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Abstract

Model Checking is a formal verification method
widely used for the automated verification and analysis of
hardware systems and digital circuits. In this work, we ap-
ply Model Checking to the study of a biological system
– the HMGB1 Boolean network. Recent studies on pan-
creatic cancer cells have found that the overexpression of
HMGB1, a DNA-binding protein, can decrease apoptosis
(programmed cell death) and increase cancer cell survival.
Also, knocking out HMGB1 or its receptors can increase
apoptosis in cancer cells. In this paper, we first build a
single-cell, Boolean network to model the crosstalk of three
signaling pathways activated by HMGB1. Then, we ap-
ply Model Checking to formally query and verify some de-
sired temporal logic properties of the HMGB1 model. The
Boolean network modeling and Model Checking provide
an alternative way and new insights into the study of the
HMGB1 signaling pathway in pancreatic cancer.

Keywords: Model Checking, HMGB1, Signaling Path-
way, Boolean Network, Pancreatic Cancer

1 Introduction

The High-mobility group box-1 (HMGB1) protein is
a DNA-binding nuclear protein, present in almost all eu-
karyotic cells [1, 2]. It is released in response to cell injury
or during cell death. The expression level of HMGB1 has
been found to be elevated in many tumors [3, 4, 5]. Recent
in vitro studies with pancreatic cancer cells [6] showed that
the targeted knockout or inhibition of HMGB1 or its re-
ceptors could increase apoptosis and suppress cancer cell
growth.

In [7, 8], we proposed the first rule-based, computa-
tional model of the HMGB1 signaling pathway, and sim-
ulated it via ordinary differential equations and Gillespie’s
stochastic simulation algorithm. Furthermore, we applied
statistical model checking to investigate the tumorigenesis
induced by HMGB1. Our simulations have successfully
explained recent experimental results involving HMGB1

and pancreatic cancer, and confirmed the importance of
stochasticity and discretization effects [9, 10]. In particular,
our model predicted a dose-dependent P53 (a tumor sup-
pressor protein) and Cyclin E (a cell cycle regulatory pro-
tein) response curve to increasing HMGB1 stimulus. This
behavior could be tested by the future experiments. How-
ever, since the rule-based model contains many undeter-
mined free parameters, the verification power of statistical
model checking is hampered when more molecular compo-
nents and reactions are included.

An alternative approach to depict the signaling path-
way is Boolean network (BN) modeling. A BN is a coarse-
grained abstraction of a dynamic system, and has been pre-
viously applied to gene regulatory network and signaling
pathway studies [11, 12]. In a BN, each node is allowed
only two possible states, either “active” (ON) or “not ac-
tive” (OFF), and each internal node is updated on the basis
of the state of the nodes feeding into it. Given a BN model,
one of the system biologist’s interests is to verify sequences
of signal transduction which will drive the network to a pre-
specified state at or before a pre-specified time [13]. Model
Checking is a technique that can be used to solve this prob-
lem.

Model Checking [14] is an automated verification
technique which has been developed for verifying models
of hardware, digital circuits, and software designs. Given
a model M of a system (usually expressed as a state-
transition diagram), a set of starting statesS 0, and a specifi-
cation (or property) described by a temporal logic formula
φ, the Model Checking problem is to determine whether the
modelM meets the desired specificationφ, that is to deter-
mine whetherM, S 0 |= φ. Model Checking has been suc-
cessfully applied to formally verify a variety of finite-state,
deterministic and stochastic systems. It has two unique ca-
pabilities compared with other techniques: first, the algo-
rithms can exhaustively search the state space of the con-
current system to determine the truth of specification; sec-
ond, the algorithms can give a counterexample to the de-
sired specification if the property does not hold. A num-
ber of formal verification studies [15], including our recent
work related to statistical model checking [7, 8], demon-
strated that model checking is a powerful technique for ver-



Figure 1: Schematic view of HMGB1 signal transduction,
blue nodes represent tumor-suppressor proteins, red one
represents oncoproteins/lipids. Arrow→ represents protein
activation, circle-headed arrow� represents deactivation.

ifying temporal logic properties of biological networks.
In this work, we first construct a Boolean network

model of the HMGB1 signal transduction to describe the
crosstalk among different signaling pathways. Then, we
briefly describe the temporal logic Computation Tree Logic
(CTL). Finally, we code a number of important behavioral
properties as CTL formulae and check them on the BN
model, and compare the results with somein vitro exper-
iments. To the best of the authors’ knowledge, this work is
the first attempt to apply standard Model Checking to study
the HMGB1 Boolean network signaling pathway.

