
SReach: A Probabilistic Bounded δ-Reachability
Analyzer for Stochastic Hybrid Systems ?

Qinsi Wang1, Paolo Zuliani2, Soonho Kong1, Sicun Gao3,
Edmund M. Clarke1

1 Computer Science Department, Carnegie Mellon University, USA
2 School of Computing Science, Newcastle University, UK

3 CSAIL, Massachusetts Institute of Technology, USA

Abstract. In this paper, we present a new tool SReach, which solves
probabilistic bounded reachability problems for two classes of models of
stochastic hybrid systems. The first one is (nonlinear) hybrid automata
with parametric uncertainty. The second one is probabilistic hybrid au-
tomata with additional randomness for both transition probabilities and
variable resets. Standard approaches to reachability problems for lin-
ear hybrid systems require numerical solutions for large optimization
problems, and become infeasible for systems involving both nonlinear
dynamics over the reals and stochasticity. SReach encodes stochastic in-
formation by using a set of introduced random variables, and combines δ-
complete decision procedures and statistical tests to solve δ-reachability
problems in a sound manner, i.e., it always decides correctly if, for a
given assignment to all random variables, the system actually reaches the
unsafe region. Compared to standard simulation-based methods, it sup-
ports non-deterministic branching, increases the coverage of simulation,
and avoids the zero-crossing problem. We demonstrate SReach’s applica-
bility by discussing three representative biological models and additional
benchmarks for nonlinear hybrid systems with multiple probabilistic sys-
tem parameters.

1 Introduction
Stochastic hybrid systems (SHSs) are dynamical systems exhibiting discrete, con-
tinuous, and stochastic dynamics. Due to the generality, they have been widely
used in various areas, including biological systems, financial decision problems,
and cyber-physical systems [2, 6]. One elementary question for the quantitative
analysis of SHSs is the probabilistic reachability problem, considering that many
verification problems can be reduced to reachability problems. It is to compute
the probability of reaching a certain set of states. The set may represent certain
unsafe states which should be avoided or visited only with some small proba-
bility, or dually, good states which should be visited frequently. This problem is
no longer a decision problem, as it generalizes that by asking what is the proba-
bility that the system reaches the target region. For SHSs with both stochastic
and non-deterministic behavior, the problem results in general in a range of
probabilities, thereby becoming an optimization problem.

? This research was sponsored by the Air Force Office of Scientific Research (FA9550-
12-1-0146) and the Office of Naval Research (N000141310090).

2 Q. Wang, S. Kong, S. Gao, E. Clarke

To describe stochastic dynamics, uncertainties have been added to hybrid
systems in various ways. One way expresses random initial values and stochas-
tic dynamical coefficients using random variables, resulting in hybrid automata
(HAs) [16] with parametric uncertainty. Another approach integrates determin-
istic flows with probabilistic jumps. When state changes forced by continuous
dynamics involve discrete random events, we refer to such systems as probabilis-
tic hybrid automata (PHAs) [23]. When continuous probabilistic events are also
involved, we call them stochastic hybrid automata (SHAs) [10]. Other models
substitute deterministic flows with stochastic ones, such as stochastic differential
equations (SDEs) [1], where the random perturbation affects the dynamics con-
tinuously. When all such modifications have been applied, the resulting models
are called general stochastic hybrid systems (GSHSs) [18]. Among these different
models, of particular interest for this paper are HAs with parametric uncertainty
and PHAs with additional randomness for both transition probabilities and vari-
able resets. Note that, in the following, we use notations - HAp and PHAr - for
these two model classes respectively.

When modeling real-world systems, such as biological systems and cyber-
physical systems, using hybrid models, parametric uncertainty arises naturally.
Although its cause is multifaceted, two factors are critical. First, probabilistic
parameters are needed when the physics controlling the system is known, but
some parameters are either not known precisely, are expected to vary because
of individual differences, or may change by the end of the system’s operational
lifetime. Second, system uncertainty may occur when the model is constructed
directly from experimental data. Due to imprecise experimental measurements,
the values of system parameters may have ranges of variation with some associ-
ated likelihood of occurrence. Clearly, the HAps are suitable models considering
these major causes. Note that, in both cases, we assume that the probability dis-
tributions of probabilistic system parameters are known and remain unchanged
throughout the systems evolution.

As another interesting and more expressive class of models, PHAs extend HAs
with discrete probability distributions. More precisely, for discrete transitions in
a model, instead of making a purely (non)deterministic choice over the set of
currently enabled jumps, a PHA (non)deterministically chooses among the set of
recently enabled discrete probability distributions, each of which is defined over
a set of transitions. Although randomness only influences the discrete dynamics
of the model, PHAs are still very useful and have interesting practical appli-
cations [24]. In this paper, we consider a variation of PHAs, where additional
randomness for both transition probabilities and resets of system variables are
allowed. In other words, in terms of the additional randomness for jump prob-
abilities, we mean that the probabilities attached to probabilistic jumps from
one mode, instead of having a discrete distribution with predefined constant
probabilities, can be expressed by equations involving random variables whose
distributions can be either discrete or continuous. This extension is motivated
by the fact that some transition probabilities can vary due to factors such as in-
dividual and environmental differences in real-world systems. When it comes to

SReach 3

the randomness of variable resets, we allow that a system variable can be reset
to a value obtained according to a known discrete or continuous distribution,
instead of being assigned a fixed value.

In this paper, we describe our tool SReach which supports probabilistic
bounded δ-reachability analysis for the above two model classes. It combines
the recently proposed δ-complete bounded reachability analysis technique [12]
with statistical testing techniques. SReach saves the virtues of the Satisfiability
Modulo Theories (SMT) based Bounded Model Checking (BMC) for HAs [7,26],
namely the fully symbolic treatment of hybrid state spaces, while advancing
the reasoning power to probabilistic models. Furthermore, by utilizing the δ-
complete analysis method, the full non-determinism of models will be considered.
The coverage of simulation will be increased, as the δ-complete analysis method
results in an over-approximation of the reachable set, whereas simulation is only
an under-approximation of it. The zero-crossing problem can be avoided as, if a
zero-crossing point exists, it will always return an interval containing it. By us-
ing statistical tests, SReach can place controllable error bounds on the estimated
probabilities. We discuss three biological models - an atrial fibrillation model, a
prostate cancer treatment model, and our synthesized Killerred biological model
- to show that SReach can answer questions including model validation/falsi-
fication, parameter synthesis, and sensitivity analysis. To further demonstrate
its applicability, we also apply it to additional real-world hybrid systems with
parametric uncertainty.

Related work. Hahn et al. promoted an abstraction-based method where
the given PHA is abstracted into an n-player stochastic game [15], albeit be-
ing limited to linear dynamics. Fränzle at al. proposed a Stochastic SMT-based
procedure [11]. But their tool SiSAT supports only discrete random variables.
Ellen et al. [9] proposed a statistical model checking technique for verifying hy-
brid systems with continuous non-determinism, thereby expanding the class of
systems analyzable, yet confined dynamics to (non-linear) pre-post conditions
rather than ODEs. SReach supports both discrete and continuous random vari-
ables, and ODEs. ProbReach [22] also uses the δ-complete procedures and offers
verified estimated probability interval containing the real probability, yet can
only deal with hybrid systems with initial random variables. While SReach is
able to handle probabilistic transitions as well.

The paper proceeds by introducing two model classes of SHSs under consider-
ation in Section 2. Section 3 formally states probabilistic bounded δ-reachability
problems and explains how SReach solves these problems by combining δ-complete
decision procedures with statistical tests. Case studies and additional experi-
ments are discussed in Section 4. Section 5 concludes the paper.

