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Abstract
Formal methods hold great promise in promoting further discovery and inno-

vation for complicated biological systems. Models can be tested and adapted in-
expensively in-silico to provide new insights. However, development of accurate
and efficient modeling methodologies and analysis techniques is still an open chal-
lenge. This thesis proposal is focused on designing appropriate modeling formalisms
and efficient analyzing algorithms for various biological systems in three different
thrusts:
• Modeling Formalisms: we have designed a multi-scale hybrid rule-based

modeling formalism (MSHR) to depict intra- and intercellular dynamics using
discrete and continuous variables respectively. Its hybrid characteristic inherits
advantages of logic and kinetic modeling approaches.

• Formal Analyzing Algorithms: 1) we have developed a LTL model check-
ing algorithm for Qualitative Networks (QNs). It considers the unique feature
of QNs and combines it with over-approximation to compute decreasing se-
quences of reachability set, resulting in a more scalable method. 2) We have
developed a formal analyzing method to handle probabilistic bounded reacha-
bility problems for two kinds of stochastic hybrid systems considering uncer-
tainty parameters and probabilistic jumps. Compared to standard simulation-
based methods, it supports non-deterministic branching, increases the coverage
of simulation, and avoids the zero-crossing problem. 3) We are designing a new
framework, where formal methods and machine learning techniques take joint
efforts to automate the model design of biological systems. Within this frame-
work, model checking can also be used as a (sub)model selection method. 4)
We will propose a model checking technique for general stochastic hybrid sys-
tems (GSHSs) where, besides probabilistic transitions, stochastic differential
equations are used to capture continuous dynamics.

• Applications: To check the feasibility of our modeling language and algo-
rithms, we have constructed and studied 1) Boolean network models of the
signaling network within pancreatic cancer cells, 2) QN models describing cel-
lular interactions during skin cells’ differentiation, 3) a MSHR model of the
pancreatic cancer micro-environment, 4) a hybrid automaton of our light-aided
bacteria-killing process, 5) extended stochastic hybrid models for atrial fibrilla-
tion, prostate cancer treatment, and our bacteria-killing process, and 6) a GSHS
model depicting population changes of different species within the algae-fish-
bird freshwater ecosystem considering distinct doses of estrogen injected.
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Chapter 1

Introduction

As biomedical research advances into more complicated systems, there is an increasing need to

model and analyze these systems to better understand them. For decades, biologists have been

using diagrammatic models to describe and understand the mechanisms and dynamics behind

their experimental observations. Although these models are simple to be built and understood,

they can only offer a rather static picture of the corresponding biological systems, and scalability

is limited. Thus, there is an increasing need to develop formalisms into more dynamic forms that

can capture time-dependent processes, together with increases in the models’ scale and com-

plexity. Formal specification and analyzing methods, such as model checking techniques, hold

great promise in helping further discovery and innovation for these complicated biochemical sys-

tems. Domain experts from physicians to chemical engineers can use computational modeling

and analysis tools to clarify and demystify complex systems. Models can be tested and adapted

inexpensively in-silico providing new insights. However, development of accurate and efficient

modeling methodologies and analysis techniques are still open challenges for biochemical sys-

tems. For model analysis, simulation is the most widely used verification technique. However,

in the case of complex, asynchronous systems, these techniques can cover only a limited portion

of possible behaviors. A complementary verification technique is Model Checking. In this ap-

proach, the verified system is modeled as a finite state transition system, and the specifications
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are expressed in a propositional temporal logic. Then, by exhaustively exploring the state space

of the state transition system, it is possible to check automatically if the specifications are satis-

fied. The termination of model checking is guaranteed by the finiteness of the model. One of the

most important features of model checking is that, when a specification is found not to hold, a

counterexample (i.e., a witness of the offending behavior of the system) is produced.

In this thesis proposal, we have been focusing on designing appropriate modeling formalisms

and efficient analyzing algorithms for various biological systems in three different thrusts:

• Modeling Formalisms: In prior work, we designed a multi-scale hybrid rule-based mod-

eling formalism, extended from the traditional rule-based language - BioNetGen, which

is able to describe the intracellular reactions and intercellular interactions simultaneously.

Furthermore, to depict intracellular reactions, its hybrid characteristic asks for less in-

formation about model parameters, such as reaction rates, than traditional rule-based lan-

guages. In a nutshell, our language can describe both discrete and continuous models using

a unified rule-based representation. This results in a modeling framework that combines

the advantages of logic and kinetic modeling approaches.

• Formal Analyzing Algorithms: In completed work, we 1) developed a model check-

ing algorithm for Qualitative Networks (QNs), a formalism for modeling signal transduc-

tion networks in biology. One of the unique features of qualitative networks, due to their

lacking initial states, is that of “reducing reachability sets”. Our method considers this

unique features of QNs and combines it with over-approximation to compute decreasing

sequences of reachability set for QN models, which results in a more scalable model check-

ing algorithm for QNs; and 2) developed a formal analyzing method to handle probabilistic

bounded reachability problems for two kinds of stochastic hybrid systems - general hybrid

systems with parametric uncertainty and probabilistic hybrid automata with additional ran-

domness. Standard approaches to reachability problems for linear hybrid systems require

numerical solutions for large optimization problems, and become infeasible for systems in-
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volving both nonlinear dynamics over the reals and stochasticity. Our approach combines

a SMT-based model checking technique with statistical tests in a sound manner. Compared

to standard simulation-based methods, it supports non-deterministic branching, increases

the coverage of simulation, and avoids the zero-crossing problem. In proposed work, we

will design a model checking technique for general stochastic hybrid systems (GSHSs)

where, besides probabilistic transitions, stochastic differential equations are used to cap-

ture continuous dynamics. Our approach introduces a new quantifier symbol for random

variables and SDE constraints for stochastic processes. It will integrate a new SDE solver,

which will make use of numerical solutions to SDEs and simulation-based methods esti-

mating distributions of hitting times for stochastic processes, into our existing nonlinear

SMT solver. It will be used to analyze the probabilistic bounded reachability problems for

GSHSs. Moreover, the other part of the proposed work still to be completed will be devel-

oping a new framework, where formal methods and machine learning techniques take joint

efforts to automate the model construction of biological and biomedical systems. Within

this framework, model checking can also be used as a (sub)model selection method.

• Applications: To check the feasibility of our modeling language and analysis algorithms,

previously,

we constructed Boolean Network models for the signaling network for single pan-

creatic cancer cell, and formulated important system dynamics with respect to cell

fate, cell cycle, and oscillating behaviors into CTL formulas. Then, we used an ex-

isting symbolic model checker NuSMV to check against these CTL properties, and

confirmed experimental observations and thus validated our model.

we built Qualitative Network models describing the cellular interactions during the

development of the skin differentiation, and applied our improved bounded LTL

model checking technique. By comparing our method with an existing model check-

ing technique for Qualitative Networks, we showed that our method offered a signif-
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icant acceleration especially when analyzing large and complex models.

we developed a multi-scale hybrid rule-based model for the pancreatic cancer micro-

environment, and employed statistical model checking to analyze it. The formal anal-

ysis results showed that our model could reproduce existing experimental findings

with regard to the mutual promotion between pancreatic cancer and stellate cells.

The results also explained how treatments latching onto different targets resulted in

distinct outcomes. We then used our model to predict possible targets for drug dis-

covery.

we created a nonlinear hybrid model to depict a light-aided bacteria-killing process.

Then, by using a recently promoted δ-complete decision procedure-based model

checking technique, we found that 1) the earlier we turn on the light after adding

IPTG, the quicker bacteria cells can be killed; 2) in order to kill bacteria cells, the

light has to be turned on for at least 4 time units; 3) the time difference between

removing the light and removing IPTG has few impact on the cell killing outcome;

and 4) the range of the necessary concentration of SOX to kill bacteria cells might be

broader than the one given by our collaborating biologist, which had been confirmed

then.

we extended hybrid models for atrial fibrillation, prostate cancer treatment, and our

bacteria-killing process into stochastic hybrid models. We, then, applied our proba-

bilistic bounded reachability analyzer SReach to demonstrate its feasibility in model

falsification, parameter estimation, and sensitivity analysis.

we constructed a GSHS model to track changes in population sizes of different

species within the algae-fish-bird ecosystem with distinct doses of estrogen injected.

We will use it as the case study model for our proposed model checking technique

for GSHSs later.

4



Chapter 2

Completed Work: Pancreatic Cancer

Single Cell Model as Boolean Network and

Symbolic Model Checking

Signal transduction is a process for cellular communication where the cell receives (and responds

to) external stimuli from other cells and from the environment. It affects most of the basic cell

control mechanisms such as differentiation and apoptosis. The transduction process begins with

the binding of an extracellular signaling molecule to a cell-surface receptor. The signal is then

propagated and amplified inside the cell through signaling cascades that involve a series of trigger

reactions such as protein phosphorylation. The output of these cascades is connected to gene

regulation in order to control cell function. Signal transduction pathways are able to crosstalk,

forming complex signaling networks.

In this chapter, we have investigated the functionality of six signaling pathways that have been

shown to be genetically mutated in 100% during the progression of pancreatic cancer [46], within

a pancreatic cancer cell, and constructed a in-silico Boolean network model considering the

crosstalk among them [35, 36]. In our model, we have considered three important cell functions

- proliferation, apoptosis, and cell cycle arrest. Given this model, we are interested in verifying
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that sequences of signal activation will drive the network to a pre-specified state within a pre-

specified time. Thus, we have applied symbolic model checking (SMC) to it, and shown that its

behaviors are qualitatively consistent with experiments. We have demonstrated that SMC offers

a powerful approach for studying logical models of relevant biological processes.

2.1 Pancreatic Cancer Cell Model
Genomic analyses [46] have identified six cellular signaling pathways that are genetically al-

tered in 100% of pancreatic cancers: the KRAS, Hedgehog, Wnt/Notch, Apoptosis, TGFβ,

and regulation of G1/S phase transition signaling pathways. Also, many in vitro and in vivo

experiments with pancreatic cancer cells have found that several growth factors and cytokines

including IGF/Insulin, EGF, Hedgehog, WNT, Notch ligands, HMGB1, TGFβ, and oncoprotein

including RAS, NFκB, and SMAD7 are overexpressed [6]. We performed an extensive literature

search and constructed a signaling network model composed by the EGF-PI3K-P53, Insulin/IGF-

KRAS-ERK, SHH-GLI, HMGB1-NFκB, RB - E2F, WNTβ - Catenin, Notch, TGFβ - SMAD,

and Apoptosis pathway. Our aim is to study the interplay between tumor growth, cell cycle ar-

rest, and apoptosis in the pancreatic cancer cell. In Figure 2.1, we depict the crosstalk model of

different signaling pathways in the pancreatic cancer cell. (See [36] about the details of these

pathways within our model.)

2.2 Results and Discussion
We used NuSMV [20], a Symbolic Model Checker to determine whether our in silico pancreatic

cancer cell model satisfies certain properties written in a temporal logic. In our model, we set

the initial values of ARF, INK4α, and SMAD4 to be OFF (0), while Cyclin D is set to be ON

(1). These choices are motivated by the following observations. According to the genetic pro-

gression model of pancreatic adenocarcinoma, the malignant transformation from normal duct to

pancreatic adenocarcinomas requires multiple genetic alterations in the progression of neoplas-

tic growth, represented by Pancreatic intraepithelial neoplasia (PanINs)1A/B, PanIN-2, PanIN-3

[8]. The loss of the functions of CDKN2A, which encodes two tumor suppressors INK4A and
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Figure 2.1: Schematic view of signal transduction in the pancreatic cancer model. Blue nodes
represent tumor-suppressor proteins, red nodes represent oncoproteins/lipids. Arrow represents
protein activation, circle-headed arrow represents deactivation.
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ARF, occurs in 80 - 95% of sporadic pancreatic adenocarcinomas [60]. SMAD4 is a key compo-

nent in the TGFβ pathway which can inhibit most normal epithelial cellular growth by blocking

the G1-S phase transition in the cell cycle; and it is frequently lost or mutated in pancreatic

adenocarcinoma [75]. Furthermore, it has been shown that the loss of SMAD4 can predict de-

creased survival in pancreatic adenocarcinoma [38]. Besides the loss of many tumor suppressors,

the oncoprotein Cyclin D is frequently overexpressed in many human pancreatic endocrine tu-

mors [19]. As shown in Table 2.1, we divide the properties that have been considered into three

categories, according to their relationship with Cell Fate, Cell Cycle, and Oscillations.
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property verification
result

discussion

Cell Fate
AF Apoptosis ∨ AF Arrest False the cell does not necessarily have to

undergo apoptosis, and the cell cycle
does not necessarily stop

AF Proliferate True the cancer cell will necessarily proliferate
AF AG Proliferate True proliferation is eventually both

unavoidable and permanent
AF !Apoptosis ∧ AF !Arrest True it is always possible for the cancer cell to

reach states in which Apoptosis and
Arrest are OFF, thereby making cell

proliferation possible
AF (!Apoptosis ∧ !Arrest ∧

Proliferate)
False the model cannot always eventually

reach a state in which apoptosis and cell
cycle arrest are not inhibited and cell

proliferation is active
AF AG !Apoptosis ∨

AF AG !Arrest
False inhibition of apoptosis and cell cycle

arrest are not unavoidable and permanent
Cell Cycle

A (!Proliferate U CyclinD) True it is always the case that cell proliferation
does not occur until Cyclin D is

expressed (or activated)
AF AG CyclinD False in our model the activation of Cyclin D is

not a steady state
!E (!P53 U Apoptosis) False apoptosis can be activated even when

P53 is not
Oscillations

TGFβ → AG ((!NFκB →
AF NFκB) ∧ (NFκB →

AF !NFκB)

