elements equally among the subdomains while attempting to minimize
the total number of nodes that are shared by subdomains, and hence the total communication volume.
The geometric partitioning algorithm has provable upper bounds on the separator sizes and in practice
usually generates partitions that are as good as those produced by other modern partitioning algorithms
[2, 3, 4, 5, 6, 9, 10].

To compute on a set of PEs, we must consider the data distribution by which vectors and
matrices are stored. The vectors and are stored in a distributed fashion according to the mapping of
nodes to PEs induced by the partition of elements among PEs. If a node resides in several PEs (because

is a vertex of several elements mapped to different PEs), the values and are replicated on those PEs.
The matrix is distributed so that resides on any PE on which nodes and both reside. Figure 2
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Figure 2: A finite element mesh and corresponding stiffness matrix , distributed among two PEs. Xs
represent nonzero 3 3 submatrices. Note that some nodes are shared by both PEs, as are some stiffness
matrix entries (corresponding to shared edges).

demonstrates this method of distributing data. Given this method of distributing data, the multiplication
is performed in two steps: (1) Computation phase: each PE computes a local matrix-vector product

over the subdomain that resides on that PE. (2) Communication phase: PEs that share nodes communicate
and combine their nodal values into correct global values for each node. In Figure 2, PEs 1 and 2 must
communicate to resolve the values of the interface nodes 4, 5, and 6.

3 Mesh properties

This section describes the global and local properties of the Quake meshes. By global properties we mean
properties of the entire mesh. By local properties we mean properties of the subgraphs on the individual
PEs. For example, the number of nodes in a mesh is a global property, while the average number of nodes
per PE is a local property.

3.1 Global mesh properties

Figure 3 lists the basic global properties of the Quake meshes. Notice that when the wave period is halved,
its frequency doubles, and the number of nodes increases by a factor of nearly eight—a factor of two in each
of three dimensions. Another way to appreciate the size of these meshes is by the amount of memory their
corresponding simulations consume. As a general rule, for each node in the mesh a simulation uses about
2 KBytes of memory at runtime to accommodate the storage of several double-precision vectors and sparse
matrices. Thus sf10 requires about 15 MBytes and sf1 requires about 5 GBytes.

Figure 4 shows the node degrees for the Quake meshes, where the degree of a node is the number of
neighboring nodes. It is somewhat surprising that the average and maximum node degrees grow with the
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property sf10 sf5 sf2 sf1

nodes 7,294 30,169 378,747 2,461,694
edges 44,922 190,377 2,509,064 16,684,112
faces 72,698 311,514 4,198,057 28,202,581
elements 35,025 151,239 2,067,739 13,980,162

Figure 3: Properties of the Quake meshes.

mesh size. Further, the average node degree of 12–13 is less than average node degree of 16 that one would
expect.

sf10 sf5 sf2 sf1

min 3.0 4.0 3.0 3.0
avg 12.3 12.6 13.2 13.6
max 25.0 29.0 31.0 34.0

Figure 4: Node degrees

Figure 5 shows the distributions of the node degrees in the form of a histogram. The numbers are
somewhat counterintuitive after Figure 4, since the proportion of high-degree nodes decreases with problem
size. For example, 5% of the sf2 nodes have 17–32 neighbors, compared to 3% of the sf1 nodes.

node degree sf10 sf5 sf2 sf1

3 – 4 4 17 4 4
5 – 8 716 2,284 3,978 9,524

9 – 16 5,812 24,638 358,466 2,383,411
17 – 32 762 3,230 16,299 68,754
33 – 64 0 0 0 1

Figure 5: Histograms of node degrees

Another important property of meshes is the aspect ratio of the elements, which we define as the longest
edge divided by the shortest altitude. In general, smaller aspect ratios are better than larger asect ratios.
Histograms of the element aspect ratios for the Quake meshes are shown in Figure 6. The maximum aspect
ratios of roughly 5 are small enough to guarantee well-conditioned stiffness matrices.