2 Stochastic Hybrid Models

Before introducing the algorithm implemented by SReach and the problems that
it can handle, we first define two model classes that SReach considers formally.
For HAps, we follow the definition of HAs in [16], and extend it to consider
probabilistic parameters in the following way.

4 Q. Wang, S. Kong, S. Gao, E. Clarke

Definition 1 (HAp). A hybrid automaton with parametric uncertainty is a
tuple Hp = 〈(Q,E), V, RV, Init, Flow, Inv, Jump, Σ〉, where

– The vertices Q = {q1, · · · , qm} is a finite set of discrete modes, and edges in
E are control switches.

– V = {v1, · · · , vn} denotes a finite set of real-valued system variables. We
write V̇ to represent the first derivatives of variables during the continuous
change, and write V ′ to denote values of variables at the conclusion of the
discrete change.

– RV = {w1, · · · , wk} is a finite set of independent random variables, where
the distribution of wi is denoted by Pi.

– Init, Flow, and Inv are labeling functions over Q. For each mode q ∈ Q, the
initial condition Init(q) and invariant condition Inv(q) are predicates whose
free variables are from V ∪RV , and the flow condition Flow(q) is a predicate
whose free variables are from V ∪ V̇ ∪RV .

– Jump is a transition labeling function that assigns to each transition e ∈ E
a predicate whose free variables are from V ∪ V ′ ∪RV .

– Σ is a finite set of events, and an edge labeling function event : E → Σ
assigns to each control switch an event.

Another class is PHArs, which extend HAs with discrete probability transi-
tions and additional randomness for transition probabilities and variable resets.

Definition 2 (PHAr). A probabilistic hybrid automaton with additional ran-
domness Hr consists of Q, E, V, RV, Init, Flow, Inv, Σ as in Definition 1, and
Cmds, which is a finite set of probabilistic guarded commands of the form:
g → p1 : u1 + · · · + pm : um,
where g is a predicate representing a transition guard with free variables from
V , pi is the transition probability for the ith probabilistic choice which can be ex-
pressed by an equation involving random variable(s) in RV and the pi’s satisfy∑m
i=1 pi = 1, and ui is the corresponding transition updating function for the ith

probabilistic choice, whose free variables are from V ∪ V ′ ∪RV .

To illustrate the additional randomness allowed for transition probabilities
and variable resets, an example probabilistic guarded command is x ≥ 5 →
p1 : (x′ = sin(x)) + (1 − p1) : (x′ = px), where x is a system variable, p1 has
a Uniform distribution U(0.2, 0.9), and px has a Bernoulli distribution B(0.85).
This means that, the probability to choose the first transition is not a fixed
value, but a random one having a Uniform distribution. Also, after taking the
second transition, x can be assigned to either 1 with probability 0.85, or 0 with
0.15. In general, for an individual probabilistic guarded command, the transition
probabilities can be expressed by equations of one or more new random variables,
as long as values of all transition probabilities are within [0, 1], and their sum is
1. Currently, all four primary arithmetic operations are supported. Note that, to
preserve the Markov property, only unused random variables can be used, so that
no dependence between the current probabilistic jump and previous transitions
will be introduced.

SReach 5

3 SReach algorithm

A recently proposed δ-complete decision procedure [12] relaxes the reachabil-
ity problem for HAs in a sound manner: it verifies a conservative approxima-
tion of the system behavior, so that bugs will always be detected. The over-
approximation can be tight (tunable by an arbitrarily small rational parameter
δ), and a false alarm with a small δ may indicate that the system is fragile,
thereby providing valuable information to the system designer (see Appendix
A for details). We now define the probabilistic bounded δ-reachability problem
based on the bounded δ-reachability problem defined in [12] .

Definition 3. The probabilistic bounded k step δ-reachability for a HAp Hp is to
compute the probability that Hp reaches the target region T in k steps. Given the
set of independent random variables r, Pr(r) a probability measure over r, and
Ω the sample space of r, the reachability probability is

∫
Ω
IT (r)dPr(r), where

IT (r) is the indicator function which is 1 if Hp with r reaches T in k steps.

Definition 4. For a PHAr Hr, the probabilistic bounded k step δ-reachability
estimated by SReach is the maximal probability that Hr reaches the target region
T in k steps: maxσ∈EPr

k
Hr,σ,T

(i), where E is the set of possible executions of
H starting from the initial state i, and σ is an execution in the set E.

Algorithm 1 SReach

1: function SReach(MP , ST , δ, k)
2: if MP is a HAp then
3: MP ← EncRM1(MP) . encode uncertain system parameters
4: else . otherwise a PHAr

5: MP ← EncRM2(MP) . encode probabilistic jumps and extra randomness
6: end if
7: Succ,N ← 0 . number of δ-sat samples and total samples
8: Assgn← ∅ . record unique sampling assignments and dReach results
9: RV ← ExtractRV(MP) . get the RVs from the probabilistic model

10: repeat in parallel
11: Si ← Sim(RV) . sample the parameters
12: if Si ∈ Assgn.sample then
13: Res← Assgn(Si).res . no need to call dReach
14: else
15: Mi ← Gen(MP,Si) . generate a dReach model
16: Res← dReach(Mi, δ, k) . call dReach to solve k-step δ-reachability
17: end if
18: if Res = δ-sat then Succ← Succ+ 1
19: end if
20: N ← N + 1
21: until ST.done(Succ,N) . perform statistical test
22: return ST.output
23: end function

After encoding uncertainties using random variables, SReach samples them
according to the given distributions. For each sample, a corresponding interme-
diate HA is generated by replacing random variables with their assigned values.

6 Q. Wang, S. Kong, S. Gao, E. Clarke

Then, the δ-complete analyzer dReach is utilized to analyze each intermediate
HAMi, together with the desired precision δ and unfolding depth k. The analyzer
returns either unsat or δ-sat for Mi. This information is then used by a chosen
statistical testing procedure to decide whether to stop or to repeat the proce-
dure, and to return the estimated probability. The full procedure is illustrated
in Algorithm 1, where MP is a given stochastic model, and ST indicates which
statistical testing method will be used (See Appendix B for various statistical
tests that supported by SReach and the way to control the induced statistical
error bounds). Succ and N are used to record the number of δ-sat instances and
total samples generated so far respectively, and are then the inputs of ST . Note
that, for a PHAr, sampling and fixing the choices of all the probabilistic tran-
sitions in advance results in an over-approximation of the original PHAr, where
safety properties are preserved. To promise a tight over-approximation and cor-
rectness of estimated probabilities, SReach supports PHArs with no or subtle
non-determinism. That is, in order to offer a reasonable estimation, for PHArs,
SReach is supposed to be used on models with no or few non-deterministic transi-
tions, or where dynamic interleaving between non-deterministic and probabilistic
choices are not important, such as our KillerRed biological model. To improve the
performance of SReach, each sampled assignment and its corresponding dReach
result are recorded for avoiding redundant calls to dReach. This significantly re-
duces the total calls for PHArs, as the size of the sample space involving random
variables describing probabilistic jumps is comparatively small. For the example
PHA (as shown in Figure 1), with this heuristic, the total checking time has been
decreased from 11291.31s for 658 samples (17.16s per sample) to 3295.82s (5.01s
per sample). Furthermore, a parallel version of SReach has been implemented
using OpenMP, where multiple samples and corresponding HAs are generated,
and passed to dReach simultaneously. Using this parallel SReach on a 4-core
machine, the running time for the example PHA has been further decreased to
2119.55s for 660 samples (3.33s per sample).