True an initial overexpression of TGFβ always
leads to oscillations in NFκB’s

expression level
PIP3 → AG ((!NFκB →
AF NFκB) ∧ (NFκB →

AF !NFκB))

True PIP3 has the similar impact on NFκB’s
expression level

AG ((P53 → AFMDM2) ∧
(MDM2 → AF !P53))

True overexpression of P53 will always
activate MDM2, which will in turn

inhibit P53

Table 2.1: Model checking results.
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Chapter 3

Completed Work: Biological Signaling

Networks as Qualitative Networks and

Improved Bounded Model Checking

One successful approach to the usage of abstraction in biology has been the usage of Boolean

networks [69]. Boolean networks call for abstracting the status of each modeled substance as

either active (on) or inactive (off). Although a very high level abstraction, it has been found

useful to gain better understanding of certain biological systems [61, 64]. The appeal of this

discrete approach along with the shortcomings of the very aggressive abstraction, led researchers

to suggest various formalisms such as Qualitative Networks [62] and Gene Regulatory Networks

[57] that allow to refine models when compared to the Boolean approach. In these formalisms,

every substance can have one of a small discrete number of levels. Dependencies between sub-

stances become algebraic functions instead of Boolean functions. Dynamically, a state of the

model corresponds to a valuation of each of the substances and changes in values of substances

occur gradually based on these algebraic functions. Qualitative networks and similar formalisms

(e.g., genetic regulatory networks [[69]) have proven to be a suitable formalism to model some

biological systems [12, 61, 62, 69].
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Here, we consider model checking of qualitative networks. One of the unique features of

qualitative networks is that they have no initial states. That is, the set of initial states is the

set of all states. Obviously, when searching for specific executions or when trying to prove a

certain property we may want to restrict attention to certain initial states. However, the general

lack of initial states suggests a unique approach towards model checking. It follows that if a

state that is not visited after i steps will not be visited after i′ steps for every i′ > i. These

“decreasing” sets of reachable states allow to create a more efficient symbolic representation

of all the paths of a certain length. However, this observation alone is not enough to create an

efficient model checking procedure. Indeed, accurately representing the set of reachable states

at a certain time amounts to the original problem of model checking (for reachability), which

does not scale. In order to address this we use an over-approximation of the set of states that

are reachable by exactly n steps. We represent the over-approximation as a Cartesian product

of the set of values that are reachable for each variable at every time point. The computation

of this over-approximation never requires us to consider more than two adjacent states of the

system. Thus, it can be computed quite efficiently. Then, using this over-approximation we

create a much smaller encoding of the set of possible paths in the system. We test our method on

many of the biological models developed using Qualitative Networks. The experimental results

show that there is significant acceleration when considering the decreasing reachability property

of qualitative networks. In many examples, in particular larger and more complicated biological

models, this technique leads to considerable speedups. The technique scales well with increase

of size of models and with increase in length of paths sought for.

3.1 Decreasing Reachability Sets

A notable difference between QNs and “normal” transition systems is that QNs do not specify

initial states. For example, for the classical stability analysis all states are considered as initial

states. It follows that if a state s of a QN is not reachable after i steps, it is not reachable after
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i′ steps for every i′ > i. Thus, there is a decreasing sequence of sets Σ0 ⊇ Σ1 ⊇ · · · ⊇

Σl such that searching for runs of the network can be restricted to the set of runs of the form

Σ0, Σ1, · · · , (Σl)
ω. Here we show how to take advantage of this fact in constructing a more

scalable model checking algorithm for qualitative networks.

Consider a Qualitative Network Q(V, T,N) with set of states Σ : V → {0, · · · , N}. We say

that a state s ∈ Σ is reachable by exactly i steps if there is some run r = s0, s1, · · · such that

s = si. Dually, we say that s is not reachable by exactly i steps if for every run r = s0, s1, · · ·

we have si 6= s.

Lemma 1. If a state s is not reachable by exactly i steps then it is not reachable by exactly i′

steps for every i′ > i.

The algorithm 1 computes a decreasing sequence Σ0 ⊃ Σ1 ⊃ · · · ⊃ Σj−1 such that all states

that are reachable by exactly i steps are in Σi if i < j and in Σj−1 if i ≥ j. We note that the

definition of Σj+1 in line 5 is equivalent to the standard Σj+1 = f(Σj), where function f(·)

is used to compute the next reachable set. However, we choose to write it as in the algorithm

below in order to stress that only states in Σj are candidates for inclusion in Σj+1. Given the sets

Σ0, · · · ,Σj−1, every run r = s0, s1, · · · of Q satisfies si ∈ Σi for i < j and si ∈ Σj−1 for i ≥ j.

In particular, if Q 2 ϕ for some LTL formula ϕ, then the run witnessing the unsatisfaction of ϕ

can be searched for in this smaller space of runs. Unfortunately, the algorithm 1 is not feasible.

Indeed, it amounts to computing the exact reachability sets of the QN Q, which does not scale

well [23].

Algorithm 1 Concrete Decreasing Reachability
1: Σ0 = Σ;
2: Σ−1 = ∅;
3: j = 0;
4: while Σj−1 6= Σj do
5: Σj+1 = Σj \ {s′ ∈ Σ|∀s ∈ Σ · s′ 6= f(s)};
6: j + +;
7: end while
8: return Σ0, · · · ,Σj−1

12



In order to effectively use Lemma 1 we combine it with over-approximation, which leads to

a scalable algorithm. Specifically, instead of considering the set Σk of states reachable at step k,

we identify for every variable vi ∈ V the domain Di,k of the set of values possible at time k for

variable vi. Just like the general set of states, when we consider the possible values of variable

vi we get that Di,0 ⊇ Di,1 ⊇ · · · ⊇ Di,l. The advantage is that the sets Di,k for all vi ∈ V and

k > 0 can be constructed by induction by considering only the knowledge on previous ranges

and the target function of one variable.

Consider the algorithm 2. For each variable, it initializes the set of possible values at time

0 as the set of all values. Then, based on the possible values at time j, it computes the possible

values at time j + 1. The actual check can be either implemented explicitly if the number of

inputs of all target functions is small (as in most cases) or symbolically (see [21]). Considering

only variables (and values) that are required to decide the possible values of variable vi at time j

makes the problem much simpler than the general reachability problem. Notice that, again, only

values that are possible at time j need be considered at time j+ 1. That is, Di,j+1 starts as empty

(line 6) and only values fromDi,j are added to it (lines 7 - 10). As before, Di,j+1 is the projection

of f(D1,j × · · · ×Dm,j) on vi. The notation used in the algorithm above stresses that only states

in Di,j are candidates for inclusion in Di,j+1.

The algorithm produces very compact information that enables to follow with a search for

runs of the QN. Namely, for every variable vi and for every time point 0 ≤ k < j we have a

decreasing sequence of domains

Di,0 ⊇ Di,1 ⊇ · · · ⊇ Di,k.

Consider a Qualitative NetworkQ(V, T,N), where V = {v1, · · · , vn} and a run r = s0, s1, · · · .

As before, every run r = s0, s1, · · · satisfies that for every i and for every t we have st(vi) ∈ Di,t

for t < j and st(vi) ∈ Di,j−1 for t ≥ j.

We look for paths that are in the form of a lasso, as we explain below. We say that r is a

13



Algorithm 2 Abstract Decreasing Reachability

1: ∀vi ∈ V ·Di,0 = {0, 1, · · · , N};
2: ∀vi ∈ V ·Di,−1 = ∅;
3: j = 0;
4: while ∃vi ∈ V ·Di,j 6= Di,j−1 do
5: for each vi ∈ V do
6: Di,j+1 = ∅;
7: for each d ∈ Di,j do
8: if ∃(d1, · · · , dm) ∈ D1,j × · · · ×Dm,j · fv(d1, · · · , dm) = d then
9: Di,j+1 = Di,j+1 ∪ {d};

10: end if
11: end for
12: end for
13: end while
14: j + +;
15: return ∀vi ∈ V, ∀j′ ≤ j ·Di,j′

loop of length l if for some 0 < k ≤ l and for all m ≥ 0 we have sl+m = sl+m−k. That is, the

run r is obtained by considering a prefix of length l − k of states and then a loop of k states that

repeats forever. A search for a loop of length l that satisfies an LTL formula ϕ can be encoded

as a bounded model checking query as follows. We encode the existence of l states s0, · · · , sl−1.

We use the decreasing reachability sets Di,t to force state st to be in D0,t×· · ·×Dn,t. This leads

to a smaller encoding of the states s0, · · · , sl−1 and to smaller search space. We add constraints

that enforce that for every 0 ≤ t < l − 1 we have st+1 = f(st). Furthermore, we encode the

existence of a time l − k such that sl−k = f(sl−1). We then search for a loop of length l that

satisfies ϕ . It is well known that if there is a run of Q that satisfies ϕ then there is some l and a

loop of length l that satisfies ϕ . We note that sometimes there is a mismatch between the length

of loop sought for and length of sequence of sets (j) produced by the algorithm 2. Suppose that

the algorithm returns the sets Di,t for vi ∈ V and 0 ≤ t < j. If l > j, we use the sets Di,j−1

to “pad” the sequence. Thus, states sj, · · · , sl−1 will also be sought in
∏

iDi,j−1. If l < j, we

use the sets Di,0, · · · , Di,l−2, Di,j−1 for vi ∈ V . Thus, only the last state sl−1 is ensured to be

in our “best” approximation
∏

iDi,j−1. A detailed explanation of how we encode the decreasing

reachability sets as a Boolean satisfiability problem is given in [21].
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3.2 Results for Various Biological Models

We implemented this technique to work on models defined through our tool BMA [9]. Here,

we present experimental results of running our implementation on a set of different biological

models, including a total of 22 benchmark problems from various sources (skin cells differenti-

ation models by ourselves, diabetes models from [12], models of cell fate determination during

C. elegans vulval development, a Drosophila embryo development model from [61], Leukemia

models constructed by ourselves, and a few additional examples constructed by ourselves). The

number of variables in the models and the maximal range of variables is reported in Table 3.1.

Model name #Vars Range Model name #Vars Range
2var unstable 2 0..1 Bcr-Abl 57 0..2

Bcr-AblNoFeedbacks 54 0..2 BooleanLoop 2 0..1
NoLoopFound 5 0..4 Skin1D TF 0 75 0..4
Skin1D TF 1 75 0..4 Skin1D 75 0..4

Skin2D 3X2 0 90 0..4 Skin2D 3X2 1 90 0..4
Skin2D 3X2 2 90 0..4 Skin2D 5X2 TF 198 0..4
Skin2D 5X2 198 0..4 SmallTestCase 3 0..4

SSkin1D TF 0 30 0..4 SSkin1D TF 1 31 0..4
SSkin1D 30 0..4 SSkin2D 3X2 40 0..4

VerySmallTest 2 0..4 VPC lin15ko 85 0..2
VPC Non stable 33 0..2 VPC stable 43 0..2

Table 3.1: Number of variables in models and their ranges.

Our experiments compare two encodings. One encoding is explained in algorithm 2, referred

to as “opt” (for optimized). the other considers l states s0, · · · , sl where st(vi) ∈ {0, · · · , N} for

every t and every i. That is, for every variable vi and every time point 0 ≤ t ≤ l we consider

the set Di,t = 0, · · · , N . This encoding is referred to as “naı̈ve”. In both cases we use the same

encoding to a Boolean satisfiability problem. Further details about the exact encoding can be

found in [21].

We perform two kinds of experiments. First, we search for loops of length 10, 20, · · · ,

50 on all the models for the optimized and naı̈ve encodings. Second, we search for loops that

satisfy a certain LTL property (either as a counterexample to model checking or as an example
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run satisfying a given property). Again, this is performed for both the optimized and the naı̈ve

encodings. LTL properties are considered only for four biological models. The properties were

suggested by our collaborators as interesting properties to check for these models. For both

experiments, we report separately on the global time and the time spent in the SAT solver. All

experiments were run on an Intel Xeon machine with CPU X7560@2.27GHz running Windows

Server 2008 R2 Enterprise.

In Tables 3.2 and 3.3 we include experimental results for the search for loops. We compare

the global run time of the optimized search vs the naı̈ve search. The global run time for the

optimized search includes the time it takes to compute the sequence of decreasing reachability

sets. Accordingly, in some of the models, especially the smaller ones, the overhead of computing

this additional information makes the optimized computation slower than the naı̈ve one. For

information we include also the net runtime spent in the SAT solver.

In Table 3.4 we include experimental results for the model checking experiment. As before,

we include the results of running the search for counterexamples of lengths 10, 20, 30, 40, and

50. We include the total runtime of the optimized vs the naı̈ve approaches as well as the time

spent in the SAT solver. As before, the global runtime for the optimized search includes the

computation of the decreasing reachability sets. The properties in the table are of the following

form. Let I , a · · · d denote formulas that are Boolean combinations of propositions.

• I → (¬a) U b: we check that the sequence of events when starting from the given initial

states (I) satisfies the order that b happens before a.

• I ∧ FG a ∧ F (b ∧ XF c): we check that the model gets from some states (I) to a

loop that satisfies the condition a and the path leading to the loop satisfies that b happens

first and then c.

• I ∧ FG a ∧ F (b ∧ XF (c ∧ XF d)): we extend the previous property by checking

the sequence a then b then c and then d.

• I ∧ FG a ∧ (¬b) U c: we check that the model gets from some states (I) to a loop
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that satisfies the condition a and the path leading to the loop satisfies that b cannot happen

before c.

• GF a ∧ GF b: we check for the existence of loops that exhibit a form of instability by

having states that satisfy both a and b.