3.2 Global partitioned mesh properties

Figure 7 shows the distribution of interface and interior nodes for the partitioned Quake meshes. We say
that a node is an interface node if it is shared by more than one PE. Otherwise, we say that it is an interior
node. Notice by this definition that nodes on the external boundary of the domain can be either interior or
interface nodes. Interface nodes are interesting because they represent communication at runtime.
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aspect ratio sf10 sf5 sf2 sf1

1.2 – 1.5 940 5,317 112,815 830,415
1.5 – 2 433 1,365 7,929 33,358
2 – 2.5 12,459 55,985 812,263 5,559,973
2.5 – 3 10,751 45,804 599,956 3,860,114
3 – 4 10,413 42,573 534,111 3,693,199
4 – 6 51 195 665 3,103

Figure 6: Histograms of element aspect ratios

sf10 sf5 sf2 sf1
subdomains (7,294) (30,169) (378,747) (2,461,694)

4 interface 561 1,686 11,501 36,553
interior 6,733 28,483 367,246 2,425,141

8 interface 1,116 3,029 17,453 62,933
interior 6,178 27,140 361,294 2,398,761

16 interface 1,690 4,385 26,173 102,317
interior 5,604 25,784 352,574 2,359,377

32 interface 2,441 6,340 38,953 147,593
interior 4,853 23,829 339,812 2,314,101

64 interface 3,367 8,809 56,280 216,157
interior 3,927 21,360 322,467 2,245,537

128 interface 4,319 11,713 75,522 288,257
interior 2,975 18,456 303,225 2,173,437

Figure 7: Interface and interior nodes. The total number of nodes is shown in parentheses.

Figure 8 shows the distribution of interface and interior edges for the partitioned Quake meshes. Interface
edges are interesting because they represent redundant computation.

3.3 Local partitioned mesh properties

Figure 9 shows the minimum number of elements that are assigned to each PE. The partitions are perfect
in the sense that each PE is assigned either or 1 elements. This is not unexpected, since the element
is the unit of partitioning.

Figure 10 shows the distribution of interface and interior nodes per PE. At runtime, each interface node
corresponds to some data that must be transferred to other PEs and so we would like the interface nodes
to be balanced evenly across the PEs. However we see that the number of nodes on different PEs can vary
by a factor of three. Thus we can expect the communication phase of the SMVP operation to be similarly
unbalanced. This imbalance is an artifact of the way modern mesh partitioners work, optimizing the total
volume of communication across all PEs rather than minimizing the maximum communication on any PE.

An edge in the mesh corresponds to a nonzero entry in the coefficient matrix of the SMVP operation,
and each interface edge corresponds to redundant nonzero entries. So in general, we want the number of
interface edges to be small and we want each PE to have about the same number of edges. Indeed, Figure 11
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sf10 sf5 sf2 sf1
subdomains (44,922) (190,377) (2,509,064) (16,684,112)

4 interface 1,549 4,714 33,544 47,105
interior 43,373 185,663 2,475,520 16,637,007

8 interface 3,117 8,577 51,108 107,975
interior 41,805 181,800 2,457,956 16,576,137

16 interface 4,822 12,650 77,331 186,499
interior 40,100 177,727 2,431,733 16,497,613

32 interface 7,216 18,606 115,713 304,679
interior 37,706 171,771 2,393,351 16,379,433

64 interface 10,294 26,511 169,097 441,036
interior 34,628 163,866 2,339,967 16,243,076

128 interface 13,696 36,147 230,294 649,726
interior 31,226 154,230 2,278,770 16,034,386

Figure 8: Interface and interior edges. The total number of edges is shown in parentheses.

subdomains sf10 sf5 sf2 sf1

4 8,756 37,793 516,934 3,495,040
8 4,378 18,896 258,467 1,747,520

16 2,189 9,448 129,233 873,760
32 1,094 4,724 64,616 436,880
64 547 2,362 32,308 218,440
128 273 1,181 16,154 109,220

Figure 9: Elements per subdomain

shows that the edges are indeed well balanced across the PEs, and thus we can expect the computation phase
of the SMVP operations to be well balanced.

4 Communication properties

This section describes the communication properties of SMVP operations that are induced from the Quake
meshes. All sizes and volumes are presented in units of words per degree of freedom (dof) in the simulation.
In general, if a simulation models dof, then there are quantities associated with each node in the
corresponding mesh and words of data are exchanged for each interface node shared by a pair of PEs.