Mode 1

d/dt[x] = x * y;
d/dt[y] = 3 * x - y;

invt:
 (x <= 2);
 (x >= 0);
 (y <= 7.7);
 (y >= -3);

Mode 2

d/dt[x] = x;
d/dt[y] = 3 * x - y ^ 2;

invt:
 (x <= 200);
 (x >= -2.2);
 (y <= 85.1);
 (y >= 2)

(0.1<= x <= 1.4)
(y = 1.1) abs(y) * x ^ 2 <= x / 2

cos(x) <= 0

0.5

0.5

(x' >= sin(y))
 (y' <= 4 * y)

(x' <= 3.1)
(y' = 2 * x)

(x' = x) (y' = y)

(x <= 1000)
(x >= -1000)
(y <= 1000)
(y >= -1000)

1

0.5

0.5

(x' = x)
(y' = y)

(x' = x)
(y' = y)

Fig. 1: An example probabilistic hybrid automaton

Currently, SReach supports a number of hypothesis testing and statistical es-
timation techniques including: Lai’s test [20], Bayes factor test [19], Bayes factor
test with indifference region [28], Sequential probability ratio test (SPRT) [27],
Chernoff-Hoeffding bound [17], Bayesian Interval Estimation with Beta prior

SReach 7

[29], and Direct Sampling. All methods produce answers that are correct up to a
precision that can be set arbitrarily by the user. See Appendix B for more details
about these statistical testing techniques. With these hypothesis testing meth-
ods, SReach can answer qualitative questions, such as “Does the model satisfy
a given reachability property in k steps with probability greater than a certain
threshold?” With the above statistical estimation techniques, SReach can offer
answers to quantitative problems. For instance, “What is the probability that
the model satisfies a given reachability property in k steps?” SReach can also
handle additional types of interesting problems by encoding them as probabilistic
bounded reachability problems. The model validation/falsification problem
with prior knowledge can be encoded as a probabilistic bounded reachability
question. After expressing prior knowledge about the given model as reacha-
bility properties, is there any number of steps k in which the model satisfies a
given property with a desirable probability? If none exists, the model is incorrect
regarding the given prior knowledge. The parameter synthesis problem can
also be encoded as a probabilistic k-step reachability problem. Does there exist
a parameter combination for which the model reaches the given goal region in
k steps with a desirable probability? If so, this parameter combination is poten-
tially a good estimation for the system parameters. The goal here is to find a
combination with which all the given goal regions can be reached in a bounded
number of steps. Moreover, sensitivity analysis can be conducted by a set of
probabilistic bounded reachability queries as well: Are the results of reachability
analysis the same for different possible values of a certain system parameter?
If so, the model is insensitive to this parameter with regard to the given prior
knowledge.

4 Experiments

Both sequential and parallel versions of SReach are available on https://github.

com/dreal/SReach (see Appendix C for its usage). Experiments for the following
three biological models were conducted on a server with 2* AMD Opteron(tm)
Processor 6172 and 32GB RAM (12 cores were used), running on Ubuntu 14.04.1
LTS. In our experiments we used 0.001 as the precision for the δ-decision prob-
lem, and Bayesian sequential estimation with 0.01 as the estimation error bound,
coverage probability 0.99, and a uniform prior (α = β = 1). All the details
(including discrete modes, continuous dynamics that described by ODEs, non-
determinism, and stochasticity) of models in the following case studies and ad-
ditional benchmarks can be found on the tool website.

Atrial Fibrillation. The minimum resistor model reproduces experimentally
measured characteristics of human ventricular cell dynamics [5]. It reduces the
complexity of existing models by representing channel gates of different ions with
one fast channel and two slow gates. However, due to this reduction, for most
model parameters, it becomes impossible to obtain their values through mea-
surements. After adding parametric uncertainty into the original hybrid model,
we show that SReach can be adapted to synthesize parameters for this stochastic
model, i.e., identifying appropriate ranges and distributions for model parame-

8 Q. Wang, S. Kong, S. Gao, E. Clarke

ters. We chose two system parameters - EPI TO1 and EPI TO2, and varied their
distributions to see which ones allow the model to present the desired patterns.
As in Table 1, when EPI TO1 is either close to 400, or between 0.0061 and 0.007,
and EPI TO2 is close to 6, the model can satisfy the given bounded reachability
property with a probability very close to 1.

Model #RVs EPI TO1 EPI TO2 #S S #T S Est P A T(s) T T(s)

Cd to1 s 1 U(6.1e-3, 7e-3) 6 240 240 0.996 0.270 64.80

Cd to1 uns 1 U(5.5e-3, 5.9e-3) 6 0 240 0.004 0.042 10.08

Cd to2 s 1 400 U(0.131, 6) 240 240 0.996 0.231 55.36

Cd to2 uns 1 400 U(0.1, 0.129) 0 240 0.004 0.038 9.15

Cd to12 s 2 N(400, 1e-4) N(6, 1e-4) 240 240 0.996 0.091 21.87

Cd to12 uns 2 N(5.5e-3, 10e-6) N(0.11, 10e-5) 0 240 0.004 0.037 8.90
Table 1: Results for the 4-mode atrial fibrillation model (k = 3). For each sample generated, SReach
analyzed systems with 62 variables and 24 ODEs in the unfolded SMT formulae. #RVs = number of
random variables in the model, #S S = number of δ-sat samples, #T S = total number of samples,
Est P = estimated probability of property, A T(s) = average CPU time of each sample in seconds,
and T T(s) = total CPU time for all samples in seconds. Note that, we use the same notations in
the remaining tables.

Prostate cancer treatment. This model is a nonlinear hybrid automaton
with parametric uncertainty. We modified the model of the intermittent andro-
gen suppression (IAS) therapy in [25] by adding parametric uncertainty. The
IAS therapy switches between treatment-on, and treatment-off with respect to
the serum level thresholds of prostate-specific antigen (PSA), namely r0 and r1.
As suggested by the clinical trials [4], an effective IAS therapy highly depends
on the individual patient. Thus, we modified the model by taking parametric
variation caused by personalized differences into account. In detail, according
to clinical data from hundreds of patients [3], we replaced six system param-
eters with random variables having appropriate (continuous) distributions, in-
cluding αx (the proliferation rate of androgen-dependent (AD) cells), αy (the
proliferation rate of androgen-independent (AI) cells), βx (the apoptosis rate
of AD cells), βy (the apoptosis rate of AI cells), m1 (the mutation rate from
AD to AI cells), and z0 (the normal androgen level). To describe the variations
due to individual differences, we assigned αx to be U(0.0193, 0.0214), αy to be
U(0.0230, 0.0254), βx to be U(0.0072, 0.0079), βy to be U(0.0160, 0.0176), m1

to be U(0.0000475, 0.0000525), and z0 to be N(30.0, 0.001). We used SReach to
estimate the probabilities of preventing the relapse of prostate cancer with three
distinct pairs of treatment thresholds (i.e., combinations of r0 and r1). As shown
in Table 2, the model with thresholds r0 = 10 and r1 = 15 has a maximum pos-
terior probability that approaches 1, indicating that these thresholds may be
considered for the general treatment.