When considering the path search, on many of the smaller models the new technique does not

offer a significant advantage. However, on larger models, and in particular the two dimensional

skin model (Skin2D 5X2 from [62]) and the Leukemia model (Bcr Abl) the new technique is

an order of magnitude faster. Furthermore, when increasing the length of the path it scales a

lot better than the naı̈ve approach. When model checking is considered, the combination of the

decreasing reachability sets accelerates model checking considerably. While the naı̈ve search

increases considerably to the order of tens of minutes, the optimized search remains within the

order of 10s, which affords a “real-time” response to users.
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Model name Global Time (s) Sat Time (s) Ratio
Naı̈ve Opt Naı̈ve Opt Global Sat

Bcr-Abl1 69.30 9.04 26.67 0.90 7.66 29.61 sat
Bcr-Abl1 188.13 12.21 87.70 1.42 15.40 61.47 sat
Bcr-Abl1 380.24 13.12 292.21 2.01 28.96 145.02 sat
Bcr-Abl1 648.02 12.37 349.70 2.30 52.38 151.87 sat
Bcr-Abl1 1005.37 11.52 588.34 2.17 87.19 270.93 sat
Bcr-Abl2 47.04 10.97 9.94 0.72 4.28 13.76 Unsat
Bcr-Abl2 136.48 8.62 41.04 0.75 15.82 54.66 Unsat
Bcr-Abl2 285.28 11.28 112.35 0.77 25.28 144.58 Unsat
Bcr-Abl2 561.65 9.29 443.91 0.80 60.41 553.83 Unsat
Bcr-Abl2 781.64 12.03 408.55 0.87 64.96 465.55 Unsat
Bcr-Abl3 48.64 8.47 9.54 0.83 5.74 11.45 Unsat
Bcr-Abl3 133.83 9.10 38.68 1.11 14.69 34.81 Unsat
Bcr-Abl3 283.73 9.45 106.61 1.16 30.01 91.28 Unsat
Bcr-Abl3 596.50 9.50 466.01 1.18 62.78 394.48 Unsat
Bcr-Abl3 853.53 10.05 480.77 1.36 84.89 351.99 Unsat
Bcr-Abl4 75.27 9.19 44.50 0.80 8.18 55.31 sat
Bcr-Abl4 202.06 9.95 143.49 1.53 20.30 93.50 sat
Bcr-Abl4 296.02 11.35 116.24 2.54 26.07 45.75 sat
Bcr-Abl4 740.39 11.00 116.24 2.54 26.07 45.74 sat
Bcr-Abl4 975.97 10.42 823.53 1.10 93.63 747.14 sat

Bcr-AblNoFeedbacks1 42.98 6.25 7.94 0.40 6.87 19.51 Unsat
Bcr-AblNoFeedbacks1 163.33 8.18 95.43 0.77 19.95 123.90 Unsat
Bcr-AblNoFeedbacks1 302.17 6.41 122.25 0.46 47.07 260.90 Unsat
Bcr-AblNoFeedbacks1 493.28 6.41 314.24 0.45 76.92 686.28 Unsat
Bcr-AblNoFeedbacks1 809.97 6.45 680.70 0.46 125.51 1461.69 Unsat
Bcr-AblNoFeedbacks2 44.88 6.39 6.59 0.40 7.01 16.27 Unsat
Bcr-AblNoFeedbacks2 117.96 6.34 20.98 0.39 18.58 53.61 Unsat
Bcr-AblNoFeedbacks2 312.73 7.59 231.87 0.46 41.18 500.00 Unsat
Bcr-AblNoFeedbacks2 527.40 6.31 423.61 0.39 83.46 1084.74 Unsat
Bcr-AblNoFeedbacks2 751.45 6.83 362.09 0.44 109.87 806.35 Unsat
Bcr-AblNoFeedbacks3 60.99 6.95 20.45 0.64 8.77 31.64 sat
Bcr-AblNoFeedbacks3 204.66 7.06 144.58 0.61 28.97 233.95 sat
Bcr-AblNoFeedbacks3 356.33 8.81 267.48 0.49 40.42 539.32 sat
Bcr-AblNoFeedbacks3 Time out 7.06 Time out 0.42 N/A N/A sat

VPC non stable1 30.14 10.83 4.83 0.69 2.78 6.93 Unsat
VPC non stable2 17.42 9.85 3.59 1.11 1.76 3.24 sat
VPC non stable3 52.01 11.91 26.69 1.48 4.36 17.93 Unsat
VPC non stable4 19.53 8.31 7.08 0.60 2.34 11.77 Unsat

VPC stable1 3.75 5.11 0.31 0.07 0.73 3.99 Unsat
VPC stable2 5.53 5.32 0.86 0.11 1.04 7.41 sat

Table 3.4: Model checking results.
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Chapter 4

Completed Work: Phage-based Bacteria

Killing as A Nonlinear Hybrid Automaton

and δ-complete Decision-based Bounded

Model Checking

Due to the widespread misuse and overuse of antibiotics, drug resistant bacteria now pose sig-

nificant risks to health, agriculture and the environment. Therefore, we were interested in an

alternative to conventional antibiotics, a phage therapy. Phages, or bacteriophages, are viruses

that infect bacteria and have evolved to manipulate the bacterial cells and genome, making resis-

tance to bacteriophages difficult to achieve. However, many phages are temperate, meaning that

they can enter a lysogenic phase and therefore not lyse and kill the host bacteria. The addition of

a phototoxic protein - KillerRed [59] - to the system offers a second method of killing those bac-

teria targeted by a lysogenic phage. In this chapter, we constructed a hybrid model of a bacteria

killing procedure that mimics the stages through which bacteria change when phage therapy is

adopted. Our model was designed according to an experimental procedure to engineer a temper-

ate phage, Lambda (λ), and then kill bacteria via light-activated production of superoxide. We
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applied δ-complete decision based bounded model checking [33] to our model and the results

show that such an approach can speed up evaluation of the system, which would be impractical

or possibly not even feasible to study in a wet lab.

4.1 The KillerRed Model

We have modeled synthesis and action of KillerRed that occurs over three main phases of a

typical photobleaching experiment: induction at 37◦C, storage at 4◦C to allow for protein matu-

ration, and photobleaching at room temperature. Within these phases, we identify several stages

of interest in KillerRed synthesis and activity as follows.

- mRNA synthesis and degradation

- KillerRed synthesis, maturation, and degradation

- KillerRed states: singlet (S), singlet excited (S∗), triplet excited (T ∗), and deactivated (Da)

- Superoxide production (by KillerRed)

- Superoxide elimination (by superoxide dismutase)

We implemented these system stages with distinct model states, and outlined them in Figure

4.1, together with state variables (values are included if variables are fixed within a state), transi-

tions between states, and events that trigger state transitions. In Table 4.1 we list the model states

that are used to describe the stages of the system. (See [74] for the details about equations that

we derived for each stage and choices of system parameters.)

4.2 Results and Discussion

Effect of delay in turning light ON

First, we have studied the relation between the time to turn ON the light after adding IPTG

that is a molecular biology reagent used to induce protein expression (tlightON ), and the total time

needed until the bacteria cells being killed (ttotal). We fixed the values of several other parameters

as follows.

- SOXthres = 5e-4m - threshold for the concentration level of SOX which is sufficient to kill the
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Figure 4.1: Hybrid automaton for our KillerRed model

bacteria cells

- tlightOFF1 = 2 hours (hrs) - time to turn the light OFF after turning it ON

- tlightOFF2 = 2 hrs - time to turn the light OFF after removing IPTG

- t1 = 1 hr - time to inject genome

- t2 = 1 hr - time to insert genome into DNA after injecting it into bacteria cell

- taddIPTG3 = 1 hr - time to add IPTG after inserting phage genome into bacteria DNA

As shown in the first two rows of Table 4.2, the earlier we turn on the light after adding IPTG,

the quicker the bacteria cells will be killed.

Lower bound for the duration of exposure to light

The δ-decisions technique has also been adopted to analyze the impact of the time duration
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State State description Input Next
state(s)

S0 Initial system state, bacteria cell, without phage n/a S1 (ex.)
S1 Phage genome injected λ-phage genome S2 (in.),

S3 (in.)
S2 Phage genome replication (lytic cycle) Genome replication n/a
S3 Phage genome within bacterial DNA (lysogenic

cycle)
Genome insertion S4 (ex.)

S4 Gene transcription, translation Addition of IPTG S5 (ex.),
S6 (ex.)

S5 Gene transcription decrease Removal of IPTG S3 (in.)
S6 Activation of KillerRed Light turned ON S7 (ex.),

S8 (ex.),
S11 (in.)

S7 Mixture of KillerRed forms, no activation Light turned OFF S9 (ex.),
S11 (in.)

S8 Mixture of KillerRed forms, transcription decrease Removal of IPTG S10 (ex.),
S11 (in.)

S9 Mixture of KillerRed forms, no activation,
transcription decrease

Removal of IPTG S11 (in.)

S10 Mixture of KillerRed forms, transcription
decrease, no activation

Light turned OFF S11 (in.)

S11 Cell death SOX>threshold n/a

Table 4.1: List of modeled system states, their description, inputs and next state(s) with indication whether transition was triggered by external
input (ex.) or by internal variable (in.) reaching some specified value.

that the cells are exposed to light (tlightOFF1) on the system, and estimate an appropriate range

for tlightOFF1 which leads to the successful killing of bacteria cells by KillerRed. By setting

SOXthres, tlightOFF2 , t1, t2, and taddIPTG3 with the same values in Section 4.2, and assigning 2

hr to tlightON (time to turn the light OFF after turning it ON), we have found that, in order to

kill bacteria cells, the system has to keep the light ON for at least 4 hours (see row 3-4 of Table

4.2).In addition, we have also found that the bacteria cells can be killed within 100 hours when

light is ON for 4 hours.

Time to remove IPTG as an insensitive role

The sensitivity of the time difference between removing the light and removing IPTG (trmIPTG3)

with regard to the successful killing of bacteria cells has also been studied. We have noticed that
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tlightON (hr) 1 2 3 4 5 6 7 8 9 10
ttotal (hr) 16 17.2 18.5 20 21.3 22.7 23.5 24.1 25 30

tlightOFF1 (hr) 1 2 3 4 5 6 7 8 9 10
killed bacteria cells failed failed failed succ succ succ succ succ succ succ

trmIPTG3 (hr) 1 2 3 4 5 6 7 8 9 10
killed bacteria cells succ succ succ succ succ succ succ succ succ succ
SOXthres (M) 1e-4 2e-4 3e-4 4e-4 5e-4 6e-4 7e-4 8e-4 9e-4 1e-3
ttotal (hr) 5.1 5.2 5.4 17 19 48 61 71 36 42

Table 4.2: Formal analysis results for our KillerRed hybrid model

trmIPTG3 has insignificant impacts on the cell killing outcome (see row 5-6 of Table 4.2). This

is in accordance with our understanding of this system, since any additional KillerRed that will

be synthesized will not be activated in the absence of light. Note that, for other involved system

parameters, we used the same values for SOXthres, tlightON , tlightOFF2 , t1, t2, and taddIPTG3 as

in Section 4.2, and set tlightOFF1 as 4 hours.

Necessary level of superoxide

Finally, we have used the δ-decisions to discuss the correctness of our hybrid model by con-

sidering various values of SOXthres within the suggested range - [100uM, 1mM]. We have used

the same values for variables SOXthres, tlightON , tlightOFF1 , tlightOFF2 , t1, t2, and taddIPTG3 as

in Section 4.2. As we can see from row 7-8 of Table 4.2, the bacteria cells can be killed in

reasonable time for all 10 point values of SOXthres, which was uniformly chosen from [100uM,

1mM]. Furthermore, we have also found a broader range for SOXthres up to 0.6667M, with

which bacteria cells can be killed by KillerRed.
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Chapter 5

Completed Work: Biological Systems as

Stochastic Hybrid Models and SReach

Stochastic hybrid systems (SHSs) are dynamical systems exhibiting discrete, continuous, and

stochastic dynamics. Due to the generality, they have been widely used in various areas, includ-

ing biological systems, financial decision problems, and cyber-physical systems [15, 22]. One

elementary question for the quantitative analysis of SHSs is the probabilistic reachability prob-

lem, considering that many verification problems can be reduced to reachability problems. It

is to compute the probability of reaching a certain set of states. The set may represent certain

unsafe states which should be avoided or visited only with some small probability, or dually,

good states which should be visited frequently. This problem is no longer a decision problem,

as it generalizes that by asking what is the probability that the system reaches the target region.

For SHSs with both stochastic and non-deterministic behavior, the problem results in general

in a range of probabilities, thereby becoming an optimization problem. To describe stochastic

dynamics, uncertainties have been added to hybrid systems in various ways, resulting in different

stochastic hybrid model classes.

In this chapter, we describe our tool SReach which supports probabilistic bounded δ-reachability

analysis for two model classes: hybrid automata (HAs) [39] with parametric uncertainty, and

26



probabilistic hybrid automata (PHAs) [67] with additional randomness. (Note that, in the follow-

ing, we use notations - HAp and PHAr - for these two model classes respectively.) Our method

combines the recently proposed δ-complete bounded reachability analysis technique [34] with

statistical testing techniques. SReach saves the virtues of the Satisfiability Modulo Theories

(SMT) based Bounded Model Checking (BMC) for HAs [24, 70], namely the fully symbolic

treatment of hybrid state spaces, while advancing the reasoning power to probabilistic models.

Furthermore, by utilizing the δ-complete analysis method, the full non-determinism of models

will be considered. The coverage of simulation will be increased, as the δ-complete analysis

method results in an over-approximation of the reachable set, whereas simulation is only an

under-approximation of it. The zero-crossing problem can be avoided as, if a zero-crossing point

exists, it will always return an interval containing it. By using statistical tests, SReach can place

controllable error bounds on the estimated probabilities. We discuss three biological models - an

atrial fibrillation model, a prostate cancer treatment model, and our synthesized Killerred biolog-

ical model - to show that SReach can answer questions including model validation/falsification,

parameter synthesis, and sensitivity analysis.