4.1 Global communication properties

Figure 12 shows the total volume of data transferred by all PEs during the communication phase of an
SMVP operation. The total communication volume is related to, but not identical to, the global number of
interface nodes. The reason they are not identical is that a node might be shared by multiple subdomains.

Figure 13 shows the bisection volume for the Quake SMVP operations, where bisection volume
is defined as follows. We are given a symmetric matrix such that is the number of words
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sf10 sf5 sf2 sf1
subdomains total interface total interface total interface total interface

min 1,947 211 7,828 432 96,123 3,765 614,564 13,621
4 avg 1,970 287 7,968 847 97,572 5,760 624,583 18,297

max 1,997 366 8,207 1,274 99,613 9,185 630,394 30,944
min 1,025 181 3,971 521 48,046 2,368 306,611 9,974

8 avg 1,061 288 4,164 772 49,559 4,397 315,659 15,814
max 1,081 373 4,280 1,102 50,990 5,676 323,728 24,650
min 542 148 2,081 324 24,213 1,911 155,093 7,656

16 avg 575 225 2,182 571 25,367 3,331 160,383 12,922
max 620 285 2,273 767 26,278 4,471 165,556 19,254
min 295 103 1,115 276 12,366 1,471 78,918 4,202

32 avg 321 169 1,167 422 13,120 2,501 81,675 9,360
max 349 246 1,245 617 13,788 3,551 85,963 13,779
min 162 66 583 145 6,441 988 40,405 2,751

64 avg 184 123 637 303 6,870 1,832 41,994 6,908
max 222 184 760 479 7,199 2,869 44,132 11,146
min 91 51 314 95 3,408 523 20,803 2,110

128 avg 107 84 353 209 3,622 1,253 21,632 4,652
max 133 125 406 324 3,997 2,232 22,683 7,579

Figure 10: Total nodes and interface nodes per subdomain

sf10 sf5 sf2 sf1
subdomains total interface total interface total interface total interface

min 11,548 565 48,378 1,193 631,492 10,974 4,169,622 40,262
4 avg 11,624 781 48,777 2,361 635,662 16,782 4,198,043 54,008

max 11,703 1,000 49,464 3,537 641,529 26,799 4,213,857 91,207
min 5,912 479 24,319 1,442 315,794 6,829 2,083,537 29,454

8 avg 6,013 788 24,882 2,158 320,054 12,809 2,108,905 46,704
max 6,072 1,018 25,230 3,095 324,028 16,557 2,131,610 72,806
min 3,033 393 12,423 889 158,507 5,561 1,047,039 22,444

16 avg 3,122 616 12,710 1,603 161,708 9,724 1,061,930 38,216
max 3,244 811 12,977 2,161 164,204 13,120 1,076,253 57,141
min 1,576 274 6,419 752 79,986 4,243 527,572 12,258

32 avg 1,645 466 6,556 1,188 82,091 7,299 535,294 27,698
max 1,719 706 6,783 1,768 83,863 10,462 547,042 41,060
min 822 171 3,270 392 40,731 2,836 266,474 7,987

64 avg 879 338 3,415 855 41,918 5,356 270,992 20,454
max 968 518 3,736 1,381 42,807 8,601 276,949 33,471
min 438 130 1,691 249 20,904 1,479 134,982 6,122

128 avg 473 229 1,794 589 21,473 3,670 137,318 13,800
max 538 367 1,936 943 22,525 6,601 140,132 22,681

Figure 11: Total edges and interface edges per subdomain

transferred from PE to PE . If we assume that PEs 0 2 1 are on one side of the bisection and
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subdomains sf10 sf5 sf2 sf1

4 1,226 3,440 23,154 73,438
8 2,540 6,522 35,986 128,442

16 4,314 10,264 56,306 213,130
32 7,264 16,234 86,768 312,662
64 11,826 25,406 131,750 471,952

128 18,854 38,324 190,042 654,294

Figure 12: Global communication volume (words per dof)

PEs 2 1 are on the other side, then

2
2 1

0

1

2

words cross the bisection during the communication phase. Notice that the bisection volume is quite small
relative to the total communication volume and in absolute terms as well, especially on more than a few
PEs. This is not surprising, given the locality of physical simulations.

