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Abstract

Switched LANs are become more widely used be-

cause they can provide a higher bandwidth than LANs

based on shared media. Examples of packet switched

LANs include HIPPI, and switched FDDI and Eth-

ernet. A number of studies have evaluated the per-

formance of HIPPI networks, making simplifying as-

sumptions about both the network and the tra�c load.

In this paper we present the results of a simulation

study of circuit-switched LANs such as HIPPI using

more realistic models for the system and the tra�c.

We observe changes in throughput as high as a factor

of ten when we change the system and tra�c parame-

ters. We also show how packet scheduling can be used

to improve performance in some cases.

1 Introduction

Switched LANs are become more widely used be-
cause they potentially provide a higher bandwidth
than traditional LANs based on shared media. Ex-
amples of packet switched LANs include HIPPI, ATM
and switched FDDI and Ethernet. In this paper we
present the results of a simulation study of packet-
switched LANs under di�erent tra�c conditions. We
focus on HIPPI [2][14] LANs. HIPPI networks have a
link speed of 800 or 1600 Mbit/second and are widely
used in supercomputer centers [10][15] to connect
collections of supercomputer and high-performance
storage systems [8]. Several companies sell HIPPI
switches. These switches are full crossbar switches:
i.e. an N node switch can support N simultaneous
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data transfers, assuming all N sources and all N des-
tinations are distinct.

Communication over HIPPI is based on circuit
switching: the sender �rst sets up a connection to
the destination through one or more switches, once
the connection has been established it sends the data
(typically one packet) and the sender then breaks the
connection. If any of the links between the source and
the destination is in use by a di�erent connection, the
connection is rejected and the sender has to retry at a
later time. Alternatively, the sender can specify in the
connection request that the connection request should
block in the switch until the link frees up (camp on).

Several studies have looked at the throughput over
HIPPI, but they typically make several simplifying
assumptions about both the network (no overhead
for setting up connections) and the tra�c conditions
(�xed packet sizes and uniform packet destinations).
In this paper we describe simulation results in which
we relax both of these constraints for a single switch
HIPPI network. In our simulations, the network
adapter that connects the host to the network can
store multiple packets and it can rapidly try to estab-
lish connections for these packets following a speci�c
schedule (e.g. round robin). This is for example the
approach used in the gigabit Nectar project [13][12].
We look at the impact of using di�erent scheduling
techniques on throughput.

The remainder of this paper is organized as follows.
In Sections 2 and 3 we describe our methodology and
earlier work on packet switching. We present results
for network without overhead and �xed sized pack-
ets in Section 4 and we then relax these constraints:
we look at variable packet sizes (Section 5), and add
overhead to the switch (Section 6). We brie
y look
at non-uniform packet destinations in Section 7. We
conclude in Section 8.



2 Methodology

We describe the network architectures evaluated in
this paper and our simulation methodology.

2.1 Network Model

We study packet networks that are implemented
on top of a circuit switched hardware: a circuit is
set up from the source to the destination for each
packet. HIPPI networks follow this model. We focus
on the case of distributed control: packets are stored
on the network adapter that connects the node to the
switch and the adapter is responsible for setting up the
connection through the network, sending the packet
over the connection and closing the connection. Since
adapters do not have knowledge of the entire state of
the network, connection requests can be rejected be-
cause the requested output port is busy. When that
happens, the adapter will try to send the packet later,
similar to a retry after a collision on an Ethernet.

The adapter can use di�erent strategies to select a
packet to send. We use three scheduling strategies:

� FIFO scheduling: the adapter keeps a FIFO of
packets to send, and packets are sent strictly in
the order in which they were submitted to the
network. This is the simplest strategy.

� window control: again the adapter keeps a FIFO
with packets, but the scheduler has access to the
�rst W packets in the FIFO. It tries to send pack-
ets in this window in round robin fashion.

� logical channels: the adapter has access to the
heads of L queues of packets called logical chan-
nels. When scheduling a packet for transmission,
the host assigns the packet to a speci�c logical
channel, typically based on the packet destina-
tion, e.g. di�erent logical channels serve di�erent
destinations or groups of destinations. This ap-
proach is used in gigabit Nectar [13].

With L = W = 1, the window and logical channel
strategies are identical to FIFO scheduling, which is
similar to the use of \camp on" in HIPPI terminology.