5.1 Stochastic Hybrid Models
Before introducing the algorithm implemented by SReach and the problems that it can handle, we

first define two model classes that SReach considers formally. For HAps, we follow the definition

of HAs in [39], and extend it to consider probabilistic parameters in the following way.

Definition 5.1.1 (HAp) A hybrid automaton with parametric uncertainty is a tupleHp = 〈(Q,E),

V, RV, Init, Flow, Inv, Jump, Σ〉, where

• The vertices Q = {q1, · · · , qm} is a finite set of discrete modes, and edges in E are control

switches.

• V = {v1, · · · , vn} denotes a finite set of real-valued system variables. We write V̇ to

represent the first derivatives of variables during the continuous change, and write V ′ to

denote values of variables at the conclusion of the discrete change.
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• RV = {w1, · · · , wk} is a finite set of independent random variables, where the distribution

of wi is denoted by Pi.

• Init, Flow, and Inv are labeling functions over Q. For each mode q ∈ Q, the initial

condition Init(q) and invariant condition Inv(q) are predicates whose free variables are

from V ∪RV , and the flow condition Flow(q) is a predicate whose free variables are from

V ∪ V̇ ∪RV .

• Jump is a transition labeling function that assigns to each transition e ∈ E a predicate

whose free variables are from V ∪ V ′ ∪RV .

• Σ is a finite set of events, and an edge labeling function event : E → Σ assigns to each

control switch an event.

Another class is PHArs, which extend HAs with discrete probability transitions and addi-

tional randomness for transition probabilities and variable resets.

Definition 5.1.2 (PHAr) A probabilistic hybrid automaton with additional randomness Hr con-

sists of Q, E, V, RV, Init, Flow, Inv, Σ as in Definition 5.1.1, and Cmds , which is a finite set

of probabilistic guarded commands of the form:

g → p1 : u1 + · · · + pm : um,

where g is a predicate representing a transition guard with free variables from V , pi is the transi-

tion probability for the ith probabilistic choice which can be expressed by an equation involving

random variable(s) inRV and the pi’s satisfy
∑m

i=1 pi = 1, and ui is the corresponding transition

updating function for the ith probabilistic choice, whose free variables are from V ∪ V ′ ∪RV .

To illustrate the additional randomness allowed for transition probabilities and variable resets,

an example probabilistic guarded command is x ≥ 5 → p1 : (x′ = sin(x)) + (1 − p1) :

(x′ = px), where x is a system variable, p1 has a Uniform distribution U(0.2, 0.9), and px has

a Bernoulli distribution B(0.85). This means that, the probability to choose the first transition

is not a fixed value, but a random one having a Uniform distribution. Also, after taking the

second transition, x can be assigned to either 1 with probability 0.85, or 0 with 0.15. In general,
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for an individual probabilistic guarded command, the transition probabilities can be expressed by

equations of one or more new random variables, as long as values of all transition probabilities are

within [0, 1], and their sum is 1. Currently, all four primary arithmetic operations are supported.

Note that, to preserve the Markov property, only unused random variables can be used, so that no

dependence between the current probabilistic jump and previous transitions will be introduced.

5.2 The SReach Algorithm
A recently proposed δ-complete decision procedure [34] relaxes the reachability problem for

HAs in a sound manner: it verifies a conservative approximation of the system behavior, so that

bugs will always be detected. The over-approximation can be tight (tunable by an arbitrarily

small rational parameter δ), and a false alarm with a small δ may indicate that the system is

fragile, thereby providing valuable information to the system designer. We now define the prob-

abilistic bounded δ-reachability problem based on the bounded δ-reachability problem defined

in [34] .

Definition 5.2.1 The probabilistic bounded k step δ-reachability for a HAp Hp is to compute the

probability that Hp reaches the target region T in k steps. Given the set of independent random

variables r, Pr(r) a probability measure over r, and Ω the sample space of r, the reachability

probability is
∫

Ω
IT (r)dPr(r), where IT (r) is the indicator function which is 1 if Hp with r

reaches T in k steps.

Definition 5.2.2 For a PHAr Hr, the probabilistic bounded k step δ-reachability estimated by

SReach is the maximal probability that Hr reaches the target region T in k steps:

maxσ∈EPr
k
Hr,σ,T

(i), where E is the set of possible executions of H starting from the initial state

i, and σ is an execution in the set E.

After encoding uncertainties using random variables, SReach samples them according to the

given distributions. For each sample, a corresponding intermediate HA is generated by replacing

random variables with their assigned values. Then, the δ-complete analyzer dReach is utilized

to analyze each intermediate HA Mi, together with the desired precision δ and unfolding depth
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k. The analyzer returns either unsat or δ-sat for Mi. This information is then used by a chosen

statistical testing procedure to decide whether to stop or to repeat the procedure, and to return

the estimated probability. The full procedure is illustrated in Algorithm 3, where MP is a given

stochastic model, and ST indicates which statistical testing method will be used. Note that, for

a PHAr, sampling and fixing the choices of all the probabilistic transitions in advance results in

an over-approximation of the original PHAr, where safety properties are preserved. To promise

a tight over-approximation and correctness of estimated probabilities, SReach supports PHArs

with no or subtle non-determinism. That is, in order to offer a reasonable estimation, for PHArs,

SReach is supposed to be used on models with no or few non-deterministic transitions, or where

dynamic interleaving between non-deterministic and probabilistic choices are not important.

To improve the performance of SReach, each sampled assignment and its corresponding

dReach result are recorded for avoiding redundant calls to dReach. This significantly reduces
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the total calls for PHArs, as the size of the sample space involving random variables describing

probabilistic jumps is comparatively small. Furthermore, a parallel version of SReach has been

implemented using OpenMP, where multiple samples and corresponding HAs are generated, and

passed to dReach simultaneously.

Currently, SReach supports a number of hypothesis testing methods - Lai’s test [50], Bayes

factor test [47], Bayes factor test with indifference region [76], and Sequential probability ratio

test (SPRT)[73], and statistical estimation techniques - Chernoff-Hoeffding bound [42], Bayesian

Interval Estimation with Beta prior[77], and Direct Sampling. All methods produce answers that

are correct up to a precision that can be set arbitrarily by the user.

With these hypothesis testing methods, SReach can answer qualitative questions, such as

“Does the model satisfy a given reachability property in k steps with probability greater than

a certain threshold?” With the above statistical estimation techniques, SReach can offer an-

swers to quantitative problems. For instance, “What is the probability that the model satisfies a

given reachability property in k steps?” SReach can also handle additional types of interesting

problems by encoding them as probabilistic bounded reachability problems. The model vali-

dation/falsification problem with prior knowledge can be encoded as a probabilistic bounded

reachability question. After expressing prior knowledge about the given model as reachability

properties, is there any number of steps k in which the model satisfies a given property with a

desirable probability? If none exists, the model is incorrect regarding the given prior knowledge.

The parameter synthesis problem can also be encoded as a probabilistic k-step reachability

problem. Does there exist a parameter combination for which the model reaches the given goal

region in k steps with a desirable probability? If so, this parameter combination is potentially a

good estimation for the system parameters. The goal here is to find a combination with which

all the given goal regions can be reached in a bounded number of steps. Moreover, sensitivity

analysis can be conducted by a set of probabilistic bounded reachability queries as well: Are the

results of reachability analysis the same for different possible values of a certain system param-

eter? If so, the model is insensitive to this parameter with regard to the given prior knowledge.
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5.3 Case Studies
Both sequential and parallel versions of SReach are available on https://github.com/

dreal/SReach Experiments for the following three biological models were conducted on a

server with 2* AMD Opteron(tm) Processor 6172 and 32GB RAM (12 cores were used), run-

ning on Ubuntu 14.0.1 LTS. In our experiments we used 0.001 as the precision for the δ-decision

problem, and Bayesian sequential estimation with 0.01 as the estimation error bound, coverage

probability 0.99, and a uniform prior (α = β = 1). All the details (including discrete modes,

continuous dynamics that described by ODEs, non-determinism, and stochasticity) of models in

the following case studies and additional benchmarks can be found on the tool website.

Atrial Fibrillation. The minimum resistor model reproduces experimentally measured charac-

teristics of human ventricular cell dynamics [18]. It reduces the complexity of existing models by

representing channel gates of different ions with one fast channel and two slow gates. However,

due to this reduction, for most model parameters, it becomes impossible to obtain their val-

ues through measurements. After adding parametric uncertainty into the original hybrid model,

we show that SReach can be adapted to synthesize parameters for this stochastic model, i.e.,

identifying appropriate ranges and distributions for model parameters. We chose two system

parameters - EPI TO1 and EPI TO2, and varied their distributions to see which ones allow the

model to present the desired patterns. As in Table 5.1, when EPI TO1 is either close to 400, or

between 0.0061 and 0.007, and EPI TO2 is close to 6, the model can satisfy the given bounded

reachability property with a probability very close to 1.

Model #RVs EPI TO1 EPI TO2 #S S #T S Est P A T(s) T T(s)
Cd to1 s 1 U(6.1e-3, 7e-3) 6 240 240 0.996 0.270 64.80

Cd to1 uns 1 U(5.5e-3, 5.9e-3) 6 0 240 0.004 0.042 10.08
Cd to2 s 1 400 U(0.131, 6) 240 240 0.996 0.231 55.36

Cd to2 uns 1 400 U(0.1, 0.129) 0 240 0.004 0.038 9.15
Cd to12 s 2 N(400, 1e-4) N(6, 1e-4) 240 240 0.996 0.091 21.87

Cd to12 uns 2 N(5.5e-3, 10e-6) N(0.11, 10e-5) 0 240 0.004 0.037 8.90

Table 5.1: Results for the 4-mode atrial fibrillation model (k = 3). For each sample generated, SReach analyzed systems with 62 variables
and 24 ODEs in the unfolded SMT formulae. #RVs = number of random variables in the model, #S S = number of δ-sat samples, #T S = total
number of samples, Est P = estimated probability of property, A T(s) = average CPU time of each sample in seconds, and T T(s) = total CPU
time for all samples in seconds. Note that, we use the same notations in the remaining tables.
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Prostate cancer treatment. This model is a nonlinear hybrid automaton with parametric uncer-

tainty. We modified the model of the intermittent androgen suppression (IAS) therapy in [68] by

adding parametric uncertainty. The IAS therapy switches between treatment-on, and treatment-

off with respect to the serum level thresholds of prostate-specific antigen (PSA), namely r0 and

r1. As suggested by the clinical trials [16], an effective IAS therapy highly depends on the

individual patient. Thus, we modified the model by taking parametric variation caused by per-

sonalized differences into account. In detail, according to clinical data from hundreds of patients

[17], we replaced six system parameters with random variables having appropriate (continu-

ous) distributions, including αx (the proliferation rate of androgen-dependent (AD) cells), αy

(the proliferation rate of androgen-independent (AI) cells), βx (the apoptosis rate of AD cells),

βy (the apoptosis rate of AI cells), m1 (the mutation rate from AD to AI cells), and z0 (the

normal androgen level). To describe the variations due to individual differences, we assigned

αx to be U(0.0193, 0.0214), αy to be U(0.0230, 0.0254), βx to be U(0.0072, 0.0079), βy to be

U(0.0160, 0.0176), m1 to be U(0.0000475, 0.0000525), and z0 to be N(30.0, 0.001). We used

SReach to estimate the probabilities of preventing the relapse of prostate cancer with three dis-

tinct pairs of treatment thresholds (i.e., combinations of r0 and r1). As shown in Table 5.2, the

model with thresholds r0 = 10 and r1 = 15 has a maximum posterior probability that approaches

1, indicating that these thresholds may be considered for the general treatment.
Model #RVs r0 r1 Est P #S S #T S A T(s) T T(s)
PCT1 6 5.0 10.0 0.496 8226 16584 0.596 9892
PCT2 6 7.0 11.0 0.994 335 336 54.307 18247
PCT3 6 10.0 15.0 0.996 240 240 506.5 121560

Table 5.2: Results for the 2-mode prostate cancer treatment model (k = 2). For each sample generated, SReach analyzed systems with 41
variables and 10 ODEs in the unfolded SMT formulae.