subdomains sf10 sf5 sf2 sf1

4 624 (51%) 1,718 (50%) 10,916 (47%) 32,188 (44%)
8 676 (27%) 1,786 (27%) 11,196 (31%) 32,954 (26%)

16 758 (18%) 1,960 (19%) 11,690 (21%) 33,624 (16%)
32 882 (12%) 2,188 (13%) 12,306 (14%) 34,294 (11%)
64 1,014 (9%) 2,346 (9%) 12,888 (10%) 35,393 (7%)

128 1,308 (7%) 2,744 (7%) 13,802 (7%) 36,682 (6%)

Figure 13: Bisection communication volume (% of global communication volume) (words per dof)

Figure 14 shows the total number of messages transferred between PEs during the communication phase
of the Quake SMVPs. Figure 15 summarizes the sizes of those messages. Notice that for large numbers
of PEs the average message size is only several hundred words per dof. Also, there is a large variance in
the sizes of messages. For example, the message sizes for the sf1 simulation can vary by three orders of
magnitude. So again we see imbalance in the communication phase.

Figure 16 drives this point home about the imbalance in the communication phase even more clearly.
For example, consider sf2 running on 128 PEs. This is a large finite element problem, and yet fully one
third of the messages are smaller than 64 words per degree of freedom. For the tetrahedral earthquake
models, with three dof, this means that one third of the messages are smaller than 192 words. An important
implication is that we cannot expect to amortize message latencies with large messages.

4.2 Local communication properties

This section describes the communication properties on the individual PEs. Although the literature often
cites global communication properties such as total communication volume when comparing the quality of
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subdomains sf10 sf5 sf2 sf1

4 10 8 8 8
8 32 28 26 28

16 82 90 88 86
32 250 230 210 232
64 618 564 516 522
128 1,626 1,340 1,246 1,296

Figure 14: Global number of messages

subdomains sf10 sf5 sf2 sf1

min 43 401 2,206 5,692
4 avg 123 430 2,894 9,180

max 197 458 3,765 14,933
min 1 4 269 173

8 avg 79 233 1,384 4,587
max 176 423 2,569 8,746
min 2 3 5 13

16 avg 53 114 640 2,478
max 102 249 1,549 7,161
min 1 1 1 1

32 avg 29 71 413 1,348
max 85 211 1,160 4,617
min 1 1 1 2

64 avg 19 45 255 904
max 62 146 825 3,108
min 1 1 1 1

128 avg 12 45 153 505
max 40 146 607 2,037

Figure 15: Global message sizes (words per dof)

mesh partitions, these properties are probably less important to running time than the local communication
properties on each PE. The reason is that the PE with the highest communication time is the bottleneck PE
during the SMVP. Thus, we would like to balance the communication times by minimizing the maximum
communication time on any PE. Unfortunately, what we see in this section is that the communication
properties on each PE can be highly unbalanced.

Figure 17 shows the communication volume per dof on each PE. There are several interesting aspects
to these statistics. First, the reduction in communication volume per subdomain is smaller than expected.
Since a cube with a volume of has a surface area of about 6 2 3, we would expect a reduction in the number
of nodes per subdomain by a factor of to reduce the communication volume per subdomain by a factor

2 3. Thus, for the sf1 simulation, we would expect the factor of 32 reduction in nodes per subdomain to
result in a factor of 10 reduction in the communication volume per subdomain. However, what we actually
see in Figure 17 is a factor of 3.6 reduction, which is significantly less than expected.