We will also consider the case of central control, i.e.
all scheduling decisions are made based on full knowl-
edge of the current state of the network. This could
be implemented by having scheduling done on the
switch, or by having the information broadcasted to
the adapters. In the case of central control we assume
window scheduling for each port, i.e. the scheduler has
access to the information of the �rst W packets wait-
ing at each input port. When an output port frees up
and multiple packets are available, it randomly picks

one. When a packet is scheduled for transmission, the
data 
ows from the source, through the input port to
the output port (making both ports busy) and then
to the destination. If another packet is available for
transmission, it will take the place of the transmitted
packet in the window.

In this paper, we focus on networks with a single
switch. We present results for an ideal switch (no
overhead), and for the case that packet scheduling
and connection set up incur an overhead. If set up is
free, the performance of networks with central and dis-
tributed control are identical. Our performance mea-
sure is saturation throughput, de�ned as the ratio of
the total number of bits sent over the maximum ag-
gregate switch bandwidth (number of ports times the
link bandwidth).

2.2 Simulation methodology

We use an event driven simulator that models the
operation of the network. Events fall in three cat-
egories: application events (e.g. generate a new
packet), adapter events (e.g. try to establish a con-
nection, or handle an end of packet event) and switch
event (e.g. handle an incoming connection request).
The accuracy of the simulator is one microsecond; all
events scheduled for the same one microsecond time
slot are executed in random order. All simulations
were run for 5 to 20 seconds of simulated time, de-
pending on how long it took to get steady state re-
sults. Typically, scenarios that use large packet sizes
had to run longer.

3 Earlier work

In [7], Hluchyj and Karol study the impact of four
di�erent queuing organizations on the performance of
packet switching networks consisting of a single non-
blocking switch. They assume a �xed packet size and
free connection set up, and found that with FIFO
queuing, the saturation throughput is 0.586. The
throughput increases with the window size. In [9][11],
the above study was extended to the case that an out-
put port can accept multiple packets simultaneously.
For large switches, and assuming a uniform distribu-
tion of the destinations, the maximum throughput is
more than 0.99 when more than three packets can be
received at a time.

In [1], the authors use simulation to determine the
saturation throughput of a switch-based network using
central control. There is a cost for connection set up
and �xed-sized packets are used. The results show
that the switch performs better under congestion than
a bus and that performance degrades as the packet size
decreases.
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Figure 1: Throughput with ideal switch and �xed
packet size

In [4][6], the authors model a single switch net-
work with negligible connection setup cost. Both the
packet size and the inter-packet arrival times follow an
exponential distribution. Di�erent connection man-
agement strategies and service disciplines are studied.
The results show that central connection management
outperforms distributed control, and that a large win-
dow size is superior to FIFO queuing.

In [5], three di�erent policies for setting up con-
nections in HIPPI systems are compared. Besides the
centralized and the distributed strategies, which are
similar to the ones we study, the authors consider a
broadcast strategy, where all nodes are noti�ed when
an outport frees up, allowing them to retry a desti-
nation as soon as it frees up. The study shows that
the broadcast strategy performs better than the cen-
tralized approach, but worse than the distributed one.
However, similar to most other studies, only scenar-
ios with �xed packet sizes, FIFO scheduling, uniform
destination distribution, and free connection set up
are considered.

4 Simple Network and Tra�c Model

We �rst consider the case that the set up connection
time is 0, all packets are of the same size and packet
destinations are uniformly distributed across all des-
tinations. Figure 1 shows the saturation throughput
as a function of the switch size (logarithmic scale) for
di�erent window sizes. Our simulation results match
the analytical and simulation results in [7].

For a �xed window size, the throughput decreases
with increasing switch sizes. The reason is that the
chances of a con
ict for an output port increase with
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Figure 2: Throughput with ideal switch, FIFO
scheduling and uniform packet size

the switch size. With FIFO scheduling (window size
equal to 1), the throughput 
attens out at about
58% percent. Using a window scheduling policy im-
proves the throughput. With a window size of 16,
the throughput is over 90% for all switch sizes, while
the throughput is over 98% with a window size of 64.
We conclude that window scheduling is e�ective at in-
creasing throughput in this case.

5 Tra�c with variable packet size

We relax the constraint that packet sizes are �xed,
but we still assume an ideal switch and uniform packet
destinations. We consider uniformand bimodal packet
size distributions, and we study FIFO and window
scheduling strategies. Note that under these condi-
tions, logical channels (with the number of logical
channels equal to the number of ports) have a sat-
uration throughput of 100%.