Synthesized Stochastic KillerRed Model. One approach to antibiotic resistance is to engi-

neer a temperate phage λ with light-activated production of superoxide (SOX). The incorporated

Killerred protein is phototoxic and provides another level of controlled bacteria killing [54]. A

PHAr with subtle non-determinism for our synthesized Killerred model (as shown in Figure 5.1)

has been constructed. Considering individual differences of bacterial cells and distinct exper-
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Mode 1
ƛgenome=0
IPTG=0
light=0
DNA=1
DNAƛ=0
mRNA=0
KRim=0
KRm=0
KRmdS=0
KRmdS*=0
KRmdT*=0
SOX=0
SOXsod=0
SOD=SODinit
d[mode_t]/dt 
=1

Mode 2
ƛgenome=1
IPTG=0
light=0
DNA=1
DNAƛ=0
mRNA=0
KRim=0
KRm=0
KRmdS=0
KRmdS*=0
KRmdT*=0
SOX=0
SOXsod=0
SOD=SODinit
d[mode_t]/dt 
=1

Mode 3
ƛgenome=0
IPTG=0
light=0
DNA=0
DNAƛ=1
mRNA=0
KRim=0
KRm=0
KRmdS=0
KRmdS*=0
KRmdT*=0
SOX=0
SOXsod=0
SOD=SODinit
d[mode_t]/dt 
=1

Mode 4
ƛgenome=0
IPTG=1
light=0
DNA=0
DNAƛ=1
mRNA=?
KRim=?
KRm=?
KRmdS=?
KRmdS*=0
KRmdT*=0
SOX=0
SOXsod=0
SOD=SODinit
d[mode_t]/dt 
=1

Mode 5
ƛgenome=0
IPTG=1
light=L
DNA=0
DNAƛ=1
mRNA=?
KRim=?
KRm=?
KRmdS=?
KRmdS*=?
KRmdT*=?
SOX=?
SOXsod=?
SOD=?
d[mode_t]/dt 
=1

Mode 7
ƛgenome=0
IPTG=1
light=0
DNA=0
DNAƛ=1
mRNA=?
KRim=?
KRm=?
KRmdS=?
KRmdS*=?
KRmdT*=?
SOX=g
SOXsod=h
SOD=i
d[mode_t]/dt 
=1

Mode 8
ƛgenome=0
IPTG=0
light=L
DNA=0
DNAƛ=1
mRNA=a
KRim=b
KRm=c
KRmdS=d
KRmdS*=e
KRmdT*=f
SOX=g
SOXsod=h
SOD=i
d[mode_t]/dt 
=1

Mode 9
ƛgenome=0
IPTG=0
light=0
DNA=0
DNAƛ=1
mRNA=a
KRim=b
KRm=c
KRmdS=d
KRmdS*=e
KRmdT*=f
SOX=g
SOXsod=h
SOD=i
d[mode_t]/dt 
=1

Mode 10
ƛgenome=0
IPTG=0
light=0
DNA=0
DNAƛ=1
mRNA=a
KRim=b
KRm=c
KRmdS=d
KRmdS*=e
KRmdT*=f
SOX=g
SOXsod=h
SOD=i
d[mode_t]/dt 
=1

cell death

m
od

e_
t >

= 
t_

ge
nk

2 
1 

G
en

om
e 

in
se

rte
d,

 k
2 

& 
re

se
t m

od
e_

t

m
od

e_
t >

= 
t_

ad
dI

PT
G

 
1 

Ad
d 

IP
TG

 &
 re

se
t 

m
od

e_
t

m
od

e_
t >

= 
t_

lig
ht

on
 0

.9
 

Ad
d 

lig
ht

 &
 re

se
t 

m
od

e_
t

Mode 6
ƛgenome=0
IPTG=0
light=0
DNA=0
DNAƛ=1
mRNA=a
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Figure 5.1: A probabilistic hybrid automaton for synthesized phage-based therapy model

imental environments, additional randomness on transition probabilities have been considered.

SReach was used to validate this model by estimating the probabilities of killing bacterial cells

with different ks (see Table 5.3). We noticed that the probabilities of paths going through mode

6 to mode 11 are close to 0. To exclude the effect from sampling of rare events, we increase the

probability of entering mode 6, but this situation remains. We conclude that it is impossible for

this model to enter mode 6. This remains even after increasing the probability of entering mode

6, indicating that it is impossible for this model to enter mode 6.

k Est P #S S #T S A T(s) T T(s) k Est P #S S #T S A T(s) T T(s)
5 0.544 8951 16452 0.074 1219.38 8 0.004 0 240 0.004 0.88
6 0.247 3045 12336 0.969 11957.12 9 0.004 0 240 0.012 2.97
7 0.096 559 5808 5.470 31770.36 10 0.004 0 240 0.013 3.18

Table 5.3: Results for the 11-mode killerred model.
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Chapter 6

Completed Work: Pancreatic Cancer

Microenvironment Model as A Multiscale

Hybrid Rule-based Model and Statistical

Model Checking

As mentioned in chapter 2, the poor prognosis for Pancreatic cancer (PC) remains largely un-

changed. To turn this tide, the research focus of pancreatic cancer has been shifted from solely

looking into pancreatic cancer cells towards investigating the microenvironment of the pancreatic

cancer. Biologists have recently noticed that one contributing factor to the failure of systemic

therapies may be the abundant tumor micro-environment. As a characteristic feature of PC,

the microenvironment includes pancreatic stellate cells (PSCs), endothelial cells, nerve cells,

immune cells, lymphocytes, dendritic cells, the extracellular matrix, and other molecules sur-

rounding PCCs [48]. Over the past decade, evidence has been accumulated to demonstrate the

potentially critical functions of these cells in regulating the growth, invasion, and metastasis of

PC [29, 31, 32, 48]. Among these cells, PSCs and cancer-associated macrophages play primary

roles during the development of PC [48]. Studies have confirmed that PSCs are the primary
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cells producing the stromal reaction [5, 7]. In a healthy pancreas, PSCs exist quiescently in the

periacinar, perivascular, and periductal space. While, in the diseased state, PSCs will be acti-

vated by growth factors, cytokines, and oxidant stress secreted or induced by PCCs. Activated

PSCs will then transform from the quiescent state to the myofibroblast phenotype. This results

in their losinlipid droplets, actively proliferating, migrating, producing large amounts of extra-

cellular matrix, and expressing cytokines, chemokines, and cell adhesion molecules. In return,

the activated PSCs promote the growth of PCCs.

we construct a multicellular model to study the microenvironment of PC. The model con-

sists of intracellular signaling networks of pancreatic cancer cells and stellate cells respectively,

and intercellular interactions among them as well. To perform formal analysis, we propose a

multiscale hybrid rule-based modeling formalism by extending the rule-based language BioNet-

Gen [30]. The latter one was designed to model reactions happening among molecules within

a single cell. By using the extended modeling language, we represent the intercellular level

dynamics in the pancreatic cancer microenviroment as continuous, and intracellular ones as dis-

crete considering that it is very difficult to obtain reaction rates for complex signaling networks

via experimental measurements. We then apply statistical model checking (StatMC) to analyze

properties of the system. The formal analysis results show that our model reproduces existing

experimental findings with regard to the mutual promotion between pancreatic cancer and stel-

late cells. The model also explains how treatments latching onto different targets may result in

distinct outcomes. We then use our model to predict possible targets for drug discovery.

6.1 Multiscale Hybrid Rule-based Modeling Language

Cell signaling embraces cellular processes that molecules outside of the cell bind to cognate re-

ceptors on the cell membrane, resulting in complex series of protein binding and biochemical

events, which ultimately leads to the activation or deactivation of proteins that regulate gene ex-

pression or other cellular processes [3]. A typical signaling protein has multiple interaction sites
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with activities that can be modified by direct chemical modification or by the effects of modifi-

cation or interaction at other sites. This complexity at the protein level leads to a combinatorial

explosion in the number of possible species and reactions at the level of signaling networks [41],

which then poses a major barrier to the development of detailed, mechanistic models of biochem-

ical systems. Rule-based modeling [13, 25, 26, 30] is a modeling paradigm that was proposed to

alleviate this problem. It provides a rich yet concise description of signaling proteins and their in-

teractions by representing interacting molecules as structured objects and by using pattern-based

rules to encode their interactions. (See [26, 30, 63] for overviews of rule-based languages.)

The traditional rule-based modeling aims at representing molecules as structured objects and

molecular interactions as rules for transforming the attributes of these objects. It is used to

specify protein-to-protein reactions within cells and track concentrations of different proteins.

One widely used rule-based modeling formalism is the BioNetGen language [30]. Its semantics

includes three components: basic building blocks, patterns, and rules. For the BioNetGen, basic

building blocks are molecules that may be assembled into complexes through bonds that link

components of different molecules, patterns selects particular attributes of molecules in species,

and rules specify the biochemical transformations that can take place in the system and be used

to build up a network of species and reactions. In this paper, in order to model the dynamics

of multiple cells, interactions among cells, and intracellular reactions in the mean time, we have

extended it into multiscale hybrid rule-based modeling in the following way.

The basic building blocks

For the new language, the fundamental blocks can be either cells or extracellular molecules.

In detail, a cell is treated as a fundamental block with subunits representing all components con-

structing its intracellular signaling network, which includes intracellular species and cell func-

tions. While, each extracellular molecule is treated as a fundamental block without any subunits

within it. For each subunit, it can take discrete values. Note that, as in our microenvironment

model, subunits take boolean values, we will consider boolean values in the following explana-
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tions and instances. All of these can be extended for discrete values in a straightforward way.

The boolean values - True (T) and False (F) - can have different biological meanings for

distinct types of components within the cell. For each subunit representing a cell function or

a secretion, “T” means the cell function/secretion is triggered, and “F” not triggered. For a

receptor, “T” means the receptor is bounded with the corresponding ligand, and “F” means it

is free. While, for other molecules within a cell, “T” indicates the high concentration of this

molecule, and “F” indicates that the concentration level of this molecule is below the value to

regulate (activate or inhibit) the downstream targets.

Patterns

As the second component for the modeling language, patterns are used to identify a set of

species that share a set of features. Their behavior is illustrated in Figure 6.1. The semantics of

patterns used in here are the same as the original one for BioNetGen.

Rules

The original BioNetGen has specified three types of rules - binding/unbinding, phosphoryla-

tion, and dephosphorylation. In order to be able to describe cellular actions and human/treatment

interventions, we have extended usable rules in the following way.

                             
c1

C

                             

c1

c2

C

T

                             

c1

c2

C

F

Figure 6.1: Patterns in rule-based modeling. In this example, the pattern C(c1) matches C(c1,
c2∼T) or C(c1, c2∼F)
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Rule 1: Ligand-receptor binding

Lig + Cell(Rec ∼ F )→ Cell(Rec ∼ T ) brate

Explanation: On the left hand, the “F” value of “Rec” in this cell indicates that the receptor is

free and unbound. When the ligand has bound with this receptor, the reduction of number of

extracellular molecule “Lig” is represented by the elimination of this “Lig”. In the meanwhile,

“Rec∼T”, on the right side, indicates that this receptor is not free any more. The binding rate

“brate” is decided according to affinity and whether the ligands are endogenous. Note that, the

multiple receptors on the surface of a cell can be modeled by setting a comparatively high rate

on the following downstream regulating rules, which indicates the rapid “releasing” of bound

receptors.

Rule 2: Mutated receptors form a heterodimer

Cell(Rec1 ∼ F,Rec2 ∼ F )→ Cell(Rec1 ∼ T,Rec2 ∼ T ) frate

Explanation: The unbounded receptors can bind together and form a heterodimer. For example,

mutated HER2 receptor activates the downstream signaling pathways of EGFR by binding with

it and forming a heterodimer. That is, HER2 can be “Rec1” and EGFR can be “Rec1” in this rule.

Rule 3: Downstream regulation

Rule 3.1 (Single parent) Positive regulation (activation, phosphorylation, etc.)

Cell(Mol1 ∼ T,Mol2 ∼ F )→ Cell(Mol1 ∼ T,Mol2 ∼ T ) trate

Rule 3.2 (Single parent) Negative regulation (inhibition, dephosphorylation, etc.)

Cell(Mol1 ∼ T,Mol2 ∼ T )→ Cell(Mol1 ∼ T,Mol2 ∼ F ) trate
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Rule 3.3 (Multiple parents) Downstream regulation

Cell(Mol1 ∼ F,Mol2 ∼ T,Mol3 ∼ F )→

Cell(Mol1 ∼ F,Mol2 ∼ T,Mol3 ∼ T ) trate

Cell(Mol1 ∼ T,Mol3 ∼ T )→ Cell(Mol1 ∼ T,Mol3 ∼ F ) trate

Explanation: Downsteam regulation rules are used to describe the logical updating funtions.

For instance, Rule 3.1 is consistent with the logical updating funtion for “Mol2”: Mol
(t+1)
2 =

Mol
(t)
1 +Mol

(t)
2 , where “Mol1” is the single activator of “Mol2”. Rule 3.2 describes the funtion

Mol
(t+1)
2 = ¬Mol

(t)
1 ×Mol

(t)
2 , where “Mol1” is the single inhibitor of “Mol2”. Rule 3.3 presents

the updating funtion Mol
(t+1)
3 = ¬Mol

(t)
1 × (Mol

(t)
2 + Mol

(t)
3 ), where “Mol1” is the inhibitor,

and “Mol2” is the activator. In this way, rules can be easily written for more complex cases

where there are multiple regulating parents. Note that, in our model, we follow the biological

assumption that inhibitors hold higher priorities than activators with regard to impacts on the

regulating target.

Rule 4: Cell functions

For different cell functions, we specify distinct rules as follows.

Rule 4.1 Proliferation

Cell(Pro ∼ T )→ Cell(Pro ∼ F ) + Cell(Pro ∼ F, · · · ) prate

Explanation: When a cell proliferates, we keep the current values of subunits for the cell that

initiates the proliferation, and set the default values to subunits of the new cell. The “· · · ” in the

rule denotes the remaining subunits with their default values in this cell.

Rule 4.2 Apoptosis

Cell(Apo ∼ T )→ Null() aprate
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Explanation: We declare a type “Null()” to represent dead cells or degradated molecules.

Rule 4.3 Autophagy

Cell(Aut ∼ T )→Mol1 + · · · aurate

Explanation: The molecules on the right side of this type of rules, which will be released into the

microenvironment due to the happening of autophagy, are decided according to what molecules

are currently expressed inside this cell.

Rule 5: Secretion

Cell1(secMol ∼ T )→ Cel1(secMol ∼ F ) +Molcell1 srate1

Cell2(secMol ∼ T )→ Cel2(secMol ∼ F ) +Molcell2 srate2

Explanation: When the secretion of “Mol” has been triggered, the number of “Mol” in the mi-

croenvironment will be added by 1. Note that, the reason to label the secreted “Mol” with cell’s

name is to differentiate the endogenous and exogenous molecules. The binding rates are dif-

ferent for these two cases. We use this way to take the locations of secreted molecules in the

microenvironment into consideration.

Rule 6: Mutation

Cell(Mol ∼ F (/T ))→ Cell(Mol ∼ T (/F )) mrate

Explanation: The key idea of modeling mutations is to set a very high value to the mutation rate

“mrate”. In this way, we can almost keep the value of the mutated molesule as “T(/F)”.