Model #RVs r0 r1 Est P #S S #T S A T(s) T T(s)

PCT1 6 5.0 10.0 0.496 8226 16584 0.596 9892

PCT2 6 7.0 11.0 0.994 335 336 54.307 18247

PCT3 6 10.0 15.0 0.996 240 240 506.5 121560
Table 2: Results for the 2-mode prostate cancer treatment model (k = 2). For each sample generated,
SReach analyzed systems with 41 variables and 10 ODEs in the unfolded SMT formulae.

SReach 9

Mode 1
ƛgenome=0
IPTG=0
light=0
DNA=1
DNAƛ=0
mRNA=0
KRim=0
KRm=0
KRmdS=0
KRmdS*=0
KRmdT*=0
SOX=0
SOXsod=0
SOD=SODinit
d[mode_t]/dt
=1

Mode 2
ƛgenome=1
IPTG=0
light=0
DNA=1
DNAƛ=0
mRNA=0
KRim=0
KRm=0
KRmdS=0
KRmdS*=0
KRmdT*=0
SOX=0
SOXsod=0
SOD=SODinit
d[mode_t]/dt
=1

Mode 3
ƛgenome=0
IPTG=0
light=0
DNA=0
DNAƛ=1
mRNA=0
KRim=0
KRm=0
KRmdS=0
KRmdS*=0
KRmdT*=0
SOX=0
SOXsod=0
SOD=SODinit
d[mode_t]/dt
=1

Mode 4
ƛgenome=0
IPTG=1
light=0
DNA=0
DNAƛ=1
mRNA=?
KRim=?
KRm=?
KRmdS=?
KRmdS*=0
KRmdT*=0
SOX=0
SOXsod=0
SOD=SODinit
d[mode_t]/dt
=1

Mode 5
ƛgenome=0
IPTG=1
light=L
DNA=0
DNAƛ=1
mRNA=?
KRim=?
KRm=?
KRmdS=?
KRmdS*=?
KRmdT*=?
SOX=?
SOXsod=?
SOD=?
d[mode_t]/dt
=1

Mode 7
ƛgenome=0
IPTG=1
light=0
DNA=0
DNAƛ=1
mRNA=?
KRim=?
KRm=?
KRmdS=?
KRmdS*=?
KRmdT*=?
SOX=g
SOXsod=h
SOD=i
d[mode_t]/dt
=1

Mode 8
ƛgenome=0
IPTG=0
light=L
DNA=0
DNAƛ=1
mRNA=a
KRim=b
KRm=c
KRmdS=d
KRmdS*=e
KRmdT*=f
SOX=g
SOXsod=h
SOD=i
d[mode_t]/dt
=1

Mode 9
ƛgenome=0
IPTG=0
light=0
DNA=0
DNAƛ=1
mRNA=a
KRim=b
KRm=c
KRmdS=d
KRmdS*=e
KRmdT*=f
SOX=g
SOXsod=h
SOD=i
d[mode_t]/dt
=1

Mode 10
ƛgenome=0
IPTG=0
light=0
DNA=0
DNAƛ=1
mRNA=a
KRim=b
KRm=c
KRmdS=d
KRmdS*=e
KRmdT*=f
SOX=g
SOXsod=h
SOD=i
d[mode_t]/dt
=1

cell death

m
od

e_
t >

=
t_

ge
nk

2
1

G
en

om
e

in
se

rte
d,

 k
2

&
re

se
t m

od
e_

t

m
od

e_
t >

=
t_

ad
dI

PT
G

1

Ad
d

IP
TG

 &
 re

se
t

m
od

e_
t

m
od

e_
t >

=
t_

lig
ht

on
 0

.9

Ad
d

lig
ht

 &
 re

se
t

m
od

e_
t

Mode 6
ƛgenome=0
IPTG=0
light=0
DNA=0
DNAƛ=1
mRNA=a
KRim=b
KRm=c
KRmdS=d
KRmdS*=0
KRmdT*=0
SOX=0
SOXsod=0
SOD=SODinit
d[mode_t]/dt
=1

mode_t >= t_rmIPTG1
0.1

Remove IPTG & reset
mode_t

Re
m

ov
e

IP
TG

 &

re
se

t m
od

e_
t

m
od

e_
t >

=
t_

lig
ht

of
f1

0.

2
Re

m
ov

e
lig

ht
 &

 re
se

t
m

od
e_

t

m
od

e_
t >

=
t_

rm
IP

TG
3

p1
 ~

 U
(0

.1
, 0

.9
)

Re
m

ov
e

IP
TG

 &
 re

se
t

m
od

e_
t

m
od

e_
t >

=
t_

lig
ht

of
f2

1-

p2

Re
m

ov
e

lig
ht

 &
 re

se
t

m
od

e_
t

SO
X>

th
re

sh
ol

d

SOX>threshold

m
od

e_
t >

=
t_

ge
nk

1
1

G
en

om
e

in
je

ct
ed

, k
 &

re

se
t m

od
e_

t1

(and (mRNA = 0) (KRim = 0) (KRmdS = 0))
1

reset mode_t

m
od

e_
t >

=
t_

rm
IP

TG
2

0.
2

0.
6

m
od

e_
t >

=
t_

rm
IP

TG
2

1
- p

1
Re

m
ov

e
IP

TG
 &

re

se
t m

od
e_

t

SO
X>

th
re

sh
ol

d
p2

 ~
 U

(0
.8

, 0
.9

)

1

1 SOX>threshold

Fig. 2: A probabilistic hybrid automaton for synthesized phage-based therapy model

Synthesized KillerRed Model. Due to the widespread misuse and overuse of
antibiotics, drug resistant bacteria now pose significant risks to health, agricul-
ture and the environment. An alternative to conventional antibiotics is phage-
based therapy. One approach to antibiotic resistance is to engineer a temperate
phage λ with light-activated production of superoxide (SOX). The incorporated
Killerred protein is phototoxic and provides another level of controlled bacteria
killing [21]. A PHAr with subtle non-determinism for this synthesized Killerred
model (as shown in Figure 2) has been constructed. Considering individual dif-
ferences of bacterial cells and distinct experimental environments, additional
randomness on transition probabilities have been considered. SReach was used
to validate this model by estimating the probabilities of killing bacterial cells
with different ks (see Table 3). We noticed that the probabilities of paths going
through mode 6 to mode 11 are close to 0. This remains even after increasing
the probability of entering mode 6, indicating that it is impossible for this model
to enter mode 6. SReach was also used to find out (a) the relation between the
time to turn on the light after adding the molecular biology reagent IPTG and
the total time to kill bacterial cells with probability larger than 0.5 (see the first
two rows of Table 4), (b) that the lower bound for the duration of exposure to
light is 3 for successful bacterial killing with with probability larger than 0.5 (see
row 3-4 of Table 4), (c) that the time to remove IPTG is insensitive considering
whether bacterial cells will be killed with probability larger than 0.5 (see row 5-6
of Table 4), and (d) that the upper bound of the necessary concentration of SOX
to kill bacterial cells, with probability larger than 0.5, is 0.6667 (see from row

10 Q. Wang, S. Kong, S. Gao, E. Clarke

7-8 of Table 4). All these findings have been reported to biologists for further
checking.

k Est P #S S #T S A T(s) T T(s) k Est P #S S #T S A T(s) T T(s)

5 0.544 8951 16452 0.074 1219.38 8 0.004 0 240 0.004 0.88

6 0.247 3045 12336 0.969 11957.12 9 0.004 0 240 0.012 2.97

7 0.096 559 5808 5.470 31770.36 10 0.004 0 240 0.013 3.18
Table 3: Results for the 11-mode killerred model.