Another important aspect of Figure 17 is the large difference between the PE with the smallest commu-
nication volume and the PE with the largest communication volume. Again, we see this potential problem
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sf10 subdomains
msg size 4 8 16 32 64 128

1 2 18 72 266
2 0 2 10 48 148

3–4 0 8 32 66 228
5–8 2 2 20 74 228

9–16 2 6 18 64 272
17–32 2 4 46 144 394
33–64 2 8 30 78 150 90

65–128 2 6 30 28
129–256 6 10
257–512

sf5 subdomains
msg size 4 8 16 32 64 128

1 6 36 96
2 6 18 60

3–4 2 6 16 24 94
5–8 0 6 12 38 128

9–16 0 2 14 80 184
17–32 0 8 24 74 258
33–64 2 8 42 116 366

65–128 0 22 72 168 154
129–256 10 38 38 10
257–512 8 14

(a) sf10 (b) sf5

sf2 subdomains
msg size 4 8 16 32 64 128

1 4 14 32
2 0 4 12

3–4 4 8 28
5–8 4 2 16 42

9–16 4 8 22 50
17–32 4 8 22 108
33–64 6 12 48 142

65–128 6 28 62 230
129–256 2 22 94 338
257–512 2 10 40 142 256

513–1024 6 30 78 84 8
1025–2048 14 22 4
2049–4096 8 4
4097–8192

8193–16384

sf1 subdomains
msg size 4 8 16 32 64 128

1 2 12
2 6 2 12

3–4 2 8 24
5–8 4 12 30

9–16 2 10 6 44
17–32 2 14 52
33–64 2 12 24 96

65–128 4 14 30 110
129–256 2 2 18 38 150
257–512 6 12 94 250

513–1024 8 46 102 290
1025–2048 4 12 34 128 226
2049–4096 4 30 66 64
4097–8192 6 16 20 4

8193–16384 2 2

(c) sf2 (d) sf1

Figure 16: Histograms of global message sizes (words per dof)

with modern partitioners, which work hard to balance computation and to minimize global communication
volume, but make no effort to balance the communication on each PE. The imbalance in the communication
volume on each PE is shown even more dramatically in Figure 18.

Figure 19 shows the total number of messages sent and received by the individual PEs. The number of
messages is an even number because pairs of PEs always exchange pairs of messages. If there are messages
for a given PE, then that PE has 2 neighbors with whom it exchanges a pair of equal sized messages. For
example, we see that there is some PE in the sf1 simulation running on 128 PEs that has 23 neighbors, which
is about 20% of the total number of PEs. Thus, the Quake simulations are an interesting middle ground
between regular grid computations with a constant 4 neighbors and complete exchange algorithms where
each PE communicates with every other PE.

In Figure 19, notice the large variance in the number of messages transferred by different PEs. The
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subdomains sf10 sf5 sf2 sf1

min 448 864 7,530 27,408
4 avg 613 1,720 11,577 36,719

max 784 2,582 18,446 62,054
min 384 1,086 4,828 5,214

8 avg 635 1,631 8,997 25,989
max 850 2,360 11,716 50,588
min 314 676 4,016 15,512

16 avg 539 1,283 7,038 26,641
max 736 1,764 9,494 39,760
min 250 642 3,024 8,504

32 avg 454 1,015 5,423 19,541
max 724 1,492 8,006 29,076
min 164 342 2,082 5,668

64 avg 370 794 4,117 14,749
max 588 1,432 6,840 24,354
min 132 254 1,118 4,468

128 avg 295 599 2,969 10,223
max 580 1,120 5,420 17,016

Figure 17: Communication volume per subdomain (words per dof)

sf10 subdomains
msg size 4 8 16 32 64 128

129–256 1 9 41
257–512 1 1 7 23 52 84

513–1,024 3 8 9 8 3 3
1,025–2,048
2,049–4,096

sf5 subdomains
msg size 4 8 16 32 64 128

129–256 1
257–512 7 42

513–1,024 1 4 18 49 83
1,025–2,048 2 5 12 14 8 2
2,049–4,096 1 3

(a) sf10 (b) sf5

sf2 subdomains
msg size 4 8 16 32 64 128

1,025–2,048 15
2,049–4,096 1 7 35 103
4,097–8,192 1 2 10 25 29 10

8,193–16,384 2 6 5
16,385–32,768 1
32,769–65,536

sf1 subdomains
msg size 4 8 16 32 64 128

1,025–2,048
2,049–4,096
4,097–8,192 2 2 35

8,193–16,384 1 8 37 91
16,385–32,768 3 4 12 24 25 2
32,769–65,536 1 2 3

(c) sf2 (d) sf1

Figure 18: Histograms of communication volume per subdomain (words per dof)