Rule 7: Constantly over-expressed extracellular molecules

CancerEvn→ CancerEvn+Mol secrate

Explanation: With this rule, we can mimic the situation when the concentration of an over-
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expressed extracellular molecule stays in a high level constantly.

Rule 8: Degradation of extracellular molecules

Mol → Null() degrate

Explanation: As mentioned in Rule 4.2, we declare a type “Null()” to represent dead cells or

degradated molecules.

Rule 9: Human/treatment intervention

Cell(Mol ∼ T (/F ))→ Cell(Mol ∼ F (/T )) intrate

Explanation: Given a validated model, with intervention rules, we can predict whether a therapy

targeting at certain molecule(s) can obtain effective outcomes. Also, the well-tuned value of the

intervention rate can, more or less, give indications when deciding the dose of medicine used in

this therapy, based on the Law of Mass Action.

We extend the rule-based BioNetGen language by redefining its three components - basic

building blocks, patterns, and rules. These redefined components allow us to be able to model

not only the signaling network within a single cell, but also interactions among multiple cells.

Cell populations can also be tracked. Moreover, by choosing to describe the intracellular dy-

namics to be discrete, we can overcome the difficulty of obtaining values of a large amount of

system parameters from wet laboratory, which is a key issue that is faced by traditional rule-based

languages.

6.2 The MICROENVIRONMENT Model

Accumulating evidence indicates that PSCs may play an important role during the progression

of pancreatic cancer [5, 7, 28, 29, 31, 32, 44, 48, 72]. This motivates our interest in modeling and
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analyzing the molecular functions with respects to PCCs and PSCs, and the interplay between

these two types of cells. Our multicellular and multilevel model is visualized in Figure 6.2. This

model has three parts with different colors - green, blue, and purple. The green part depicts

the intracellular signaling network of PCCs. The blue part represents the intracellular signaling

network of PSCs. The purple nodes in the middle are extracellular signaling molecules (such

as growth factors and cytokines) existing in the microenvironment. They can trigger signaling

pathways both in cancer cells and in stellate cells by binding to the corresponding receptors. In

the following sections, where we will discuss different parts of this model in detail, we will use

→ to denote activation or promotion, and a to represent inhibition or repression.

6.2.1 Intracellular signaling network of PCCs

Pathways regulating proliferation

K-RAS mutation enhances proliferation [8]. Mutations of the K-RAS oncogene occur

in the precancerous stages and in over 90% of the pancreatic carcinomas. The RAS signaling

pathway is crucial in the transmission of the proliferation-promoting signals. Mutation of the

K-RAS gene can lead to its continuous activation of the RAS protein. Then, RAS constantly

triggers the RAF→ MEK cascade, and promotes the proliferation of PCCs through both ERK

and JNK.

HER2/neu mutation also intensifies proliferation [8]. HER2/neu is another oncogene fre-

quently mutated in the initial formation of pancreatic cancers. The HER2 protein is a receptor

tyrosine kinase that binds to the cell membrane surface. Mutated HER2 can bind with EGFR

to form a heterodimer and thus activate the downstream signaling pathways of EGFR. Over-

expressed HER2 can also induce the production of VEGF stimulating angiogenesis during the

development of pancreatic cancer.

EGF activates proliferation and enhances it through an autocrine signaling [56]. EGF

and EGF receptors (EGFR) are expressed in ∼95% of pancreatic cancers. EGF promotes prolif-

eration through the RAS→RAF→MEK→JNK cascade. It can also trigger the RAS→RAF→MEK
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→ERK→cJUN cascade to secrete EGF molecules. These endogenous EGF molecules can then

quickly bind to overexpressed EGFR again to promote the proliferation of pancreatic cancer

cells. This autocrine provides one possible explanation of the devastating nature of pancreatic

cancer.

bFGF promotes proliferation [10]. bFGF is a mitogenic polypeptide. Proliferation is acti-

vated by bFGF through both RAF→MEK→ERK and RAF→MEK→JNK cascades. In addition,

bFGF molecules are released through RAF→MEK→ERK pathway to form another autocrine

signaling pathway in the development of pancreatic cancer.

Pathways regulating apoptosis

Apoptosis is a regulated cell death mechanism. It is the most common mode of programmed

cell death and is executed by caspase proteases that can be activated by either the death receptor

or the mitochondrial pathways.

TGFβ1 signaling initiates apoptosis [65]. The TGFβ1 signaling mechanism, in PSCs, be-

gins with TGFβ1 ligands binding to TGFβ1 receptors. Phosphorylated receptors further activate

receptor-regulated SAMDs. The receptor-regulated SAMDs hetero-oligomerize with the com-

mon SAMD, and SAMD4. Then, the complex translocate to the nucleus, where it regulates

gene expression, and is responsible for initiating apoptosis in the early stage of the pancreatic

cancer development. Also, it contributes to the secretion of the TGFβ1 and PDGFBBs that are

major molecules in activating PSCs. Although the TGFβ1 signaling system is a tumor suppres-

sor pathway in the early stages of cancer progression, mutations and epigenetic dysregulation

of TGFβ1 signaling mechanisms will occur later in the progression of pancreatic cancer [65].

Then, increased expression of TGFβ1 will promote the frequency of metastasis. It was also re-

ported that this signaling is associated with poor patient prognosis of pancreatic cancer [2]. As

our model describes the early stage of pancreatic cancer, TGFβ1 signaling pathway is treated as

a proliferation inhibited pathway.

Mutated oncogenes inhibit apoptosis. Mutated RAS and HER2 can inhibit apoptosis by
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downregulating CASP through PI3K→AKT→NFκB cascade and by inhibiting Bax (and indi-

rectly CASP) via PI3K→PIP3→AKT→· · ·→BCL-XL pathways.

Pathways regulating autophagy

Autophagy is a catabolic process involving the degradation of a cell’s own components

through the lysosomal machinery. It is a tightly regulated process that plays a normal part in

cell growth, development, and homeostasis. Autophagy helps to maintain a balance between the

synthesis, degradation, and subsequent recycling of cellular products. It is a major mechanism

by which a starving cell reallocates nutrients from unnecessary processes to more-essential pro-

cesses. In some cellular settings, autophagy can serve as a cell survival pathway, suppressing

apoptosis, and in others, it can lead to death itself, either in collaboration with apoptosis or as a

back-up mechanism when the former is defective. Some of recent studies indicate that autophagy

may be important in the regulation of cancer development and progression and in determining

the response of cancer cells to anticancer therapy [40, 49].

mTOR regulates autophagy [55]. mTOR is a critical protein kinase that regulates au-

tophagy induction. In pancreatic cancer, the upstream signaling pathway PI3K→PIP3→AKT

can activate mTOR, and then indirectly inhibit autophagy. While, another upstream pathway

MEK→ERK downregulates mTOR via cJUN, and upregulates autophagy in an indirect way.

Overexpression of anti-apoptotic factors promotes autophagy [52]. The functional rela-

tionship between apoptosis and autophagy is complex. Under certain circumstances, autophagy

constitutes a stress adaptation that escapes from cell death via suppressing apoptosis. But, in

other cellular settings, it constitutes an alternative cell-death pathway. Autophagy and apoptosis

may be triggered by common upstream signals, and sometimes this leads to combined autophagy

and apoptosis; in other instances, the cell switches between the two responses in a mutually ex-

clusive manner. On a molecular level, this means that the apoptotic and autophagic response ma-

chineries share common pathways that either link or polarize the cellular responses. In the case

of pancreatic cancer development, in the very beginning, apoptosis is increased, which inhibits
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autophagy. With the progression of cancer, once apoptosis is inhibited by the high expression of

anti-apoptotic factors, autophagy gradually occupies the leading role with respect to the death of

cancer cells. Specifically, the overexpressed NFκB and Beclin1 can initiate autophagy.

6.2.2 Intracellular signaling network of PSCs

Pathways regulating activation

Pancreatic cancer cells can activate the surrounding PSCs. This may occur by cancer-cell-

induced release of mitogenic and fibrogenic factors, such as PDGFBB, TGFβ1, and TNFα.

PDGFBB induces the activation of PSCs [37]. As a major growth factor regulating the

cell functions of pancreatic stellate cells, PDGFBB activates PSCs through the downstream

ERK→AP1 signaling pathway.

TGFβ1 also activates PSCs [37]. Another independent signaling cascade that contributes to

the activation of PSCs is mediated by TGFβ1→ TGFR→ SAMD. Also, the autocrine signaling

of TGFβ1 can maintain the activation of PSCs.

TNFα involves in activating PSCs [53]. As a cytokine, TNFα is also involved in activating

PSCs through binding to TGFR, and then indirectly activates NFκB.

Pathways regulating migration

Migration is another characteristic cell function of pancreatic stellate cells. Activated PSCs

will move towards mutated PCCs, and form a cocoon for the tumor cells, which can protect

tumor from therapies’ attacks [5, 32].

Different growth factors promote migration. Growth factors existing in the microenviron-

ment, such as EGF, bFGF, and VEGF, can bind with their corresponding receptors on PCSs, and

activate the migration through the MAPK signaling pathway.

PDGFBB contributes to the migration [58]. PDGFBB regulates the migration of PSCs

mainly through two downstream signaling pathways. First, PDGFBB can activate PI3K→PIP3→

AKT pathway in PSCs. Activation of this pathway mediates PDGF-induced PSCs migration, but
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not proliferation. Another pathway of equal importance is the involvement of ERK→AP1 path-

way that regulates activation, migration, and proliferation of PSCs.

Pathways regulating proliferation

Growth factors activate proliferation. In PSCs, as key downstream components for several

signaling pathways initiated by distinct growth factors (i.e. EGF, bFGF, VEGF, and PDGF), the

ERK→AP1 cascade activates the proliferation of PSCs. Compared to inactive PSCs, active ones

proliferate more rapidly.

Tumor suppressers repress proliferation. Similar to PCCs, P53, P21, and PTEN act as the

suppresser for the proliferation of PSCs.

Pathways regulating apoptosis

P53 upregulates modulator of apoptosis [44]. The apoptosis of PSCs is initiated by P53,

which is regulated by its upstream MAPK signaling pathway.

6.2.3 Interactions between PCCs and PSCs

The mechanisms underlying the interplay between the tumor cells and the stroma are complex.

PCCs release mitogenic and fibrogenic stimulants, such as EGF, bFGF, VEGF, TGFβ1, PDGF,

sonic hedgehog, galectin 3, endothelin 1 and serine protease inhibitor nexin 2 [28]. These sim-

ulants may promote the activated PSC phenotype. Stellate cells in turn secrete various factors,

including stromal-derived factor 1, FGF, secreted protein acidic and rich in cysteine, matrix

metalloproteinases, small leucine-rich proteoglycans, periostin and collagen type I that mediate

effects on tumor growth, invasion, metastasis and resistance to chemotherapy [28]. Among them,

EGF, bFGF, VEGF, TGFβ1, and PDGFBB are essential molecules that have been considered in

our model.

Autocrine and paracrine involving EGF/bFGF [51]. EGF and FGF can be secreted by

both PCCs and PSCs. In turn, they will bind will EGFR and FGFR on both types of cells to

activate the cell proliferation and further secretion of EGF and FGF.
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Interplay through VEGF [72]. As a proangiogenic factor, VEGF is found to be of great

importance in the activation of PSCs and angiogenesis during the progression of PCs. VEGF,

secreted by PCCs, can bind with VEGFR on PSCs to activate the PI3K pathway. It further

promotes the migration of PSCs through PIP3→AKT, and suppresses the transcription activity

of P53 via MDM2.

Autocrine and paracrine involving TGFβ1 [51]. The TGFβ1 signaling system controls a

wide range of cellular functions that depend on cell types. In epithelial cells, TGFβ1 may play

several roles including inhibition of cell growth, and initiation of apoptosis. In contrast, the ef-

fects of TGFβ1 on cellular growth and apoptosis in stromal fibroblasts are minor compared with

its potent ability to stimulate cell-matrix adhesion and matrix remodeling and promotion of cell

motility. PSCs by themselves are capable of synthesizing cytokines, such as TGFβ1, suggesting

the existence of autocrine loops that may contribute to the perpetuation of PSC activation after

an initial exogenous signal, thereby promoting the development of pancreatic fibrosis.

Interplay through PDGFBB [28]. PDGFBB exists in the secretion of pancreatic cancer

cells. Its production is regulated by TGFβ1 signaling pathway. PDGFBB is highly involved in

the intracellular signaling network. It can activate PSCs and initiate migration and proliferation

as well.

6.3 Results and Discussion

Simulation can recapitulate a number of experimental observations and provide new insights into

the system. However, it is not easy to manually analyze a significant amount of simulation results,

especially when there is a large set of system properties to be tested. Thus, for our model, we

apply statistical model checking (StatMC) [45]. Given a system property expressed as a Bounded

Linear Temporal Logic (BLTL) [45] formula and the set of simulation trajectories with respect to

the model, StatMC will return the estimated probability of the model satisfying the property with

seconds. In this section, we present and discuss formal analysis results for our pancreatic cancer
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microenvironment model. We implement this model in multiscale hybrid rule-based modeling

language. All the experiments reported below were conducted on a machine with a 1.7 GHz

Intel Core i7 processor and 8GBRAM, running on Ubuntu 14.04.1 LTS. In our experiments, we

use Bayesian sequential estimation with 0.01 as the estimation error bound, coverage probability

0.99, and a uniform prior (α = β = 1).

Scenario I: mutated PCCs with no treatments

With our model, we can study both molecular dynamics, such as impacts on cell fates from

key oncoproteins and tumor suppressors, and cellular behaviors. In here, to highlight the abil-

ity of our proposed modeling language in expressing cellular interactions, comparing to logical

models and traditional rule-based models, we choose to look into some BLTL properties involv-

ing the interplay between PCCs and PSCs.