5.1 Uniform packet size distribution

Figure 2 shows the saturation throughput with
the packet size uniformly distributed over an interval
[l; u], and FIFO queuing. The graph shows that the
throughput decreases as the interval length u � l in-
creases. This performance loss is a result of the FIFO
scheduling strategy: when a packet occupies an out-
put port, it prevent any node with a packet for that
output port at the head of the queue from sending.
Intuitively, as the di�erence in the packet sizes grows,
it becomes more likely that a single (or a small num-
ber of) large packets will force senders to be idle, since
senders can on average send more packets during the
transmission of a single large packet, thus increasing
the chance that they will block on a busy output port.
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Figure 3: Throughput with ideal switch, window
scheduling, and uniform packet size [0,32000]
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Figure 4: Throughput with ideal switch (size 32), win-
dow scheduling and uniform packet size

Figure 3 shows what happens if we use a window
scheduling strategy with a uniform packet size dis-
tribution; the packet size distribution intervals is [0,
32000]. We observe that window scheduling helps in
increasing the saturation throughput considerably. A
comparison of Figures 1 and 3 shows that the di�er-
ence in throughput compared with �xed-sized tra�c
is negligible for large window sizes. Figure 4 con�rms
this: it shows the throughput as a function of the win-
dow size for di�erent uniform packet size distributions.

5.2 Bimodal distribution

Studies of network tra�c show that the packet size
distribution is typically bimodal: the packet size is
either the maximum transfer unit (MTU) for the net-
work, or the packets are short. In this section we look

N = 2
N = 4
N = 8
N = 16
N = 32
N = 64
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Figure 5: Throughput with ideal switch, FIFO
scheduling and bimodal packet size (L = 16000)

at the impact of having a bimodal packet distribution
on saturation throughput. We approximate the dis-
tribution found on existing networks by using a �xed
size for short packets (100 bytes).

Two parameters control the tra�c distribution: the
percentage of long (short) packets, and the long packet
size. We use the \percentage of bytes in long packets"
as a parameter instead of the more obvious \percent-
age of long packets", because it is more characteris-
tic of a tra�c load than the number of long packets.
For example, if the MTU of the network changes, the
percentage of long packets will change dramatically.
There will also be a change in the number of short
packets (e.g. acks), since it depend on the number of
long packets, but overall, the impact on the percentage
of bytes in long packets will be small.

In practice, the distribution of bytes between long
and short depends on the environment in which the
network is used. One tra�c study [3] for general in-
ternet tra�c indicates that about 80% of the bytes are
in long packets. The average short packet size is 100
bytes in that study. We expect a higher percentage of
bytes in long packets in supercomputer or distributed
computing environments.

Figure 5 shows the saturation throughput with
FIFO scheduling for di�erent switch sizes and dif-
ferent distributions of bytes between long and short
packets (BinL is Bytes in Long packets); long packets
are 16000 bytes. The extreme cases when all bytes
are in long or short packets correspond to the �xed-
sized packet case. Figure 5 shows that for switch sizes
larger than 2, a bimodal packet size distribution re-
sults in a much lower throughput than �xed packet
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Figure 6: Throughput with ideal switch (size 32),
FIFO scheduling and bimodal packet size

sizes. For example, when the switch size is 16, the
throughput decreases form 0.60 (100% BinL) to 0.22
(90% BinL). The drop in throughput is most dramatic
when, starting with all bytes in long packets, we move
just a few percent of the bytes into short packets. For
large switches, the throughput is minimal when bytes
are about equally distributed between long and short
packets.

The reason for this throughput loss is the same as
with the uniform packet distribution: occasional large
packets may occupy an output ports for a long time,
thus blocking the transmission of many small packets
to these output ports from other input ports. When
the switch size becomes larger, the number of input
ports that are blocked increases, so the throughput
decreases faster. This throughput loss becomes worse
when the size of long packets increases, as is shown in
Figure 6. For instance, when the size of long packets is
64000 bytes, the performance can be worse than 15%.
An important conclusion is that for a speci�c tra�c
mix (i.e. certain percentage of bytes in long packets),
it is not necessarily advantageous to use the largest
possible packet size.

Figure 7 shows the e�ect of using window schedul-
ing with di�erent window sizes on the saturation
throughput; the results are for a 32 node switch and
a long packet size of 32000 bytes. We again see that
window scheduling is e�ective at increasing through-
put, although the throughput remains well below the
throughput with �xed-sized packets. For example,
with a window of size of 32, the throughput drops
from 97% with �xed sized packets to 59% with 75%
of the bytes in long packets, to 56% with 50% of the
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Figure 7: Throughput with ideal switch (size 32), win-
dow scheduling and bimodal packet size (L = 32000)
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Figure 8: Throughput with ideal switch (size 32), win-
dow scheduling and bimodal packet size (90% BinL)

bytes in long packets (the worst case).