tlightON (t.u.) 1 2 3 4 5 6 7 8 9 10

ttotal (t.u.) 16 17.2 18.5 20 21.3 22.7 23.5 24.1 25 30

tlightOFF1 (t.u.) 1 2 3 4 5 6 7 8 9 10

killed bacteria cells failed failed failed succ succ succ succ succ succ succ

trmIPTG3 (t.u.) 1 2 3 4 5 6 7 8 9 10

killed bacteria cells succ succ succ succ succ succ succ succ succ succ

SOXthres (M) 1e-4 2e-4 3e-4 4e-4 5e-4 6e-4 7e-4 8e-4 9e-4 1e-3

ttotal (t.u.) 5.1 5.2 5.4 17 19 48 61 71 36 42
Table 4: Formal analysis results for our KillerRed hybrid model

Additional benchmarks. To further demonstrate SReach’s applicability,
we also applied it to additional benchmarks including HAps, PHAs, and PHArs
with subtle non-determinism. Table 5 shows the results of these experiments.
These experiments were conducted with the sequential version of SReach on
a machine with 2.9GHz Intel Core i7 processor and 8GB RAM, running OS
X 10.9.2. In our experiments we used 0.001 as the precision for the δ-decision
problem; and Bayesian sequential estimation with 0.01 half-interval width, cov-
erage probability 0.99, and uniform prior (α = β = 1). In the following table,
BB refers to the bouncing ball models, Tld the thermostat model with linear
temperature decrease, Ted the thermostat model with exponential decrease, DT
the dual thermostat models, W the watertank models, DW the dual watertank
models, Que the model for queuing system which has both nonlinear functions
and nondeterministic jumps, 3dOsc the model for 3d oscillator, and QuadC the
model for quadcopter stabilization control. Following these hybrid systems with
parametric uncertainty, we also consider two example PHAs - exPHA01 and ex-
PHA02, and PHArs with trivial non-determinism - KR (our killerred models).
Moreover, the detailed description of some of additional benchmarks and above
case studies are presented in Appendix D. The full descriptions of all the models
that mentioned in this paper can be found on the tool website.

5 Conclusions and future work

We have presented a tool that combines δ-decision procedures and statistical
tests. It supports probabilistic bounded δ-reachability analysis for HAps and
PHArs with no or subtle non-determinism. This tool has been used to analyze
three representative examples - a prostate cancer treatment model, a cardiac
model, and a synthesized Killerred model - and other benchmarks, which are
currently out of the reach of other formal tools. In the near future, we plan to ex-
tend support for more general stochastic hybrid models that include probabilistic
jumps with continuous distributions, and stochastic differential equations.

SReach 11

Benchmark #Ms K #ODEs #Vs #RVs δ Est P #S S #T S A T(s) T T(s)

BBK1 1 1 2 14 3 0.001 0.754 5372 7126 0.086 612.836

BBK5 1 5 2 38 3 0.001 0.059 209 3628 0.253 917.884

BBwDv1 2 2 4 20 4 0.001 0.208 2206 10919 0.080 873.522

BBwDv2K2 2 2 4 20 3 0.001 0.845 7330 8669 0.209 1811.821

BBwDv2K8 2 8 4 56 3 0.001 0.207 2259 10901 0.858 9353.058

Tld 2 7 2 33 4 0.001 0.996 227 227 0.213 48.351

Ted 2 7 4 50 4 0.001 0.996 227 227 12.839 2914.448

DTldK3 2 3 4 26 2 0.001 0.996 227 227 0.382 86.714

DTldK5 2 5 4 38 2 0.001 0.161 1442 8961 0.280 2509.078

W4mv1 4 3 8 26 6 0.001 0.381 5953 15639 0.238 3722.082

W4mv2K3 4 3 8 26 6 0.001 0.996 227 227 0.673 152.771

W4mv2K7 4 7 8 50 6 0.001 0.004 0 227 0.120 27.240

DWK1 2 1 4 14 5 0.001 0.996 227 227 0.171 38.817

DWK3 2 3 4 26 5 0.001 0.996 227 227 0.215 48.806

DWK9 2 9 4 62 5 0.001 0.996 227 227 5.144 1167.688

Que 3 2 3 13 4 0.001 0.228 2662 11677 0.095 1109.315

3dOsc 3 2 18 48 2 0.001 0.996 227 227 8.273 1877.969

QuadC 1 0 14 44 6 0.001 0.996 227 227 825.641 187420.507

exPHA01 2 2 4 20 2 0.001 0.524 345 658 5.01 3295.82

exPHA02 2 3 2 17 1 0.001 0.900 5361 5953 0.0004 2.35

KRk5 6 5 84 194 2 0.001 0.544 8946 16457 0.122 2015.64

KRk6 8 6 112 224 6 0.001 0.246 2032 8263 1.385 11444.22

KRk7 10 7 150 271 6 0.001 0.096 558 5795 16.275 94311.18

KRk8 7 8 105 303 6 0.001 0.004 0 227 0.003 0.58

KRk9 9 9 135 335 6 0.001 0.004 0 227 0.015 3.43

KRk10 11 10 165 367 6 0.001 0.004 0 227 0.026 5.92
Table 5: #Ms = number of modes, K indicates the unfolding steps, #ODEs = number of ODEs in
the unfolded formulae, #Vs = number of total variables in the unfolded formulae, #RVs = number
of random variables in the model, δ = precision used in dReach.

References

1. L. Arnold. Stochastic Differential Equations: Theory and Applications. Wiley -
Interscience, 1974.

2. H. A. Blom, J. Lygeros, M. Everdij, S. Loizou, and K. Kyriakopoulos. Stochastic
hybrid systems: theory and safety critical applications. Springer, 2006.

3. N. Bruchovsky, L. Klotz, J. Crook, and L. Goldenberg. Locally advanced prostate
cancer: biochemical results from a prospective phase ii study of intermittent an-
drogen suppression for men with evidence of prostate-specific antigen recurrence
after radiotherapy. Cancer, 109(5):858–867, 2007.

4. N. Bruchovsky, L. Klotz, et al. Final results of the Canadian prospective phase ii
trial of intermittent androgen suppression for men in biochemical recurrence after
radiotherapy for locally advanced prostate cancer. Cancer, 107(2):389–395, 2006.

5. A. Bueno-Orovio, E. M. Cherry, and F. H. Fenton. Minimal model for human
ventricular action potentials in tissue. J. of Theor. Biology, 253(3):544–560, 2008.

6. E. M. Clarke and P. Zuliani. Statistical model checking for cyber-physical systems.
In ATVA, pages 1–12. Springer, 2011.

12 Q. Wang, S. Kong, S. Gao, E. Clarke

7. L. Cordeiro, B. Fischer, and J. Marques-Silva. Smt-based bounded model checking
for embedded ansi-c software. Software Engineering, IEEE, 38(4):957–974, 2012.

8. R. Durrett. Probability: theory and examples. Cambridge University Press, 2010.

9. C. Ellen, S. Gerwinn, and M. Fränzle. Statistical model checking for stochastic
hybrid systems involving nondeterminism over continuous domains. International
Journal on Software Tools for Technology Transfer, pages 1–20.

10. M. Fränzle, E. M. Hahn, H. Hermanns, N. Wolovick, and L. Zhang. Measurability
and safety verification for stochastic hybrid systems. In HSCC, pages 43–52, Apr.
2011.

11. M. Fränzle, H. Hermanns, and T. Teige. Stochastic satisfiability modulo theory: A
novel technique for the analysis of probabilistic hybrid systems. In HSCC, pages
172–186. Springer, 2008.