partitioner is not doing a good job of balancing the number of messages sent by each PE. This could have a
significant impact on performance when message latencies are high. Figure 20 expands on this point with
the histograms for the number of messages per subdomain. The interesting aspect of these statistics is that
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subdomains sf10 sf5 sf2 sf1

min 4 2 2 2
4 avg 5 4 4 4

max 6 6 6 6
min 4 4 4 6

8 avg 8 7 7 7
max 12 12 10 14
min 4 4 4 4

16 avg 10 11 11 11
max 18 20 16 18
min 6 6 4 4

32 avg 16 14 13 15
max 30 30 26 26
min 6 8 4 4

64 avg 19 18 16 16
max 38 40 36 38
min 6 8 4 6

128 avg 25 21 20 20
max 62 52 50 46

Figure 19: Messages per subdomain

a significant number of PEs communicate with a large number of PEs.

The variance in communication can be seen even more dramatically in Figure 21, which shows the
message sizes for the subdomain with the smallest average message size. Here we see that the message
sizes on a single PE can vary by three orders of magnitude. Further, the distribution of message sizes is
fairly uniform, with roughly as many small messages as large messages. This is shown in Figure 22, which
details the histogram of the messages sizes in Figure 21.

In summary, modern mesh partitioners typically allocate a class of mesh entity such as nodes, elements,
or edges evenly across the subdomains, and then attempt to minimize some communication metric, usually
the total number of interface nodes. While partitioners generally do a good job of meeting these goals, it
is not clear that they are using the appropriate optimization criteria. The communication properties of the
Quake SVMPs show us that across PEs there is a wide variability in the volume of communication data, the
number of messages, and the sizes of the individual meshes. Since the SMVP operations are synchronous,
the PE with the longest communication phase will be the bottleneck PE. Thus, in addition to minimizing the
total communication volume, partitioners should attempt to minimize the maximum communication time
on each PE.

5 Computation properties

This section describes the distribution of nonzero entries in the sparse matrices that are induced from the
Quake meshes. As we saw in Section 2, each nonzero entry in a sparse matrix corresponds to a mesh edge,
and since the meshes are undirected graphs, each mesh corresponds to two nonzero matrix entries. If a
simulation has dof, then each nonzero matrix entry consists of a block of 2 words, and each vector entry
consists of a subvector of words. In this section, the number of nonzero matrix entries is expressed in
units of words per dof dof.
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sf10 subdomains
msg size 4 8 16 32 64 128

2
3–4 2 2 1
5–8 2 3 6 5 4 2

9–16 3 8 13 18 26
17–32 1 14 39 74
33–64 3 26

sf5 subdomains
msg size 4 8 16 32 64 128

2 1
3–4 2 2 1
5–8 1 4 5 8 4 3
9–16 2 7 13 28 45

17–32 3 11 30 68
33–64 2 12

(a) sf10 (b) sf5

sf2 subdomains
msg size 4 8 16 32 64 128

2 1
3–4 2 3 1 1 1 1
5–8 1 3 4 6 9 4

9–16 2 11 18 28 48
17–32 7 24 65
33–64 2 10

sf1 subdomains
msg size 4 8 16 32 64 128

2 1
3–4 2 2 1 1
5–8 1 7 3 2 7 4
9–16 1 10 22 31 49

17–32 1 7 24 66
33–64 1 9

(c) sf2 (d) sf1

Figure 20: Histograms of messages per subdomain

subdomains sf10 sf5 sf2 sf1

min 43 401 2,206 5,692
4 avg 88 415 2,280 6,582

max 189 429 2,354 8,012
min 1 4 733 173

8 avg 61 181 1,166 3,365
max 134 385 1,953 5,214
min 4 3 56 113

16 avg 37 78 490 1,798
max 64 189 1,115 5,645
min 1 2 4 2

32 avg 20 49 261 961
max 74 174 964 3,491
min 2 1 18 49

64 avg 13 29 157 566
max 40 146 433 1,874
min 1 1 1 4

128 avg 7 19 99 295
max 36 46 421 1,494

Figure 21: Message sizes for the subdomain with the smallest average message sizes (words per dof)