Figure 8 shows the impact of the size of long packets
on the throughput with 90% of the bytes in long pack-
ets. We see the same pattern as with FIFO schedul-
ing: reducing the size of the large packets results in
a more e�ective sharing of the network. A combina-
tion of large windows and a relatively small MTU size
gives the best performance. However, the impact of
the packet size is smaller for large window sizes, in
other words, with large window size, the packet size
can be increased with relatively small impact on per-
formance.

In the previous discussion, we used a short packet
size of 100 bytes. The size of short packets does a�ect
the saturation throughput in bimodal distributions.
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Figure 9: Throughput with ideal switch (size 32),
FIFO scheduling and bimodal packet size with short
packet size of 200.

In Figure 9, we use a short packet size of 200 bytes.
A comparison with with Figure 6 shows that a larger
short packet size improves performance slightly. This
should not be a surprise since this e�ectively reduces
the variance in the packet size distribution. The im-
pact is however small so we will only use a single short
packet size (100 bytes) in the remainder of the paper.

5.3 Summary

We showed that the packet size distribution has a
big impact on throughput. In general, the larger the
variance in packet size, the worse the performance.
However, the simulations show that window schedul-
ing can be used to counteract the adverse e�ects of
the packet size distribution.

We observed that, given a certain percentage of
bytes in long packets, increasing the maximum packet
size reduces throughput, because the sharing of the
network is less e�ective. Note however we have not yet
taken the e�ect of per-packet overhead into account.
We also observed that, in most cases, throughput in-
creases as more bytes travel in long packets. This is
good news, since we expect a high percentage of bytes
in long packets in supercomputer applications and dis-
tributed computing, e.g. in the environments where
HIPPI is most commonly used.

6 Scheduling overhead

We make the model of the network more realistic by
adding scheduling overhead. In the case of distributed
control, we add two microseconds to select the next
packet, and �ve microseconds to attempt to set up a
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Figure 10: Throughput with overheads and dis-
tributed FIFO scheduling

connection. Note that these costs occur independent
from whether the packet can be sent or not. Since, a
request for a connection from an adapter may be re-
fused many times before a packet can be sent, these
overheads can be incurred many times per packet. We
consider the impact of di�erent overheads on the per-
formance later in the section.

6.1 Fixed packet size

Figure 10 shows the throughput as a function of
the switch size using FIFO scheduling and for �xed
packet sizes, and compares it with the case of no over-
head (labeled ideal in the graph). As expected, the
scheduling overhead reduces the throughput and the
reduction is more severe for smaller packets. Figure
11 shows the impact of window scheduling. We again
see that window scheduling increases throughput, al-
though it cannot make up for the scheduling overhead.
For packet sizes of 8000 bytes of smaller, the through-
put remains under 75%.

It is interesting that the impact of the overhead is
more signi�cant for window scheduling than for FIFO
scheduling. The change in performance when the long
packet size is changed from 2000 bytes to 64000 bytes
is less than 15% with FIFO scheduling, but is more
than 35% with window scheduling with the window
size is 32. The reason is simple. With FIFO schedul-
ing, the adapter is always trying to send the same
packet at the head of the queue, so if that destina-
tion frees up, the connection will be established al-
most immediately, and the cost of the overhead is at
most the cost of one connection attempt. With win-
dow scheduling, however, the adapter tries to send
packets in round robin fashion, and when a connec-
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Figure 11: Throughput for 32 node switch with over-
head, and di�erent window and packet sizes

tion frees up, several other attempts might be made
for other packets before this is observed, so the delay
can be the cost of several connection attempts. Note
that with overhead, window scheduling still performs
better, but the advantage is smaller.

6.2 Bimodal packet size distribution

Figure 12 shows the throughput as a function of the
percentage of bytes in long packets, for di�erent switch
sizes; the long packet size is 32000 bytes and FIFO
scheduling is used. We observe that the throughput
decreases monotonically with the decreasing percent-
age of bytes in long packets. The e�ect is quite dra-
matic and the throughput drops to less than 10% if
most of the bytes are in small packets. This trend is
in contrast with the results of Figure 5 (no overhead),
where the throughput was minimal with about 50% of
the bytes in long packets. The reason is that as more
bytes travel in short packets, the number of packets
increases, and so does the impact of the (per-packet)
overhead.