Property 1: This property aims to estimate the probability that the population of PCCs will

eventually reach and maintain in a high level.

Prob=? {(PCCtot = 10) ∧ F 1200 G100 (PCCtot > 200)}

First, we take a look at the impact from the existence of PSCs on the population change of PCCs.

As shown in Table 6.1, with PSCs, the probability of the number of PCCs reaching and keeping

in a high level (0.9961) is much higher than the one when PSCs are absent (0.405). This indicates

that PSCs promote PCCs’ proliferation during the progression of PC, which is consistent with

experimental findings [5, 28, 72]. Note that, the time bounds and thresholds given in this and

following properties are defined considering the model’s simulation results.

Property 2: This property aims to estimate the probability that the number of migrated PSCs

will eventually reach and maintain in a high amount.

Prob=? {(MigPSC = 0) ∧ F 1200 G100 (MigPSC > 40)}
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Property Estimated Prob # Succ # Sample Time (s) Note
Scenario I: mutated PCCs with no treatments

1 0.4053 10585 26112 208.91 w.o. PSCs
0.9961 256 256 1.83 w. PSCs

2 0.1191 830 6976 49.69 w.o. PCCs
0.9961 256 256 1.75 w. PCCs

3 0.9961 256 256 5.21 -
4 0.9961 256 256 4.38 -

Scenario II: mutated PCCs with different exsiting treatments
5 0.0004 0 2304 17.13 cetuximab and erlotinib

0.0004 0 2304 16.28 bevacizumab
0.0012 10 9152 68.67 gemcitabine
0.7810 8873 11360 114.25 nab-paclitaxel
0.8004 7753 9686 73.83 ruxolitinib

Scenario III: mutated PCCs with blocking out on possible target(s)
6 0.0792 38363 484128 3727.99 w.o. inhibiting ERK in

PSCs
0.9822 2201 2240 17.37 w. inhibiting ERK in

PSCs
7 0.1979 3409 17232 136.39 w.o. inhibiting ERK in

PSCs
0.9961 256 256 2.01 w. inhibiting ERK in

PSCs
8 0.2029 2181 10752 92.57 w.o. inhibiting MDM2 in

PSCs
0.9961 256 256 2.18 w. inhibiting MDM2 in

PSCs
9 0.0004 0 2304 15.77 w.o. inhibiting RAS in

PCCs and ERK in PSCs
0.9961 256 256 3.15 w. inhibiting RAS in

PCCs and ERK in PSCs
10 0.9797 1349 1376 11.98 w.o. inhibiting STAT in

PCCs and NFκB in PSCs
0.1631 1476 9056 81.61 w. inhibiting STAT in

PCCs and NFκB in PSCs

Table 6.1: Statistical model checking results for properties under different scenarios

We then study the impacts from PCCs on PSCs. As shown in Table 6.1, without PCCs, it is quite

unlikely (0.1191) for quiescent PSCs to be activated. While, when PCCs exist, the chance of

PSCs becoming active (0.9961) approaches 1. This confirms the observation [37] that, during

the development of PC, PSCs will be activated by growth factors, cytokines, and oxidant stress
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secreted or induced by PCCs.

Property 3: This property aims to estimate the probability that the number of PCCs entering the

apoptosis phase will be larger than the number of PCCs starting the autophagy programme and

this situation will be reversed eventually.

Prob=? {F 400 (G300 (ApoPCC > 50 ∧ AutoPCC < 50)

∧F 700 G300 (ApoPCC < 50 ∧ AutoPCC > 50))}

We are also interested in the mutually exclusive relationship between apoptosis and autophagy for

PCCs reported in [40, 52]. In detail, as PC progresses, apoptosis firstly overwhelms autophagy,

and then autophagy takes the leading place after a certain time point. We use property 3 to

describe this situation. The estimated probability is close to 1 (see Table 6.1).

Property 4: This property aims to estimate the probability that, it is always the case that, once

the population of activated PSCs reaches a high level, the number of migrated PSCs will also

increase.

Prob=? {G1600 (ActPSC > 10→ F 100 (MigPSC > 10))}

One reason why PC is hard to be cured is that activated PSCs will move towards mutated PCCs,

and form a cocoon for the tumor cells, which can protect tumor from attacks caused by ther-

apies [5, 32]. We investigate this by checking property 4, and obtain an estimated probability

approaching 1 (see Table 6.1).

Scenario II: mutated PCCs with different exsiting treatments

Property 5: This property aims to estimate the probability that the population of PCCs will

eventually drop to and maintain in a low amount.

Prob=? {(PCCtot = 10) ∧ F 1200 G400 (PCCtot < 100)}

Property 5 means that, after some time, the population of PCCs can be maintained in a compara-
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tively low amount, indicating that PC is under control. We now consider 6 different drugs that are

widely used in PC treatments - cetuximab, erlotinib, bevacizumab, gemcitabine, nab-paclitaxel,

and ruxolitinib, and estimate the probabilities for them to satisfy property 5. As shown in Ta-

ble 6.1, monoclonal antibody targeting EGFR (cetuximab), as well as direct inhibition of EGFR

(erlotinib) broadly do not provide a survival benefit in pancreatic cancer. Monoclonal antibody

inhibition of VEGFA (bevacizumab) does not improve survival either. Inhibition of MAPK path-

way (gemcitabine) has also not been promising. These are consistent with clinical feedbacks

from patients [1]. While, strategies aimed at depleting the stroma in pancreatic cancer (i.e. nab-

paclitaxel) can be successful (with an estimated probability 0.7810), as reported in [71]. Also,

inhibition of Jak/Stat can be very promising (with an estimated probability 0.8004), which has

been discussed in [43].

Scenario III: mutated PCCs with blocking out on possible target(s) We have also used our

model to predict possible targets for new therapies by considering pathway crosstalking within

the signaling network and combinations of distinct targets. In here, we report 4 potential target(s)

of interest.

Property 6: This property aims to estimate the probability that the number of PSCs will eventu-

ally drop to and maintain in a low level.

Prob=? {(PSCtot = 5) ∧ F 1200 G400 (PSCtot < 30)}

Property 7: This property aims to estimate the probability that the population of migrated PSCs

will eventually stay in a low amount.

Prob=? {(MigPSC = 0) ∧ F 1200 G100 (MigPSC < 30)}

As we can tell from Table 6.1, inhibiting ERK in PSCs can not only lower the population of

PSCs, but also inhibit PSCs’ migration. The former function can reduce the assistance from
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PSCs in the progression of PCs indirectly. The later one can prevent PSCs from moving towards

PCCs and then form a cocoon, which will be an obstacle for cancer treatments.

Property 8: This property aims to estimate the probability that the number of PSCs entering

the proliferation phase will eventually be less than the number of PSCs starting the apoptosis

programme and this situation will maintain.

Prob=? {F 1200 G400 ((PSCPro− PSCApop) < 0)}

The increased probability (from 0.2029 to 0.9961 as shown in Table 6.1) indicates that inhibiting

MDM2 in PSCs may reduce the number of PSCs by inhibiting PSCs’ proliferation and/or pro-

moting their apoptosis. Similar to the former role of inhibiting ERK in PSCs, it can help to treat

PCs by alleviating the burden caused by PSCs.

Property 9: This property aims to estimate the probability that the number of bFGF will even-

tually stay in such a low level.

Prob=? {F 1200 G400 (bFGF < 100)}

As mentioned in property 5, 6, and 7, inhibiting RAS in PCCs can lower the number of PCCs,

and downregulating ERK in PSCs can inhibit their proliferation and migration. Besides these,

we have found another combinatorial result when inhibiting RAS in PCCs and ERK in PSCs

simultaneously. That is, the concentration of bFGF in the microenvironment will drop (see Table

6.1). As bFGF is a key molecule that induces proliferation of both cell types, targeting RAS in

PCCs and ERK in PSCs may be a useful treatment for PCs.

Property 10: This property aims to estimate the probability that the concentration of VEGF will

eventually reach and keep in a high level.

Prob=? {F 400 G100 (V EGF > 200)}
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Last but not least, inhibiting STAT in PCCs and NFκB in PSCs concurrently can postpone and

lower the secretion of VEGF (see Table 6.1). VEGF plays an important role in the angiogenesis

and metastasis of pancreatic tumors. So, the combination of STAT in PCCs and NFκB in PSCs

may be another potential target for PC therapies.
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Chapter 7

On-going Work: Biological Systems as

General Stochastic Hybrid Models and

Probabilistic Bounded Reachability

Analysis

7.1 Algae-Fish-Bird-Estrogen Population Model

The fish model follows a simple tropic pyramid structure. The algae is the food source of the fish,

which in turn are the food source for the birds. If no estrogen is introduced into the environment,

the ecosystem is stable and the model simulates what is essentially the predator-prey interaction.

Initially there is a relatively high amount of fish, and relatively low amounts of birds and algae.

This puts a strain on the fish population, while simultaneously making it easy for the birds to

find prey due to the combination of a large food source and low competition for that food source.

Thus this leads to a dip in the fish population and a peak in the bird population. The dip in the

fish population also leads to a peak in the algae population, as the algae can grow without being
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consumed as fast due to the lack of fish. This scenario puts a strain on the bird population as

there is now too much competition for a smaller food source, while simultaneously making it

easy for the fish to find food due to the combination of a large food source and low competition

for that food source. Thus the population is back to the initial starting conditions, and the model

continues to cycle through these scenarios ad infinitum. The user can tamper with the ecosystem

by adding varying concentrations of estrogen. The estrogen leads to the feminization of male fish,

with higher concentrations of estrogen corresponding to an increased likely hood of feminization.

Feminized male fish cannot reproduce, which leads to more frequent dips in the fish population

and can throw the entire ecosystem out of the equilibrium that was described above. Essentially

the most important thing for the model to do is to capture the effects of estrogenic on a freshwater

ecosystem.

To understand how the estrogen level will feminize fish, and then how this fish population and

structure change will fluctuate the bird population and algae population, we construct a model

using partial differential equations (PDEs) accompanying nonlinear integro-boundary conditions

and stochastic differential equations (SDEs) to describe population dynamics for this freshwater

ecosystem. There are many well-defined ordinary differential equation (ODE) models for fish-

birds populations []. However, ODE models (e.g. the logistic equation) for population-level

statistics such as total population size cannot be expected to provide an adequate account of the

dynamics of most biological populations unless they are enhanced and supported by individual-

level sub-models for birth and death rates. For instance, in reality, only mature fish and birds

can give birth to new borns. One way to take differences between individual organisms into

account is to consider the age structure of populations. The age-specific birth and death rates are

fundamental parameters in both the theory and practice of population dynamics and demography.

Thus, in our model, we take the age structures for fish and birds into consideration. While, for

algae, we consider the randomness caused by outside factors with respect to their reproduction

rate. The equations depicting population dynamics are given as follows.
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For the dynamics of the population of algae X(t), we have

 dX(t) = X(t)(p1 − e1Y (t)− d1)dt+ σX(t)dWt

X(0) = x0

(7.1)

where,

• p1, as a constant, is the reproduction rate for algae;

• e1, as a constant, is the eaten rate by fish;

• d1, as a constant, is the natural death rate for algae;

• x0 is the initial population of algae; and

• σ is fluctuation rate.

For the fish population, we consider three different types respectively: female fish Yf (t),

male fish Ym(t), and feminized male fish Ym2f (t).

The dynamics for the population of female fish Yf (t) is defined as follows.



∂Yf (a,t)

∂a
+

∂Yf (a,t)

∂t
= −Yf (a, t)(d2(a) + e2Z(t) + oY (t)− s1X(t))

Yf (0, t) = 1
2
p2

∫ afmax

afmat
Ym(a1, t)da1

∫ afmax

afmat
Yf (a2, t)da2

Yf (a, 0) = yf0(a)

Yf (t) =
∫ afmax

0
Yf (a, t)da

(7.2)

where,

• afmat, as a constant, is the mature age of fish;

• afmax, as a constant, is the maximum age of fish;
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• d2(a) is the natural death rate for fish. This function is defined as

d2(a) =


0, a = 0

d2, a ∈ (0, afmax)

1, a = afmax

• e2, as a constant, is the eaten rate by bird;

• o, as a constant, is the death rate caused by the overcrowding;

• s1, as a constant, is the surviving rate due to food consuming;

• p2, as a constant, is contact rate between mature male and female fish for the reproduction;

and

• yf0(a) is the initial population and age structure of female fish.

The dynamics for the population of male fish Ym(t) is defined as follows.



∂Ym(a,t)
∂a

+ ∂Ym(a,t)
∂t

= −Ym(a, t)(d2(a) + e2Z(t) + oY (t)− s1X(t))−
∫ afmax

0
f(a)Ym(a, t)da

Ym(0, t) = 1
2
p2

∫ afmax

afmat
Ym(a1, t)da1

∫ afmax

afmat
Yf (a2, t)da2

Ym(a, 0) = ym0(a)

Ym(t) =
∫ afmax

0
Ym(a, t)da

(7.3)

where, f(a) is the feminized rate for male fish. As the older a fish is, the more the accumulated

estrogen in its body is. As the feminized rate is positively linear to the accumulated estrogen

amount in the body, we define f(a) = a
afmax

. ym0(a) is the initial population and age structure

of male fish.

The dynamics for the population of feminized male fish Ym2f (t) is defined as follows.


dYm2f (t)

dt
= Ym2f (t)(s1X(t)− d2(a)− e2Z(t)− oY (t)) +

∫ afmax

0
f(a)Ym(a, t)da

Ym2f (0) = 0
(7.4)
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Then, the total number of fish Y (t) is still the sum of three distinct types:

Y (t) = Yf (t) + Ym(t) + Ym2f (t)

Last, the dynamics for the population of birds Z(t) is defined as follows.