2 The HMGB1 Boolean Network Model

A number of experiments have found that HMGB1
could activate at least three signaling pathways: the PI3K-
P53, NFκB and RAS-RB pathways. These pathways
play an important role in tumor growth and inflammation,
through binding and activation of different receptors, such
as receptors for advanced glycation end products (RAGEs)
and toll-like receptors (TLRs2/4).

In Figure 1 we present the Boolean network model of
the HMGB1 signaling pathway that has been discussed in
our recent works [7, 8]. We denote activation (or promo-
tion) by→, while inhibition (or repression) is denoted by
� or ⊣. Here, we will briefly reiterate the PI3K-P53, NFκB
and RAS-RB signaling pathways and their association with
apoptosis and cell proliferation.
PI3K-P53 pathway: PI3K → PIP3 → AKT →

MDM2 ⊣ P53→ BAX → Apoptosis. The HMGB1 pro-
tein secreted from the nucleus can activate one of its re-

ceptors TLR2/4, leading to the activation of the proteins
MYD88, RAC1 and PI3K. In turn, PI3K phosphorylates
the lipid PIP2 to PIP3, which can subsequently activate
AKT. After being phosphorylated by AKT, the activated
MDM2, one of P53’s transcription targets, will translo-
cate into the nucleus to inhibit P53’s transcriptional activity
[16]. The protein P53 is one of the most important tumor
suppressor proteins, and its mutation occurs in over 50%
of pancreatic cancers [17]. The activation of P53 will in-
duce the transcription of P21, which can inhibit the activity
of many regulatory proteins including Cyclin D/E - leading
to cell cycle arrest - and BAX, which can initiate apop-
tosis. Moreover, P53 regulates the transcription of PTEN
[18], one of the most commonly lost tumor suppressors
in human pancreatic cancer. The protein PTEN can hy-
drolyze PIP3 to PIP2, thereby inhibiting the activation of
AKT and MDM2, resulting in a positive feedback loop:
P53→ PT EN ⊣ PIP3→ AKT → MDM2 ⊣ P53.
NFκB pathway: IKK ⊣ IκB ⊣ NFκB → BclXL ⊣
Apoptosis. The activation of TLR2/4 by HMGB1 could
also stimulate the NFκB pathway through signaling via the
MyD88, IRAKs and TAB1 proteins to activate the IκB ki-
nase (IKK). In resting normal cells, NFκB resides in the
cytoplasm, where it is bound to and inhibited by IκB. Once
activated, IKK will phosphorylate and deactivate IκB, lead-
ing to the release of NFκB – an important transcription fac-
tor. Then, the free NFκB will translocate into the nucleus to
promote the transcription of a number of genes, including
Cyclin D and the anti-apoptotic protein Bcl-XL. Experi-
ments have confirmed that A20 and IκB are also NFκB’s
transcription targets [19, 20]. The newly synthesized IκB
inhibits NFκB’s transcriptional machinery by binding to
NFκB in the nucleus and taking it out to the cytoplasm.
Also, the newly synthesized A20 can inhibit NFκB by in-
hibiting IKK’s activity, leading to two negative feedback
loops:NFκB→ IκB ⊣ NFκB, andNFκB→ A20 ⊣ IKK ⊣
IκB ⊣ NFκB.
RAS-RB pathway: RAS → RAF → MEK → ERK →
CyclinD ⊣ RB ⊣ E2F → CyclinE → S phase. HMGB1
can activate another receptor, RAGE, to initiate a cascade
of reactions including the activation of the RAS, RAF,
MEK and ERK proteins. The activated ERK will phos-
phorylate several transcription factors, for example AP1,
which activate the expression of a number of regulatory
proteins, including Cyclin D, enabling progression of the
cell cycle through the G1 phase. E2F is another impor-
tant transcription factor for many cell-cycle regulatory pro-
teins [21] and the tumor suppressor protein ARF. In resting
cells, the unphosphorylatedRB - a tumor suppressor - binds
to E2F to inhibit its transcriptional activity. E2F will be ac-
tivated when its inhibitor RB is phosphorylated and inhib-
ited by Cyclin D, inducing the transcription of Cyclin E and
Cyclin-dependent protein kinases (CDK2) which promote
cell cycle progression to the S phase. Cyclin E, in turn,
continues to inhibit the activity of RB, leading to a forward



