
Formal Modeling and Analysis of Pancreatic
Cancer Microenvironment ?

Qinsi Wang1, Natasa Miskov-Zivanov2, Bing Liu3,
James R. Faeder3, Michael Lotze4, Edmund M. Clarke1

1 Computer Science Department, Carnegie Mellon University, USA
2 Electrical and Computer Engineering Department, Carnegie Mellon University, USA
3 Department of Computational and Systems Biology, University of Pittsburgh, USA

4 Surgery and Bioengineering, UPMC, USA

Abstract. The focus of pancreatic cancer research has been shifted from
pancreatic cancer cells towards their microenvironment, involving pan-
creatic stellate cells that interact with cancer cells and influence tumor
progression. To quantitatively understand the pancreatic cancer microen-
vironment, we construct a computational model for intracellular signal-
ing networks of cancer cells and stellate cells as well as their intercellular
communication. We extend the rule-based BioNetGen language to depict
intra- and inter-cellular dynamics using discrete and continuous variables
respectively. Our framework also enables a statistical model checking
procedure for analyzing the system behavior in response to various per-
turbations. The results demonstrate the predictive power of our model
by identifying important system properties that are consistent with ex-
isting experimental observations. We also obtain interesting insights into
the development of novel therapeutic strategies for pancreatic cancer.

1 Introduction

Pancreatic cancer (PC), as an extremely aggressive disease, is the seventh lead-
ing cause of cancer death globally [3]. For decades, extensive efforts were made
on developing therapeutic strategies targeting at pancreatic cancer cells (PCCs).
However, the poor prognosis for PC remains largely unchanged. Recent studies
have revealed that the failure of systemic therapies for PC is partially due to
the tumor microenvironment, which turns out to be essential to PC develop-
ment [13, 15, 16, 25]. As a characteristic feature of PC, the microenvironment
includes pancreatic stellate cells (PSCs), immune cells, endothelial cells, nerve
cells, lymphocytes, dendritic cells, the extracellular matrix, and other molecules
surrounding PCCs, among which, PSCs play key roles during the PC devel-
opment [25]. In this paper, to obtain a system-level understanding of the PC
microenvironment, we construct a multicellular model including intracellular
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signaling networks of PCCs and PSCs respectively, and intercellular interactions
among them.

Boolean Networks (BNs) [36] has been widely used to model biological net-
works [4]. A Boolean network is an executable model that characterizes the
status of each biomolecule by a binary variable that related to the abundance
or activity of the molecule. It can capture the overall behavior of a biological
network and provide important insights and predictions. Recently, it has been
found useful to study the signaling networks in PCCs [18,19]. Rule-based mod-
eling language is another successfully used formalism for dynamical biological
systems, which allows molecular/kinetic details of signaling cascades to be spec-
ified [10, 14]. It provides a rich yet concise description of signaling proteins and
their interactions by representing interacting molecules as structured objects and
by using pattern-based rules to encode their interactions. The dynamics of the
underlying system can be tracked by performing stochastic simulations. In this
paper, to formally describe our multicellular and multiscale model, we extend
the rule-based language BioNetGen [14] to enable the formal specification of not
only the signaling network within a single cell, but also interactions among mul-
tiple cells. Specifically, we represent the intercellular level dynamics using rules
with continuous variables and use BNs to capture the dynamics of intracellular
signaling networks, considering the fact that a large number of reaction rate
constants are not available in the literature and difficult to be experimentally
determined. Our extension saves the virtues of both BNs and rule-based kinetic
modeling, while advancing the specification power to multicellular and multi-
scale models. We employ stochastic simulation NFsim [35] and statistical model
checking (StatMC) [24] to analyze the systems properties. The formal analysis
results show that our model reproduces existing experimental findings with re-
gard to the mutual promotion between pancreatic cancer and stellate cells. The
model also provides insights into how treatments latching onto different targets
could lead to distinct outcomes. Using the validated model, we predict novel
(poly)pharmacological strategies for improving PC treatment.