Note that the curve corresponding to a switch size
of 2 (N2) in Figure 12 corresponds to the case that
there is no queuing delay (since there is only a single
destination). The curve e�ectively divides the \lost
throughput" in two components: the space above the
grey curve is throughput that is lost due to (minimal)
scheduling overhead, while the space between the N2
curve and the other throughput curves is throughput
that is lost as a result of destination con
icts and re-
sulting queuing delays. We see that the scheduling
overhead is quite large, unless almost all the bytes are
carried in long packets, so the low throughput should
not be a surprise.
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Figure 12: Throughput for a 32 node switch with over-
head, FIFO scheduling, and bimodal distribution
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Figure 13: Throughput for a 32 node switch with over-
head, FIFO scheduling, and bimodal distribution

Figure 13 shows the throughput as a function of the
percentage of bytes in long packets for di�erent long
packet sizes. We see that the optimal long packet size
depends on the percentage of bytes in long packets.
In most cases, smaller large packet sizes work better.
The reason is that the sharing of the network is more
e�ective with smaller long packets, as was discussed
in Section 5. However, if almost all bytes are in long
packets, it becomes more attractive to use larger large
packet sizes. The reason is that this scenario is similar
to that of �xed packet sizes, and using a larger packet
size reduces the e�ect of the scheduling overhead.

Figure 14 shows that adding window scheduling im-
proves performance, but only in a limited way. There
is a bene�t of 20% or more if most bytes are in long
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Figure 14: Throughput with overhead, bimodal packet
size (L = 32000), and 32 node switch
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Figure 15: Throughput for a 32 node switch with over-
head, bimodal distribution, and window scheduling
(W = 32)

packets, but as soon as a reasonable percentage of
the bytes are in short packets, the value of window
scheduling disappears. The curve labeled \no con
ict"
perfect shows the throughput that we would have if
scheduling were perfect (all connections can be made
immediately and there is never a queuing delay) and
the only overhead is scheduling overhead. We observe
that the scheduling overhead reduces the throughput
considerably, and window scheduling cannot recover
that loss: it can only reduce the queuing delay.

Figure 15 shows the impact of the long packet size
on the throughput for a 32 node switch and and a
window size of 32. We can make several observa-
tions. First, window scheduling has more impact if
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Figure 16: Throughput with di�erent overheads, L =
4000 (top) and 64000 (bottom), and N = 32

more bytes are in long packets (compare with Fig-
ure 13). The reason is that with smaller large packet
sizes, more throughput is lost due to scheduling over-
head (and less to scheduling con
icts), and window
scheduling cannot recover that bandwidth. Second,
the best large packet size depends on percentage of
bytes in long packets, as we already observed in Fig-
ure 13 for FIFO scheduling. Finally, if less than 75%
of the bytes are in long packets, the size of the long
packets has little impact on the throughput.

6.3 Changing the overhead

All earlier results use the same control overhead.
Figure 16 shows the impact on performance of chang-
ing the overhead for two di�erent maximum packet
sizes. The impact of a higher overhead is quite sub-
stantial. We also see that changing the overhead has
more impact when the average packet size is small,
i.e., when the percentage of bytes in long packets is
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Figure 17: Throughput for switch with overhead using
logical channel and window scheduling and bimodal
packet size (L = 32000)

small, or when the long packet size is small.

Another observation is that increasing window size
does not reduce the performance loss caused by in-
creasing the overhead. In fact, with higher over-
heads, window scheduling becomes less e�ective. This
con�rms that window scheduling cannot overcome
scheduling overheads, and that the polling that takes
place as part of window scheduling becomes more ex-
pensive when overheads increase. Note that when
HIPPI networks are used for MAN or WAN intercon-
nects, the cost of setting up connections increases dra-
matically as a result of the propagation delays. Our
results indicate that this is in general not a good so-
lution.

6.4 Logical channels

In this section we compare window-based schedul-
ing with scheduling based on logical channels. As dis-
cussed earlier, with logical channels, the adapter keeps
packet in a per-destination queue, and tries to send
packets from the queues in round-robin fashion. Fig-
ure 17 shows the throughput with logical channels (L
= 32) and window scheduling (W = 32) for a 32 node
switch with long packets of size 32000. The results
are almost identical. Under saturation conditions, we
expect the two strategies to behave in a similar way,
since both always have packets to send. The only dif-
ference is that when packets for a busy destination
accumulate on the adapter, that destination will be
retried at a higher rate with window-scheduling.
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Figure 18: Throughput with overheads and using cen-
tral control

6.5 Central control

With central control, the packet scheduler has com-
plete knowledge of the state of the input queues (or
windows), when selecting the next packet to be sent,
so the connection request will always succeed. We use
a cost of two microseconds to select a packet and to
set up a connection.