12. S. Gao, S. Kong, W. Chen, and E. M. Clarke. δ-complete analysis for bounded
reachability of hybrid systems. CoRR, arXiv:1404.7171, 2014.

13. S. Gao, S. Kong, and E. M. Clarke. dReal: An SMT solver for nonlinear theories
over the reals. In CADE, pages 208–214. Springer, 2013.

14. S. Gao, S. Kong, and E. M. Clarke. Satisfiability modulo ODEs. In FMCAD, pages
105–112, Oct. 2013.

15. E. M. Hahn, G. Norman, D. Parker, B. Wachter, and L. Zhang. Game-based
abstraction and controller synthesis for probabilistic hybrid systems. In QEST,
pages 69–78. IEEE, 2011.

16. T. A. Henzinger. The theory of hybrid automata. Springer, 2000.

17. W. Hoeffding. Probability inequalities for sums of bounded random variables. J
American Statistical Association, 58(301):13–30, 1963.

18. J. Hu, J. Lygeros, and S. Sastry. Towards a theory of stochastic hybrid systems.
In HSCC, pages 160–173. Springer, 2000.

19. R. E. Kass and A. E. Raftery. Bayes factors. JASA, 90(430):773–795, 1995.

20. T. L. Lai. Nearly optimal sequential tests of composite hypotheses. AOS,
16(2):856–886, 1988.

21. N. Miskov-Zivanov, Q. Wang, C. Telmer, and E. M. Clarke. Formal analysis pro-
vides parameters for guiding hyperoxidation in bacteria using phototoxic proteins.
Technical Report CMU-CS-14-137, CMU, 2014.

22. F. Shmarov and P. Zuliani. Probreach: Verified probabilistic delta-reachability for
stochastic hybrid systems. In HSCC, 2015, to appear.

23. J. Sproston. Decidable model checking of probabilistic hybrid automata. In
FTRTFT, pages 31–45. Springer, 2000.

24. J. Sproston. Model checking for probabilistic timed and hybrid systems. In PhD
thesis. SCS, University of Birmingham, 2001.

25. G. Tanaka, Y. Hirata, L. Goldenberg, N. Bruchovsky, and K. Aihara. Mathematical
modelling of prostate cancer growth and its application to hormone therapy. Phil.
Trans. Roy. Soc. A: Math., Phys. and Eng. Sci., 368(1930):5029–5044, 2010.

26. C. Tinelli. SMT-based model checking. In NASA FM, page 1, 2012.

27. A. Wald. Sequential tests of statistical hypotheses. The Annals of Mathematical
Statistics, 16(2):117–186, 1945.

28. H. L. Younes. Verification and planning for stochastic processes with asynchronous
events. Technical report, DTIC Document, 2005.

29. P. Zuliani, A. Platzer, and E. M. Clarke. Bayesian statistical model checking with
application to stateflow/simulink verification. Formal Methods in System Design,
43(2):338–367, 2013.

SReach 13

A δ-Decisions for Hybrid Models

In order to overcome the undecidability of reasoning about hybrid systems, Gao
et al. recently defined the concept of δ-satisfiability over the reals, and presented
a corresponding δ-complete decision procedure [13,14]. The main idea is to decide
correctly whether slightly relaxed sentences over the reals are satisfiable or not.
The following definitions are from [14].

Definition 5. A bounded quantifier is one of the following:

∃[a,b]x = ∃x : (a ≤ x ∧ x ≤ b)
∀[a,b]x = ∀x : (a ≤ x ∧ x ≤ b)

Definition 6. A bounded Σ1 sentence is an expression of the form:

∃I1x1, ...,∃I1xn : ψ(x1, ..., xn)

where Ii = [ai, bi] are intervals, ψ(x1, ..., xn) is a Boolean combination of atomic
formulas of the form g(x1, ..., xn) op 0, where g is a composition of Type 2-
computable functions and op ∈ {<,≤, >,≥,=, 6=}.

Note that any bounded Σ1 sentence is equivalent to a Σ1 sentence in which
all the atoms are of the form f(x1, ..., xn) = 0 (i.e., the only op needed is ‘=’).
Essentially, Type 2-computable functions can be approximated arbitrarily well
by finite computations of a special kind of Turing machines (Type 2 machines);
most ‘useful’ functions over the reals are Type 2-computable. The notion of
δ-weakening of a bounded sentence is central to δ-satisfiability.

Definition 7. Let δ ∈ Q+ ∪ {0} be a constant and φ a bounded Σ1-sentence in
the standard form

φ = ∃I1x1, ...,∃Inxn :

m∧
i=1

(

ki∨
j=1

fij(x1, ..., xn) = 0) (1)

where fij(x1, ..., xn) = 0 are atomic formulas. The δ-weakening of φ is the for-
mula:

φδ = ∃I1x1, ...,∃Inxn :

m∧
i=1

(

ki∨
j=1

|fij(x1, ..., xn)| ≤ δ) (2)

Note that φ implies φδ, while the converse is obviously not true. The bounded
δ-satisfiability problem asks for the following: given a sentence of the form (1)
and δ ∈ Q+, correctly decide whether

– unsat: φ is false,

– δ-sat: φδ is true.

14 Q. Wang, S. Kong, S. Gao, E. Clarke

If the two cases overlap either decision can be returned: such a scenario reveals
that the formula is fragile — a small perturbation (i.e., a small δ) can change
the formula’s truth value.

A qualitative property of hybrid systems that can be checked is bounded
δ-reachability. It asks whether the system reaches the unsafe region after k ∈ N
discrete transitions.

Definition 8. Bounded k step δ-reachability in hybrid systems can be encoded
as a bounded Σ1-sentence

∃x0
0,q0 ,∃x

t
0,q0 , ...,∃x

0
0,qm ,∃x

t
0,qm , ...,∃x

0
k,qm ,∃x

t
k,qm :

(
∨
q∈Q

(initq(x
0
0,q) ∧ flowq(x

0
0,q,x

t
0,q)))

∧(

k−1∧
i=0

(
∨

q,q′∈Q
(jumpq→q′(x

t
i,q,x

0
i+1,q′)

∧(flowq′(x
0
i+1,q′ ,x

t
i+1,q′))) ∧ (

∨
q∈Q

unsafeq(x
t
k,q))))

(3)

where x0
i,q and xi,q represent the continuous state in the mode q at the depth i,

and q′ is a successor mode.

Intuitively, the formula above can be understood as follows: the first conjunc-
tion is asking for a set of continuous variables which satisfy the initial condition
in one of the modes and the flow in that mode; the second conjunction is looking
for a set of vectors which satisfy any k discrete jumps and flows in each successor
mode defined by the jumps; the third conjunction is verifying whether the state
of the system (the mode and the set of continuous variables in the mode after k
jumps) belongs to the unsafe region. Note that the previous definition asks for
reachability in exactly k steps. One can build a disjunction of formula (3) for all
values from 1 to k, thereby obtaining reachability within k steps.

The δ-reachability problem can be solved using the described δ-complete
decision procedure, which will correctly return one of the following answers:

– unsat: the system never reaches the bad region U ,
– δ-sat: the δ-perturbation of (3) is true, and a witness, i.e., an assignment

for all the variables, is returned.

B Statistical tests

In this section we briefly describe the statistical techniques implemented in
SReach. To deal with qualitative questions, SReach supports the following hy-
pothesis testing methods.