The matrices induced from the Quake meshes are symmetric. The data structures for these matrices can
exploit the symmetry by storing only the upper (or lower) triangle. The penalty for such a space-efficient
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sf10 subdomains
msg size 4 8 16 32 64 128

1 2 4 6
2 2 6 10

3–4 2 4 4 16
5–8 2 2 2 12

9–16 2 2 2 2
17–32 2 4 2 6
33–64 2 2 12 4 4 2

65–128 2 4 2
129–256 2 2
257–512

sf5 subdomains
msg size 4 8 16 32 64 128

1 36 2
2 2 18 2

3–4 2 6 6 24 4
5–8 2 4 38 8

9–16 2 80 12
17–32 2 74 14
33–64 8 116 10

65–128 4 6 168
129–256 2 6 2 10
257–512 4 2

(a) sf10 (b) sf5

sf2 subdomains
msg size 4 8 16 32 64 128

1 2
2

3–4 2 2
5–8 2

9–16 4 2
17–32 4 10
33–64 4 4 6

65–128 2 4 4 4
129–256 4 6 8
257–512 2 2 4 4
513–1024 4 6 6

1025–2048 6 2
2049–4096 4
4097–8192

sf1 subdomains
msg size 4 8 16 32 64 128

1
2 2

3–4 2
5–8 2 4

9–16 6
17–32 2
33–64 2 2 6
65–128 2 2 2 4

129–256 2 2 6
257–512 2 6 4

513–1024 2 4 2
1025–2048 4 2 2 6
2049–4096 2 4
4097–8192 4 4 2

(c) sf2 (d) sf1

Figure 22: Histograms of message sizes for subdomain with smallest average message size (words per dof)

storage schemes is less locality during the SMVP. In this section, we assume a simpler but less efficient
scheme based on nonsymmetric storage where the entire matrix is stored. Given nonzero entries in the
nonsymmetric scheme, there are 1 2 nonzero entries in the symmetric scheme.

5.1 Global computation properties

Figure 23 shows the number of nonzero entries in the global sparse matrices for the Quake SMVP operations.
If a mesh has nodes and edges, then there are 2 nonzero entries in the induced sparse matrix (assuming
nonsymmetric storage).
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sf10 sf5 sf2 sf1

nonzero entries 97,138 410,923 5,396,875 35,829,918

Figure 23: Global nonzero matrix entries per dof dof (assuming nonsymmetric storage)

5.2 Local computation properties

Of course the global sparse matrix is never actually constructed or stored. Rather a sparse local matrix
is constructed on each PE. Figure 24 shows the number of nonzero matrix entries per subdomain. If
the simulation has dof, then each nonzero entry requires 2 2 floating point operations during the local
computation phase of the SMVP. Notice that the computation is reasonably well balanced across the PEs,
with only a few percent difference between the maximum and minimum number of nonzeros.

subdomains sf10 sf5 sf2 sf1

min 25,043 104,584 1,359,107 8,953,808
4 avg 25,218 105,522 1,368,895 9,020,668

max 25,403 107,135 1,382,671 9,058,108
min 12,849 52,609 679,634 4,473,685

8 avg 13,087 53,930 689,667 4,533,469
max 13,225 54,740 699,046 4,586,948
min 6,608 26,927 341,227 2,249,171

16 avg 6,819 27,604 348,782 2,284,243
max 7,108 28,227 354,686 2,318,062
min 3,447 13,953 172,338 1,134,062

32 avg 3,610 14,278 177,302 1,152,263
max 3,784 14,811 181,514 1,180,047
min 1,806 7,123 87,903 573,353

64 avg 1,942 7,468 90,706 583,977
max 2,158 8,232 92,813 598,030
min 967 3,696 45,126 290,767

128 avg 1,053 3,942 46,568 296,267
max 1,208 4,278 49,047 302,947

Figure 24: Nonzero matrix entries per subdomain per dof dof (assuming nonsymmetric storage)

Figure 25 shows the number of nonzero entries per row for the PE with the fewest average entries per row.
These are interesting numbers because they show how extremely sparse the matrices are. The implication is
that the inner loops of the SMVP will tend to be short and we can expect difficulty in amortizing the startup
costs of these loops.