positive feedback loop [22, 23]. The oncoprotein K-ras (a
member of the RAS protein family), and two tumor sup-
pressor proteins, INK4a which inhibits CyclinD-CDK4/6’s
activity (only Cyclin D is shown in Fig.1), and ARF which
can inhibit MDM2’s activity to stabilize P53’s expression
level, are mutated in up to 90% of pancreatic cancers [17].
Boolean Modeling: A Boolean network is composed of a
graphG and a Boolean transfer function for each node. The
state of each node in a BN can be either ON(1) or OFF(0) at
any time step, except for the nodes which correspond to the
external (control) signal (HMGB1 in Fig. 1). The Boolean
transfer function describes the transformation of the state
of nodexi from timet to t + 1, and it is built from the usual
Boolean connectives:∨ (or, |), ∧ (and, &),¬ (not, !). We
adopt the qualitative dynamical systems methodology pro-
posed in [24, 25]. The state of a node at the next time step
depends on its current state and that of its parents, which
can be parental activators or parental inhibitors, that is,

xi(t + 1) =
(

xi(t) ∨
∨

Pa

xa
Pa(t)
)

∧ ¬
(
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Pa

xin
Pa(t)
)

(1)

wherexa
Pa(t) and xin

Pa(t) represent activators and inhibitors
of the nodexi. For example, PI3K can activate (phospho-
rylate) the lipid PIP2 to PIP3, while the tumor suppres-
sor PTEN can deactivate (dephosphorylate) PIP3 to PIP2.
Then, the boolean transfer function forPIP3 is written as
PIP3(t + 1) = (PIP3(t) ∨ PI3K(t)) ∧ !PT EN(t).

It is known that in normal cells, oncoproteins are
strictly regulated by tumor suppressor proteins. With
Eq. (1) we mean that in our cancer cell model, the activators
can change the state of a node only if no inhibitor is acting
on that node. This is in accord with evidence from cancer
studies: the continuous activation of oncoproteins is very
often caused by the loss of cell proliferation inhibitors. In
a BN model, it means that such tumor suppressor proteins
are in OFF state.

3 Model Checking

Let AP = {p, q, r, ...} be a set of atomic propositions
(predicates) defined over a finite set of statesS . A Kripke
structureM = (S , s0,R, L) represents a finite-state concur-
rent system, wheres0 ∈ S is an initial state,R is a transi-
tion relation between states, andL : S → 2AP is a labeling
function that labels each state with the set of atomic propo-
sitions true in that state. Given a temporal logic formula
φ expressing some desired property, the Model Checking
problem [14] is to find the set of all states inS that satisfy
φ: {s ∈ S |M, s |= φ}.

3.1 Computation Tree Logic

A Computation Tree Logic (CTL) formula describes
a property of computation trees [14]. The root of a compu-

tation tree corresponds to the set of initial states, while the
other nodes on the tree correspond to all possible compu-
tation paths from the root. A CTL formula is constructed
from a set of atomic propositional variablesAP, Boolean
logic connectives including→ (implication),temporal op-
erators describing properties of a path, andpath quantifiers.

The temporal operators are:Xψ – ψ holds in the next
state of the path;Fψ – ψ holds at some state in the future
(eventually) on the path;Gψ –ψ holds globally (always) at
every state on the path;ψ1Uψ2 – ψ1 holds untilψ2 holds.
There are two path quantifiers which describe the branch-
ing structure in the computation tree:Aφ – for all paths
φ holds, andEφ – thereexists a path for whichφ holds.
An example of a CTL property isAG(Req → AF Ack),
meaning that if aRequest occurs, then it will be eventually
Acknowledged.

There are two types of CTL formulas: state formulas
ψ and path formulasφ. A state formula has a truth value
at a specific state, while a path formula has a truth value
along a specific (computation) path. The syntax of CTL is
the following:

ψ ::= AP | ψ1 ∨ ψ2 | ¬ψ | Eφ | Aφ

φ ::= Xψ | Fψ | Gψ | ψ1Uψ2.