Related work. Various mathematical formalisms have been used for the
cancer microenvironment modeling (see a recent review [6]). In particular, Gong
[17] built a qualitative model to analyze the intracellular signaling reactions in
PCCs and PSCs. This model is discrete and focuses on cell proliferation, apop-
tosis, and angiogenesis pathways. While, our model is able to make quantitative
predictions and also considers pathways regulating the autophagy of PCCs and
the activation and migration of PSCs, as well as the interplay between PCCs
and PSCs. In terms of the modeling language, the ML-Rules [30] is a multi-level
rule-based language, which can consider multiple biological levels of organiza-
tion by allowing objects to be able to contain collections of other objects. This
embedding relationship can affect the behavior of both container and contents.
ML-Rules uses continuous rate equations to capture the dynamics of intracellu-
lar reactions, and thus requires all the rate constants to be known. Instead, our
language models intracellular dynamics using BNs, which reduces the difficulty
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of estimating the values of hundreds of unknown parameters often involved in
large models.

The paper is organized as follows. In Section 2, we present the multicellular
model for the PC microenvironment. We then introduce our rule-based modeling
formalism extended from the BioNetGen language in Section 3. In Section 4, we
briefly introduce StatMC that is used to carry out formal analysis of the model.
The analysis results are given and discussed in Section 5. Section 6 concludes
the paper.

2 Signalling Networks within Pancreatic Cancer
Microenvironment

We construct a multicellular model for pancreatic cancer microenvironment
based on a comprehensive literature search. The reaction network of the model
is summarized in Figure 1. It consists of three parts that are colored with green,
blue, and purple respectively: (i) the intracellular signaling network of PCCs,
(ii) the intracellular signaling network of PSCs, and (iii) the signaling molecules
(such as growth factors and cytokines) in the extracellular space of the microen-
vironment, which are ligands of the receptors expressed in PCCs and PSCs.
Note that → denotes activation/promotion/up-regulation, and –• represents
inhibition/suppression/down-regulation.

2.1 The intracellular signaling network of PCCs

Pathways regulating proliferation
KRas mutation enhances proliferation [8]. Mutations of the KRas onco-

gene occur in the precancerous stages with a mutational frequency over 90%. It
can lead to the continuous activation of the RAS protein, which then constantly
triggers the RAF→MEK cascade, and promotes PCCs’ proliferation through the
activation of ERK and JNK.

EGF activates and enhances proliferation [32]. Epidermal growth factor
(EGF) and its corresponding receptor (EGFR) are expressed in ∼95% of PCs.
EGF promotes proliferation through the RAS→RAF→MEK→JNK cascade. It
can also trigger the RAS→RAF→MEK→ERK→cJUN cascade to secrete EGF
molecules, which can then quickly bind to overexpressed EGFR again to promote
the proliferation of PCCs, which is believed to confer the devastating nature on
PCs.

HER2/neu mutation also intensifies proliferation [8]. HER2/neu is
another oncogene frequently mutated in the initial PC formation. Mutant HER2
can bind to EGFR to form a heterodimer, which can activate the downstream
signaling pathways of EGFR.

bFGF promotes proliferation [9]. As a mitogenic polypeptide, bFGF can
promote proliferation through both RAF→MEK→ERK and RAF→MEK→JNK
cascades. In addition, bFGF molecules are released through RAF→MEK→ERK
pathway to trigger another autocrine signaling pathway in the PC development.
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Fig. 1: The pancreatic cancer microenvironment model
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Pathways regulating apoptosis
Apoptosis is the most common mode of programmed cell death. It is executed

by caspase proteases that are activated by death receptors or mitochondrial
pathways.

TGFβ1 initiates apoptosis [34]. In PCCs, transforming growth factor β
1 (TGFβ1) binds to and activates its receptor (TGFR), which in turn activates
receptor-regulated SAMDs that hetero-oligomerize with the common SAMD3
and SAMD4. After translocating to the nucleus, the complex initiates apoptosis
in the early stage of the PC development.