The ratio of computation to communication on a PE can provide some insight into the relative cost of
communication at runtime. Generally, high computation/communication ratios are desirable. Figure 26
shows the computation/communication ratios for the SPMV operations from the Quake simulations. For the
SMVP, the floating point operation is a useful measure of work. Thus, each ratio (denoted fp/comm ratio in
the figure) is computed by the dividing the average number of floating point operations per PE during the
computation phase by the average number of words transferred per PE during the communication phase.
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subdomains sf10 sf5 sf2 sf1

min 4 4 4 4
4 avg 13 13 14 14

max 26 28 32 35
min 4 4 4 4

8 avg 13 13 14 14
max 25 27 27 33
min 4 4 4 4

16 avg 12 12 14 14
max 23 26 27 27
min 4 4 4 4

32 avg 12 12 13 14
max 23 23 27 27
min 4 4 4 4

64 avg 10 11 12 14
max 19 22 27 27
min 4 4 4 4

128 avg 9 11 12 14
max 22 24 30 27

Figure 25: Nonzero matrix entries/row per dof dof for the subdomain with the fewest avg. entries/row
(assuming nonsymmetric storage)

subdomains sf10 sf5 sf2 sf1

fp ops 453,924 1,899,396 24,640,110 162,372,024
4 comm wds 1,839 5,160 34,731 110,157

fp/comm ratio 247 368 709 1,474
fp ops 235,566 970,740 12,414,006 81,602,442

8 comm words 1,905 4,893 26,991 77,967
fp/comm ratio 124 198 460 1,047
fp ops 122,742 496,872 6,278,076 41,116,374

16 comm words 1,617 3,849 21,114 79,923
fp/comm ratio 76 129 297 514
fp ops 64,980 257,004 3,191,436 20,740,734

32 comm words 1,362 3,045 16,269 58,623
fp/comm ratio 48 84 196 354
fp ops 34,956 134,424 1,632,708 10,511,586

64 comm words 1,110 2,382 12,351 44,247
fp/comm ratio 31 56 132 238
fp ops 18,954 70,956 838,224 5,332,806

128 comm words 885 1,797 8,907 30,669
fp/comm ratio 21 39 94 174

Figure 26: Computation/communication ratio per matrix-vector product per subdomain (assuming 3 dof)

There are some interesting points to make about the numbers in Figure 26. First, conventional wisdom
holds that sparse codes like the SMVP are communication intensive. However, this is not always the case.
As we see for sf2, which is a reasonably large problem, the computation/communication ratios vary from
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large (500:1) to moderate (50:1). This common misconception about sparse codes is probably due to the
fact that researchers have not had the opportunity to run large enough problems.

Second, while the computation/communication ratios are reasonably high for large problems, as the
problem sizes grow by a factor of ten, we see that the computation/communication ratios grow only by
a factor of two. This is not surprising; consider that a good partition of an -node tetrahedral mesh will
produce 2 3 shared nodes (for the same reason that an -node cube has a surface area of 2 3

nodes). Hence, the computation/communication ratio is 1 3 , and a factor-of-ten increase in will
yield roughly a factor-of-two increase in that ratio. The point is that while large SMVPs do have reasonable
computation/communication ratios, these ratios do not increase quickly with increasing problem size, as
they do for cubic problems like dense matrix multiply.

6 Concluding remarks

This report has characterized a family of unstructured tetrahedral finite element simulations partitioned for
execution on a parallel system. Our aim is to provide a comprehensive reference source for researchers who
are interested in sparse and irregular computations. Along the way we have made a few observations about
the properties of the meshes and their induced SMVP operations.

Computation is well balanced across PEs, but communication is not. The number of messages per PE,
the communication volume on each PE, and the message sizes vary dramatically across PEs. Improving this
balance suggests a potentially important area of improvement for designers of partitioning algorithms.

Further, the sparse matrix-vector product operations induced from the Quake meshes are not as commu-
nication intensive as conventional wisdom suggests. For a reasonable sized problem, the ratio of floating
point operations to communication words can vary from 500:1 on 4 PEs to 50:1 on 128 PEs. This offers
some hope for the efficient implementation of sparse matrix codes.
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