A pathπ in a Kripke structureM = (S , s0,R, L) is an infinite
sequence of states,π = s0, s1, . . ., wheresi ∈ S , and for
everyi ≥ 0, (si, si+1) ∈ R. We useπi to denote the suffix of
π starting at thei-th state. The semantics of CTL is defined
below (the interested reader can find more details in [14]):

M, s |= p iff p ∈ L(s);
M, s |= ¬ψ iff M, s |= ψ does not hold
M, s |= ψ1 ∨ ψ2 iff M, s |= ψ1 or M, s |= ψ2;
M, π |= Xψ iff M, π1 |= ψ;
M, π |= ψ1Uψ2 iff there existsk ≥ 0 such thatM, πk |= ψ2

and for all 0≤ j < k, M, π j |= ψ1;
M, s |= Eφ iff there exists a pathπ from s such that

M, π |= φ;
M, s |= Aφ iff for every pathπ from s, M, π |= φ.

The temporal operatorsF andG can be defined asFψ =
true Uψ andGψ = ¬F¬ψ.

3.2 CTL Model Checking

The Symbolic Model Verifier (SMV) [26] was devel-
oped at Carnegie Mellon University in the early 90’s. SMV
is the first model checker for CTL based on binary decision
diagram (BDD)[27], a data structure that can be used to ef-
ficiently represent Boolean functions. The SMV language
provides a platform to describe general state transition dia-
grams, and Boolean networks in particular. To verify CTL
formulas over SMV models one can use the original SMV
tool or NuSMV [28]. The output of the model checker



MODULE MAIN

VAR
HMGB1: boolean;
PI3K, PIP3, PTEN, ... : boolean;

ASSIGN
init(PI3K):={0,1}; init(PTEN):={0,1};
init(PIP3):={0,1}; init(INK4a):=0; ...
next(PIP3):= //update rule for PIP3

case
PI3K & !PTEN: 1;

PTEN: 0;
1: PIP3;

... ... //update rules for other variables

SPEC AG(RAS→ AF(CyclinE)); // property verification

Figure 2: SMV code for the HMGB1 Boolean Network

could be either “true” (property satisfied) or a counterex-
ample trace showing why the property is false.

In Figure 2 we report a portion of the SMV code for
the HMGB1 Boolean network model as an example. The
code can be divided into three parts: variable declarations
(“boolean” in Figure 2); initialization of the states for each
variable with “init”; implementation – updating the state
of each node in the state transition diagram with “next”.
The verification of CTL properties is encoded using the
“SPEC” statement.

4 Applications and Results

Our goal is to investigate interesting behaviors of pan-
creatic cancer cells. The HMGB1 Boolean network de-
picted in Fig. 1 comprises 33 variable nodes and the con-
trol node HMGB1, leading to 233 possible states in the
state-transition diagram. In order to compare our re-
sults with severalin vitro experiments, in our BN model
the initial state of each node can be active (1) or inactive
(0), except for the control node (HMGB1) and the proteins
RAS, P53 and INK4a, since those are either mutated or lost
with a very high frequency in pancreatic cancer. There-
fore, we set INK4a and P53 to be OFF (0), and RAS to
be ON (1) initially. The SMV code is available online:
http://www.cs.cmu.edu/∼haijung/research/HMGB1.smv.

Several rules for the translation of biological pat-
terns (properties) into CTL formulas have been dis-
cussed in [15, 29]. We focus on the verification of
five types of properties similar to those in [29]:oc-
currence/reachability, consequence, steady states, oscilla-
tion/loop, andsequence/pathway.
I: Occurrence/Reachability
Property 1: If HMGB1 is overexpressed, the cancer cell

will necessarily activateProliferate at some time in the fu-
ture. The following CTL property is verified:

AF(Proliferate) : True

Property 2: If HMGB1 is overexpressed, is itpossible that
the cancer cell will reach theApoptosis state? The follow-
ing CTL property is proved to be false:

EF(Apoptosis) : False

These two properties are consistent with the recent experi-
mental discoveries that the elevated expression of HMGB1
leads to increased cancer cell survival and decreased apop-
tosis in pancreatic cancer cells [6].
II: Consequence
Property 3: If HMGB1’s receptors TLR or RAGE are over-
expressed,i.e., (T LR |RAGE) is true, the cell willneces-
sarily reach a state satisfying (!Apoptosis & Proliferate) in
the future. The following CTL property is true:

AG{(T LR |RAGE)→ AF(!Apoptosis & Proliferate)}

Property 3 is consistent with the recent experimental results
in [6] – the overexpression of RAGE is associated with pan-
creatic cancer cell proliferation.
Property 4: If RAS is continuously activated, the cell will
eventually satisfy (!Apoptosis & Proliferate), that is, cell
proliferation is unavoidable. The following CTL property
is true:

AG{(RAS )→ AF(!Apoptosis & Proliferate)}

Property 4 explains an important phenomenon in cancer:
KRAS mutation exists in over 90% of pancreatic adeno-
carcinomas [17], thereby leading to a continuous activation
of the mitogen-activated protein kinase (MAPK) pathway
which promotes cell proliferation.
III: Steady States
Property 5: Are the states satisfied by the proposition
(!P53 & !Apoptosis & CyclinE & Proliferate) steady?
The following CTL property is true:

AF{AG(!P53 & !Apoptosis & CyclinE & Proliferate)}

This property shows that once the protein Cyclin E is
activated and DNA synthesis has commenced, the cell will
go to S-phase and stay in theProliferate state. Cell growth
thus becomes relatively independent of external controls
and can not be stopped.

Property 6: It is known that RB is very frequently
deactivated in most types of cancer. Therefore, is it the
case that RB is (eventually) steadily OFF? In our cancer
cell model this turns out to be true:

AF{AG(!RB)} : True



IV: Oscillation/Loop
Property 7: The release of HMGB1 will cause oscillations
in the expression level of NFκB. The following CTL prop-
erty is verified to be true:

AG{(!NFκB→ AF(NFκB)) & ( NFκB→ AF(!NFκB))}

Property 7 agrees with Hoffmann’s population-level exper-
iment in which damped oscillations in NFκB localization
were observed after HMGB1 stimulation [20]. This is due
to the fact that the NFκB signaling pathway is regulated by
two negative feedback loops that drive the oscillations in
NFκB nuclear-cytoplasmic localization.
Property 8: We also verified a negative feedback loop, for
example, P53 can induce the transcription of MDM2, while
MDM2 is a negative regulator of P53. The following prop-
erty is true:

AG{(P53→ AF(MDM2)) & (MDM2→ AF(!P53))}

V: Sequence/Pathway
Property 9: Is NFκB’s activation anecessary checkpoint
that the cancer cell should go through before it reaches
(!Apoptosis & Proliferate)? We verify the CTL property:

!E{(!NFκB) U (!Apoptosis & Proliferate)}

To better understand the meaning of this property consider
the formula:

!E{!a U b}

wherea, b are atomic propositions. This formula is true if
and only if there is no path in whichb is satisfied without
satisfyinga first. In other words,b is necessarily preceded
by a. Property 9 is verified to befalse in our model. In
particular, this means that cancer proliferation is possible
even without NFκB’s activation.

5 Conclusions

We have presented and verified a Boolean network
model for the HMGB1 signaling pathway in pancreatic
cancer. Five types of properties associated withApoptosis
andProliferation were formally expressed in the temporal
logic CTL and verified by Symbolic Model Checking. Our
results show that the Boolean network model can capture
the most important characteristics of the HMGB1 signal-
ing pathway. In particular, if HMGB1 is overexpressed,
the cell will be necessarily reach theProliferation state,
but it cannot reachApoptosis. Some properties could also
provide new insights into the cancer therapies. For exam-
ple, targeting the NFκB and ERK pathways may lead to
programmed cell death and decrease the proliferation and
metastasis ability of cancer cells. With Symbolic Model
Checking one could also study behaviors which are difficult
to simulate in models based on differential equations, or via

stochastic simulation. For example, the sequence/pathway
property in signal transduction will help to verify that some
sequence will drive the network to a pre-specified state.
Coupled with expressive CTL formulas, formal verifica-
tion techniques have become a promising tool to develop
and validate models of signaling pathways.
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