Lai’s test [20]. As a simple class of sequential tests, it tests the one-sided
composite hypotheses H0 : θ ≤ θ0 versus H1 : θ ≥ θ1 for the natural parameter
θ of an exponential family of distributions under the 0 − 1 loss and cost c per

SReach 15

observation. [20] shows that these tests have nearly optimal frequentist properties
and also provide approximate Bayes solutions with respect to a large class of
priors.

Bayes factor test [19]. The use of Bayes factors is a Bayesian alternative
to classical hypothesis testing. It is based on the Bayes theorem. Hypothesis
testing with Bayes factors is more robust than frequentist hypothesis testing, as
the Bayesian form avoids model selection bias, evaluates evidence in favor of the
null hypothesis, includes model uncertainty, and allows non-nested models to be
compared. Also, frequentist significance tests become biased in favor of rejecting
the null hypothesis with sufficiently large sample size.

Bayes factor test with indifference region. A hypothesis test has ideal per-
formance if the probability of the Type-I error (respectively, Type-II error) is
exactly α (respectively, β). However, these requirements make it impossible to
ensure a low probability for both types of errors simultaneously (see [28] for
details). A solution is to use an indifference region. The indifference region in-
dicates the distance between two hypotheses, which is set to separate the two
hypotheses.

Sequential probability ratio test (SPRT) [27]. The SPRT considers a simple
hypothesis H0 : θ = θ0 against a simple alternative H1 : θ = θ1. With the
critical region Λn and two thresholds A, and B, SPRT decides that H0 is true
and stops when Λn < A. It decides that H1 is true and terminates if Λn > B.
If A < Λn < B, it will collect another observation to obtain a new critical
region Λn+1. The SPRT is optimal, among all sequential tests, in the sense that
it minimizes the average sample size.

To offer quantitative answers, SReach also supports estimation procedures as
below.

Chernoff-Hoeffding bound [17]. To estimate the mean p of a (bounded) ran-
dom variable, given a precision δ′ and coverage probability α, the Chernoff-
Hoeffding bound computes a value p′ such that |p′ − p| ≤ δ′ with probability
at least α.

Bayesian Interval Estimation with Beta prior [29]. This method estimates
p, the unknown probability that a random sampled model satisfies a specified
reachability property. The estimate will be in the form of a confidence interval,
containing p with an arbitrary high probability. [29] assumes that the unknown
p is given by a random variable, whose density is called the prior density, and
focuses on Beta priors.

Direct sampling. Given N as the number of samples to be sampled, the direct
sampling method estimates the mean of p of a (bounded) random variable. Ac-
cording to the central limit theorem [8], the error ε with a confidence c between
the real probability p and the estimated p̂ is bounded:

ε = φ−1
(
c+1

2

)√p(1−p)
N

where φ(x) = 1√
2π

∫ x
−x e

−t2/2dt. That is, as N goes to ∞, the estimated proba-

bility approaches to the real one.

16 Q. Wang, S. Kong, S. Gao, E. Clarke

C The SReach tool

C.1 Input format

The inputs to our SReach tool are descriptions of (probabilistic) hybrid au-
tomata with random variables (representing the probabilistic system parameters,
and probabilistic jumps), and the reachability property to be checked. Following
roughly the same format as the above definition of (probabilistic) hybrid au-
tomata, and adding the declarations of random variables, the description of an
automaton is as follows.

Preprocessor. We can use the C language syntax to define constants and
macros.

Variable declaration. For a random variable, the declaration specifies its
distribution and name. Variables that are not random variables are required to
be declared within bounds.

(Probabilistic) Hybrid automaton. A (probabilistic) hybrid automaton
is represented by a set of modes. Within each mode declaration, we can specify
statements for the mode invariant(s), flow function(s), and (probabilistic) jump
condition(s). For a mode invariant, we can give any logic formula of the vari-
ables. A flow function is expressed by an ODE. As for a nonprobabilistic jump
condition, it is written as

<logic_formula1> ==>

@<target_mode> <logic_formula2>,

where the first logic formula is given as the guard of the jump, and the second
one specifies the reset condition after the jump. While for a probabilistic jump
condition, we need an extra constraint to express the stochastic choice, which is
of the following form

(and <logic_formula1> <stochastic choice>) ==>

@<target_mode> <logic_formula2>,

where the stochastic choice is a formula indicating which probabilistic transition
will be chosen for this jump.

Initial conditions and Goals. Following the declaration of modes, we can
declare one initial mode with corresponding conditions, and the reachability
properties in the end.
Example 1. The following is an example input file for a hybrid automaton with
parametric uncertainty. Currently, users can specify random variables (represent-
ing certain system parameters) with Bernoulli distribution (B), Uniform distri-
bution (U), Gaussian distribution (N), Exponential distribution (E), and general
Discrete distribution with given possible values and corresponding probabilities
(DD).

1 #define pi 3.1416

2 N(1 ,0.1) mu1;

3 U(10 ,15) thro;

SReach 17

4 E(0.49) theta1;

5 B(0.75) xinit;

6 DD(0:0.7 , 1:0.3) mu2;

7 [0,5] x;

8 [0,3] time;

9 { mode 1;

10 invt:

11 (x <=1.5);

12 (x>=0);

13 flow:

14 d/dt[x]=thro *(1/(theta1*sqrt (2*pi)))

15 *exp(0-((x-mu1+mu2)^2) /(2* theta1 ^2));

16 jump:

17 (x>=(thre1 +5))==>@2(x’=x);

18 }

19 init:

20 @1 (x=xinit);

21 goal:

22 @4 (x >=50);

Example 2. This example demonstrates the format of the input file for a prob-
abilistic hybrid automaton with additional randomness for transition probabili-
ties. Note that, unlike the notations of declarations of random variables repre-
senting system parameters and probabilistic transitions, declarations of random
variables used to express the additional randomness for jump probabilities start
with a prefix j.

1 jU(0.7, 0.9) pjumprv;

2 DD(1: pjumprv , 2:(1 - pjumprv)) pjump1;

3 DD(1:0.3 , 2:0.7) pjump2;

4 [-1000, 1000] x;

5 [-1000, 1000] y;

6 [0, 3] time;

7
8 { mode 1;

9
10 invt:

11 (x <= 2);

12 (x >= 0);

13 (y <= 7.7);

14 (y >= -3);

15 flow:

16 d/dt[x] = x * y;

17 d/dt[y] = 3 * x - y;

18 jump:

19 (and (abs(y) * x ^ 2 <= x / 2) (pjump1 = 1)) ==> @1 (

and (x’ >= sin(y)) (y’ <= 4 * y));

20 (and (abs(y) * x ^ 2 <= x / 2) (pjump1 = 2)) ==> @2 (

and (x’ <= 3.1) (y’ = 2 * x));

18 Q. Wang, S. Kong, S. Gao, E. Clarke

21 (and (cos(x) <= 0) (pjump2 = 1)) ==> @2 (and (x’ = x)

(y’ = y));

22 (and (cos(x) <= 0) (pjump2 = 2)) ==> @1 (and (x’ = x)

(y’ = y));

23 }

24
25 {

26 mode 2;

27 invt:

28 (x <= 200);

29 (x >= -2.2);

30 (y <= 85.1);

31 (y >= 2);

32 flow:

33 d/dt[x] = x;

34 d/dt[y] = 3 * x - y ^ 2;

35 jump:

36 (and (x <= 1000) (x >= -1000) (y <= 1000) (y >=

-1000)) ==> @2 (and (x’ = x) (y’ = y));

37 }

38 init:

39 @1 (and (x >= 0.1) (x <= 1.4) (y = 1.1));

40
41 goal:

42 @2 (and (x >= -10) (y >= -10));

C.2 Command line

SReach offers two choices. It can be run sequentially by typing

sreach_sq <statistical_testing_option> <filename>

<dReach> <k> <delta>,

or in parallel by

sreach_para <statistical_testing_option> <filename>

<dReach> <k> <delta>,

where:

– statistical_testing_option is a text file containing a sequence of test
specifications. We will introduce the usages of statistical testing options in
the following part;

– filename is a .pdrh file describing the model of a hybrid system with prob-
abilistic system parameters. It is of the input format described in last sub-
section;

– dReach is a tool for bounded reachability analysis of hybrid systems based
on dReal;

– k is the number of steps of the model that the tool will explore; and
– delta is the precision for the δ-decision problem.