∂Z(a,t)
∂a

+ ∂Z(a,t)
∂t

= Z(a, t)(s2Y (t)− d3(a))

Z(0, t) =
∫ abmax

abmat
p3Z(a, t)da

Z(a, 0) = z0(a)

Z(t) =
∫ abmax

0
Z(a, t)da

(7.5)

where,

• abmat, as a constant, is the mature age of birds;

• abmax, as a constant, is the maximum age of birds;

• d3(a) is the natural death rate for birds. This function is defined as

d3(a) =


0, a = 0

d3, a ∈ (0, abmax)

1, a = abmax

• p3, as a constant, is the reproduction rate for birds;

• s2, as a constant, is the surviving rate due to food consuming; and

• z0(a) is the initial population and age structure of birds.

7.2 Modeling Formalism: Stochastic Hybrid Systems

General Stochastic Hybrid Systems (GSHS) are a class of non-linear stochastic continuous-time

hybrid dynamical systems. GSHS are characterized by a hybrid state defined by two components:
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the continuous state and the discrete state. The continuous and the discrete parts of the state

variable have their own natural dynamics, but the main point is to capture the interaction between

them.

The time t is measured continuously. The state of the system is represented by a continuous

variable x and a discrete variable i. The continuous variable evolves in some “cells” X i (open

sets in the Euclidean space) and the discrete variable belongs to a countable set Q. The intrinsic

difference between the discrete and continuous variables, consists of the way that they evolve

through time. The continuous state evolves according to an SDE whose vector field and drift fac-

tor depend on the hybrid state. The discrete dynamics produces transitions in both (continuous

and discrete) state variables x, i. Switching between two discrete states is governed by a prob-

ability law or occurs when the continuous state hits the boundary of its state space. Whenever

a switching occurs, the hybrid state is reset instantly to a new state according to a probability

law which depends itself on the past hybrid state. Transitions, which occur when the continuous

state hits the boundary of the state space are called forced transitions, and those which occur

probabilistically according to a state dependent rate are called spontaneous transitions. Thus, a

sample trajectory has the form (qt, xt, t ≥ 0), where (xt, t ≥ 0) is piecewise continuous and

qt ∈ Q is piecewise constant. Let (0 ≤ T1 < T2 < · · · < Ti < Ti+1 < · · · ) be the sequence of

jump times.

It is easy to show that GSHS include, as special cases, many classes of stochastic hybrid

processes found in the literature PDMP, SHS, etc.

If X is a Hausdorff topological space we use to denote by B(X) or B its Borel σ-algebra (the

σ-algebra generated by all open sets). A topological space, which is homeomorphic to a Borel

subset of a complete separable metric space is called Borel space. A topological space, which is

is a homeomorphic with a Borel subset of a compact metric space is called Lusin space.

State space. Let Q be a countable set of discrete states, and let d : Q → N and X : Q → Rd(.)

be two maps assigning to each discrete state i ∈ Q an open subset X i of Rd(i). We call the set
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X(Q, d,X ) =
⋃
i∈Q

{i} ×X i

where

∂X =
⋃
i∈Q

{i} × ∂X i.

It is clear that, for each i ∈ Q, the state space X i is a Borel space. It is possible to define a

metric ρ on X such that ρ(xn, x) → 0 as n → ∞ with xn = (in, x
in
n ), x = (i, xi) if and onlyif

there exists m such that in = i for all n ≥ m and xim+k → xi as k →∞. The metric ρ restricted

to any component X i is equivalent to the usual Euclidean metric [27]. Each {i} × X i, being a

Borel space, will be homeomorphic to a measurable subset of the Hilbert cube, H (Urysohn’s

theorem, Prop. 7.2 [11]). Recall that H is the product of countable many copies of [0, 1]. The

definition of X shows that X is, as well, homeomorphic to a measurable subset of H . Then

(X,B(X)) is a Borel space. Moreover, X is a Lusin space because it is a locally compact

Hausdorff space with countable base.

Continuous and discrete dynamics. In each mode X i, the continuous evolution is driven by

the following stochastic differential equation (SDE)

dx(t) = b(i, x(t))dt+ σ(i, x(i))dWt, (7.6)

where (Wt, t ≥ 0) is the m-dimensional standard Wiener process in a complete probability space.

This assumption ensures, for any i ∈ Q, the existence and uniqueness (Theorem 6.2.2. in

[4]) of the solution for the above SDE.

Assumption 7.2.1 (Continuous evolution) Suppose that b : Q×X(.) → Rd(.), σ : Q×X(.) →

Rd(.)×m, m ∈ N, are bounded and Lipschitz continuous in x.

In this way, when i runs in Q, the equation 7.6 defines a family of diffusion processes M i =

(Ωi,F i,F it , xit, θit, P i), i ∈ Q with the state spaces Rd(i), i ∈ Q. For each i ∈ Q, the elements
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F i,F it , θit, P i, P i
x have the usual meaning as in the Markov process theory.

The jump (switching) mechanism between the diffusions is governed by two functions: the

jump rate λ and the transition measure R. The jump rate λ : X → R+ is a measurable bounded

function and the transition measure R maps X into the set P(X) of probability measures on

(X,B(X)). Alternatively, one can consider the transition measure R : X̄ ×B → [0, 1] as a reset

probability kernel.

Assumption 7.2.2 (Discrete transitions) (i) for all A ∈ B, R(·, A) is measurable;

(ii) for all x ∈ X̄ the function R(x, ·) is a probability measure.

(iii) λ : X → R+ is a measurable function such that t → λ(xit(ω
i)) is integrable on [0, ε(ωi)),

for some ε(ωi) > 0, for each ωi ∈ Ωi.

Since X̄ is a Borel space, then X̄ is homeomorphic to a subset of the Hilbert cube,H. There-

fore, its space of probabilities is homeomorphic to the space of probabilities of the correspond-

ing subset of H (Lemma 7.10 [11]). There exists a measurable function F : H × X̄ such that

R(x,A) = pF−1(A), A ∈ B(X), where p is the probability measure on H associated to R(x, ·)

and F−1(A) = {ω ∈ H|F(ω, x) ∈ A}. The measurability of such a function is guaranteed by the

measurability properties of the transition measure R.

Construction. We construct an GSHS as a Markov ‘sequence’ H , which admits (M i) as sub-

processes. The sample path of the stochastic process (xt)t>0 with values in X , starting from a

fixed initial point x0 = (i0, x
i0
0 ) ∈ X is defined in a similar manner as PDMP [27].

Let ωi be a trajectory which starts in (i, xi). Let t∗(ωi) be the first hitting time of ∂X i of the

process (xit). Let us define the following right continuous multiplicative functional

F (t, ωi) = It<t∗(ωi)exp[−
∫ t

0

λ(i, xis(ω
i))ds]. (7.7)

This function will be the survivor function for the stopping time Si associated to the diffusion

(xit), which will be employed in the construction of our model. This means that “killing” of the

process (xit) is done according to the multiplicative functional F (t, ·). The stopping time Si can
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be thought of as the minimum of two other stopping times:

1. first hitting time of boundary, i.e. t∗|Ωi;

2. the stopping time Si′ given by the following continuous multiplicative functional (which

plays the role of the survivor function)

M(t, ωi) = exp(−
∫ t

0

λ(i, xis(ω
i)))ds.

The stopping time Si′ can be defined as

Si
′
(ωi) = sup{t|Λi

t(ω
i) ≤ mi(ωi)},

where Λi
t is the following additive functional associated to the diffusion (xit)

Λi
t(ω

i) =

∫
0

tλ(i, xis(ω
i))ds

and mi is an R+-valued random variable on Ωi, which is expontantially distributed with the

survivor function P i
x[m

i > t] = e−t. Then

P i
xi [S

i′ > t] = P i
xi [Λ

i
t ≤ m′]. (7.8)

We set ω = ωi0 and the first jump time of the process is T1(ω) = T1(ωi0) = Si0(ωi0). The

sample path xt(ω) up to the first jump time is now defined as follows:

if T1(ω) =∞: xt(ω) = (i0, x
i0
t (ωi0)), t ≥ 0

if T1(ω) <∞: xt(ω) = (i0, x
i0
t (ωi0)), 0 ≤ t < T1(ω)

xT1(ω) is a r.v. w.r.t. R((i0, x
i0
T1

(ωi0)), ·).

The process restarts from xT1(ω) = (i1, x
i1
1 ) according to the same recipe, using now the process

xi1t . Thus if T1(ω) <∞ we define ω = (ωi0 , ωi1) and the next jump time
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T2(ω) = T2(ωi0 , ωi1) = T1(ωi0) + Si1(ωi1)

The sample path xt(ω) between the two jump times is now defined as follows:

if T2(ω) =∞: xt(ω) = (i1, x
i1
t−T1(ω)), t ≥ T1(ω)

if T2(ω) <∞: xt(ω) = (i1, x
i1
t (ω)), 0 ≤ T1(ω) ≤ t < T2(ω)

xT2(ω) is a r.v. w.r.t. R((i1, x
i1
T2

(ω)), ·).

and so on.

We denote Nt(ω) =
∑
I(t≥Tk).

Assumption 7.2.3 (Non-Zeno executions) For every starting point x ∈ X , ENt < ∞, for all

t ∈ R+.

We can now define GSHS formally by:

Definition 7.2.1 (GSHS) A General Stochastic Hybrid System (GSHS) is a collection H =

((Q, d,X ), b, σ,

Init, λ, R) where

• Q is a countable set of discrete variables;

• d : Q→ N is a map giving the dimensions of the continuous state spaces;

• X : Q→ Rd(.) maps each q ∈ Q into an open subset Xq of Rd(q);

• b : X(Q, d,X )→ Rd(.) is a vector field;

• σ : X(Q, d,X )→ Rd(.)×m is a X(.)-valued matrix, m ∈ N;

• Init : B(X)→ [0, 1] is an initial probability measure on (X,B(S));

• λ : X̄(Q, d,X )→ R+ is a transition rate function;

• R : X̄ × B(X̄)→ [0, 1] is a transition measure.

Following [66], we note that ifRc is a transition measure from (X×Q,B(X×Q)) to (X,B(X))

and Rd is a transition measure from (X,B(X)) to (Q,B(Q)) (where Q is equipped with the dis-

crete topology) then one might define a transition measure as follows
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R(xi, A) =
∑
q∈Q

Rd(x
i, q)Rc(x

i, q, Aq)

for all A ∈ B(X), where Aq = A ∩ (q,Xq). Taking in the definition of a GSHS a such kind

of reset map, the change of the continuous state at a jump depends on the pre jump location

(continuous and discrete) as well as on the post jump discrete state. This construction can be

used to prove that the stochastic hybrid processes with jumps, developed in [14], are a particular

class of GSHS.

Also we can define GSHS executions as:

Definition 7.2.2 (GSHS Execution) A stochastic process xt = (q(t), x(t)) is called a GSHS

execution if there exists a sequence of stopping times T0 = 0 < T1 < T2 ≤ · · · such that for

each k ∈ N ,

• x0 = (q0, x
q0
0 ) is a Q ×X-valued random variable extracted according to the probability

measure Init;

• For t ∈ [Tk, Tk+1), qt = qTk is constant and x(t) is a (continuous) solution of the SDE:

dx(t) = b(qTk , x(t))dt+ σ(qTk , x(t))dWt (7.9)

where Wt is a the m-dimensional standard Wiener;

• Tk+1 = Tk + Sik where Sik is chosen according with the survivor function 7.8;

• The probability distribution of x(Tk+1) is governed by the law R((qTk , x(T−k+1)), ·).
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Chapter 8

On-going Work: Joint Efforts of Formal

Methods and Machine Learning to

Automate Biological Model Design

We propose to create a framework that will allow for creating and studying causal, explanatory

models of complicated biological systems in which interactions have important causal effects.

The modules included in the framework (as in Figure 8.1) will provide functionality necessary

for automation of information mining, information assembly and explanation of such systems.

Within this framework, besides validating input models, explaining existing experimental ob-

servations, and offering new information for designing new experiments, model checking tech-

niques can be used as a (sub)model selection method. In detail, when integrating multiple model

fragments obtained via information mining, model checking can help to decide which frag-

ment(s) should be included into the final model by considering the verification results against

a set of basic system properties.

As the initial step of this work (see Figure 8.2), we first consider the biomedical pathways

of pancreatic cancer. We use our model in Chapter 2 as the initial model, and apply BioNELL

together with a given set of pathway keywords to learn additional causal relations from pancreatic
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Experiments

Learning Model
Assembly

Formal
Analysis

* Text Mining (causal relations)
* Image Learning (initial (sub)models)
* Structure Learning (graphic models)

* Inconsistency detection
* Proper Modeling Language, or
* Coordinate model fragments in 
distinct languages

model fragments

inconsistency-based keywords

integrated
model

hints for:
1. handling inconsistency
2. which fragment(s) to

 be included

predictions 
(for new designs of experiments)

keywords for things
 to be learnt

inconsistency

new datasets or 
experimental observations

* Model falsification/validation
* Parameter estimation
* Sensitivity analysis
* Model selection

Figure 8.1: Schematic view of how formal methods and machine learning can take joint efforts
to automate the model design for biological models.

cancer related literature. We rank these mined model fragments according to the frequency of

appearance, the number of citations, and so on. 3-value discrete logic modeling language, as

an extension of Boolean networks by consider three possible values (low, medium, and high), is

used to represent the assembled model. In this work, we use statistical model checking and a set

of Bounded LTL properties to select which fragment obtained from literature can be added to the

final model. The whole process is automated.
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Figure 8.2
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Chapter 9

Timeline

My proposed timeline of work is:

1. Now - June 2016: Finish chapter 7

2. Now - April 2016: Finish chapter 8

2. July 2016: Defend thesis
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