Figure 18 shows the saturation throughput when
central control and window scheduling is used. The
curve for the ideal case without overhead is also dis-
played. The graph shows that the performance loss
due to overhead in the central scheduling is propor-
tional to the time sending an average sized packet.
The reason is that with central control, the overhead
for selecting a packet is incurred exactly once for every
packet.

A comparison of Figure 18 with Figure 11, which
shows the throughput under the same conditions but
with distributed control (which also has higher over-
head), shows that central control outperforms dis-
tributed control, as one would expect. We also observe
that window scheduling pays o� more in the case of
central control than in the case of distributed control.
The reason is that the central controller has access to
the windows of all ports, so increasing the window size
has a larger impact.

6.6 Summary

We showed that scheduling overhead reduces
throughput substantially. The impact is dramatic
when a lot of the bytes travel in short packets. Win-
dow scheduling still pays o� in comparison with FIFO
scheduling, but it is not e�ective at reducing schedul-
ing overhead.
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Figure 19: Throughput with packet trains, window
size 1 (top) and 32 (bottom), and N = 32

7 E�ect of correlation between packet

destinations

Up to this point we have a uniform distribution of
packet destinations. In this section we �rst look at
the e�ect of packet trains, sequences of packets to the
same destination. This is for example a model of the
e�ect of packetization and fragmentation. We then
look at what happens if a lot of the tra�c is within a
subset of the nodes, for example a set of �le servers.
The scheduling overhead is 5 + 2.

7.1 Packet trains

In Figure 19, we compare two di�erent methods for
transmitting 32000 byte packets (bimodal packet dis-
tribution): as a single packet and as a sequence of eight
4000 byte packets. We compare these approaches with
the case of long packets of size 4000 bytes. With FIFO
scheduling (top), the packet train approach outper-
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Figure 20: Throughput with concentrate tra�c, win-
dow 32, and bimodal packet size (L = 32000)

forms sending 32000 byte packets. Both behave worse
than (random) 4000 byte long packets. The reason
is that the less e�cient sharing of the network that
results from sending very large packets has more im-
pact on the performance than the increased overhead
that results from breaking up the large packets into a
sequence of smaller ones.

With a large window size (bottom), the three meth-
ods result in very similar performance when the per-
cent of bytes in long packets drops under a certain level
(e.g., 75%). With window scheduling, the scheduling
overhead has more impact than with FIFO schedul-
ing, and the two e�ects (less e�cient sharing versus
increased overhead) cancel each other out.

7.2 Concentration of tra�c

We now analyze a more complicated scenario. The
network has a number of �le servers (shown on the
x-axis) and a number of clients; the total number of
nodes is 32. Clients send 80% of their tra�c to the �le
servers (98% of bytes in long packets) and 20% of their
tra�c to other clients (75% of bytes in long packets).
The �le servers only sends to clients (98% of bytes in
long packets). Figure 20 shows the throughput of the
di�erent tra�c streams. The picture also shows the
throughput for uniform packet distributions with 98%
and 75% of the bytes in long packets (from Figure 15).

We observe that the �le servers can send at high
rates; this is a result of the high percentage of bytes
in long packets for that tra�c stream. However, the
servers are receiving data at very low rates. The rea-
son is that the clients can only send at a low rate,
since their communication with other clients is inef-
�cient; this slows down the rate of the more e�cient



communication with the server. We expect that bet-
ter scheduling techniques (i.e. other than round robin)
can be used to improve performance of the communi-
cation between the client and servers.

8 Conclusion

We showed that the tra�c characteristics and over-
head have an enormous impact on performance. The
throughputs observed di�er by as much as a factor of
10. In general, a high variance in the packet size distri-
bution and high scheduling overhead reduce through-
put. More intelligent scheduling on the adapter, e.g.
window scheduling, can overcome most of the prob-
lems created by the packet size distribution, but the
negative e�ect of scheduling overhead cannot be re-
duced that way.

These results are only a �rst step in understanding
the performance of circuit switched LANs as a func-
tion of the tra�c characteristics. More work is needed
to �nd better scheduling techniques that improve the
throughput of realistic tra�c loads.
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