SReach 19

C.3 Statistical testing options

SReach can be used with different statistical testing methods through the fol-
lowing specifications.

Lai’s test : Lai <theta> <cost_per_sample>, where theta indicates the prob-
ability threshold.

Bayes factor test : BFT <theta> <T> <alpha> <beta>, where theta is a
probability threshold satisfying 0 < theta < 1, T is a ratio threshold satisfying
T > 1, and alpha, and beta are beta prior parameters.

BFT with indifference region:
BFTI <theta> <T> <alpha> <beta> <delta>, where, besides the parameters
used in the above Bayes factor test, delta is given to create the indifference
region - [p0, p1], where p0 = theta - delta and p1 = theta + delta. Now, it
tests H0 : p ≥ p0 against H1 : p ≤ p1 .

Sequential probability ratio test (SPRT):
SPRT <theta> <T> <delta>.

Chernoff-Hoeffding bound :
CHB <delta1> <coverage_probability>, where delta1 is the given precision,
and coverage_probability indicates the confidence.

Bayesian Interval Estimation with Beta prior :
BEST <delta1> <coverage_probability> <alpha> <beta>.

Direct/Näıve Sampling : NSAM <num_of_samples>.

D Model description

Synthesized Killerred Model. The ODEs missing in Figure 2 are as follows.

d[mRNA]

dt
= kRNAsyn · [DNA]− kRNAdeg · [mRNA]

d[KRim]

dt
= kKRimsyn · [mRNA]− (kKRm + kKRimdeg) · [KRim]

d[KRmdS]

dt
= kKRm

· [KRim]− kKRmdSdeg · [KRmdS] (before turning on the light)

d[KRmdS]

dt
= kKRm

· [KRim] + kKRf
· [KRmdS∗] + kKRic

· [KRmdS∗] + kKRnrd

·[KRmdT∗] + kKRSOXd1
· [KRmdT∗]− kKRex

· [KRmdS]− kKRmdSdeg

·[KRmdS] (after adding light)

d[KRmdS∗]

dt
= kKRex

· [KRmdS]− kKRf
· [KRmdS∗]− kKRic

· [KRmdS∗]

−kKRisc
· [KRmdS∗]− kKRmdS∗deg · [KRmdS∗]

d[KRmdT∗]

dt
= kKRisc

· [KRmdS∗]− kKRnrd
· [KRmdT∗]− kKRSOXd1

· [KRmdT∗]

−kKRSOXd2
· [KRmdT∗]− kKRmdT∗deg · [KRmdT∗]

20 Q. Wang, S. Kong, S. Gao, E. Clarke

d[SOX]

dt
= kKRSOXd1

· [KRmdT∗] + kKRSOXd2
· [KRmdT∗]−

d[SOXsod]

dt
d[SOXsod]

dt
= kSOD · VmaxSOD ·

[SOX]

Km + [SOX]

Atrial Fibrillation. The model has four discrete control locations, four state
variables, and nonlinear ODEs. A typical set of ODEs in the model is as follows.
The exponential term on the right-hand side of the ODE is the sigmoid function,
which often appears in modeling biological switches.

du

dt
= e+ (u− θv)(uu − u)vgfi + wsgsi − gso(u)

ds

dt
=

gs2
(1 + exp(−2k(u− us)))

− gs2s

dv

dt
= −g+

v · v
dw

dt
= −g+

w · w

Prostate Cancer Treatment. The nonlinear ODEs in the Prostate-Cancer-
Treatment model are as follows.

dx

dt
= (αx(k1 + (1− k1)

z

z + k2
− βx((1− k3)

z

z + k4
+ k3))−m1(1− z

z0
))x+ c1x

dy

dt
= m1(1− z

z0
)x+ (αy(1− d z

z0
)− βy)y + c2y

dz

dt
=
−z
τ

+ c3z

dv

dt
= (αx(k1 + (1− k1)

z

z + k2
− βx(k3 + (1− k3)

z

z + k4
))−m1(1− z

z0
))x+ c1x

+m1(1− z

z0
)x+ (αy(1− d z

z0
)− βy)y + c2y

Electronic Oscillator. The 3dOsc model represents an electronic oscillator
model that contains nonlinear ODEs such as the following.

dx

dt
= −ax · sin(ω1 · τ)

dy

dt
= −ay · sin((ω1 + c1) · τ) · sin(ω2) · 2

dz

dt
= −az · sin((ω2 + c2) · τ) · cos(ω1) · 2

ω1

dt
= −c3 · ω1

ω2

dt
= −c4 · ω2

dτ

dt
= 1

Quadcopter Control. We developed a model that contains the full dynamics
of a quadcopter. We use the model to solve control problems by answering reach-

SReach 21

ability questions. A typical set of the differential equations are the following.

dωx
dt

= L · k · (ω2
1 − ω2

3)(1/Ixx)− (Iyy − Izz)ωyωz/Ixx
dωy
dt

= L · k · (ω2
2 − ω2

4)(1/Iyy)− (Izz − Ixx)ωxωz/Iyy

dωz
dt

= b · (ω2
1 − ω2

2 + ω2
3 − ω2

4)(1/Izz)− (Ixx − Iyy)ωxωy/Izz

dφ

dt
= ωx +

sin (φ) sin (θ)(
sin(φ)2 cos(θ)

cos(φ) + cos (φ) cos (θ)
)

cos (φ)
ωy

+
sin (θ)

sin(φ)2 cos(θ)
cos(φ) + cos (φ) cos (θ)

ωz

dθ

dt
= −(

sin (φ)
2

cos (θ)(
sin(φ)2 cos(θ)

cos(φ) ωy + cos (φ) cos (θ)
)

cos (φ)
2

+
1

cos (φ)
)ωy −

sin (φ) cos (θ)(
sin(φ)2 cos(θ)

cos(φ) + cos (φ) cos (θ)
)

cos (φ)
ωz

dψ

dt
=

sin (φ)(
sin(φ)2 cos(θ)

cos(φ) + cos (φ) cos (θ)
)

cos (φ)
ωy

+
1

sin(φ)2 cos(θ)
cos(φ) + cos (φ) cos (θ)

ωz

dxp

dt
= (1/m)(sin(θ) sin(ψ)k(ω2

1 + ω2
2 + ω2

3 + ω2
4)− k · d · xp)

dyp

dt
= (1/m)(− cos(ψ) sin(θ)k(ω2

1 + ω2
2 + ω2

3 + ω2
4)− k · d · yp)

dzp

dt
= (1/m)(−g − cos(θ)k(ω2

1 + ω2
2 + ω2

3 + ω2
4)− k · d · zp

dx

dt
= xp,

dy

dt
= yp,

dz

dt
= zp