Mutated oncogenes inhibit apoptosis. Mutated KRas and HER2/neu
can inhibit apoptosis by downregulating caspases (CASP) through PI3K→AKT
→NFκB cascade and by inhibiting Bax (and indirectly CASP) via the PI3K→
PIP3→AKT→· · ·→BCL-XL pathway.
Pathways regulating autophagy

Autophagy is a catabolic process involving the degradation of a cell’s own
components through the lysosomal machinery. This pro-survival process enables
a starving cell to reallocate nutrients from unnecessary processes to essential
processes. Recent studies indicate that autophagy is important in the regulation
of cancer development and progression and also affects the response of cancer
cells to anticancer therapy [21,26].

mTOR regulates autophagy [31]. The mammalian target of rapamycin
(mTOR) is a critical regulator of autophagy. In PCCs, the upstream pathway
PI3K→PIP3→AKT activates mTOR and inhibits autophagy. The MEK→ERK
cascade downregulates mTOR via cJUN and enhances autophagy.

Overexpression of anti-apoptotic factors promotes autophagy [28].
Apoptosis and autophagy can mutually inhibit each other due to their crosstalks.
In the initial stage of PC, the upregulation of apoptosis leads to the inhibition of
autophagy. Along with the progression of cancer, when apoptosis is suppressed by
the highly expressed anti-apoptotic factors (e.g. NFκB and Beclin1), autophagy
gradually takes the dominant role and promotes PCC survival.

2.2 Intracellular signaling network of PSCs

Pathways regulating activation
PCCs can activate the surrounding inactive PSCs by cancer-cell-induced re-

lease of mitogenic and fibrogenic factors, such as PDGFBB and TGFβ1. As a
major growth factor regulating cell functions of PSCs, PDGFBB activates
PSCs [20] through the downstream ERK→AP1 signaling pathway. The acti-
vation of PSCs is also mediated by TGFβ1 [20] via TGFR→SAMD path-
way. The autocrine signaling of TGFβ1 maintains the sustained activation of
PSCs. Furthermore, the cytokine TNFα, which is a major secretion of tumor-
associated macrophages (TAMs) in the microenvironment, is also involved in
activating PSCs [29] through binding to TNFR, which indirectly activates
NFκB.
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Pathways regulating migration
Migration is another characteristic cell function of PSCs. Activated PSCs

move towards PCCs, and form a cocoon around tumor cells, which could protect
the tumor from therapies’ attacks [7, 16].

Growth factors promote migration. Growth factors existing in the mi-
croenvironment, including EGF, bFGF, and VEGF, can bind to their receptors
on PSCs and activate the migration through the MAPK pathway.

PDGFBB contributes to the migration [33]. PDGFBB regulates the mi-
gration of PSCs mainly through two downstream pathways: (i) the PI3K→PIP3
→AKT pathway, which mediates PDGF-induced PSCs’ migration, but not pro-
liferation, and (ii) the ERK→AP1 pathway that regulates activation, migration,
and proliferation of PSCs.
Pathways regulating proliferation

Growth factors activate proliferation. In PSCs, as key downstream com-
ponents for several signaling pathways initiated by distinct growth factors, such
as EGF and bFGF, the ERK→AP1 cascade activates the proliferation of PSCs.
Compared to inactive PSCs, active ones proliferate more rapidly.

Tumor suppressers repress proliferation. Similar to PCCs, P53, P21,
and PTEN act as suppressers for PSCs’ proliferation.
Pathways regulating apoptosis

P53 upregulates modulator of apoptosis [23]. The apoptosis of PSCs
can be initiated by P53, whose expression is regulated by the MAPK pathway.

2.3 Interactions between PCCs and PSCs

The mechanism underlying the interplay between PCCs and PSCs is complex.
In a healthy pancreas, PSCs exist quiescently in the periacinar, perivascular,
and periductal space. However, in the diseased state, PSCs will be activated
by growth factors, cytokines, and oxidant stress secreted or induced by PCCs,
including EGF, bFGF, VEGF, TGFβ1, PDGF, sonic hedgehog, galectin 3, en-
dothelin 1 and serine protease inhibitor nexin 2 [11]. Activated PSCs will then
transform from the quiescent state to the myofibroblast phenotype. This re-
sults in their losinlipid droplets, actively proliferating, migrating, producing large
amounts of extracellular matrix, and expressing cytokines, chemokines, and cell
adhesion molecules. In return, the activated PSCs promote the growth of PCCs
by secreting various factors, including stromal-derived factor 1, FGF, secreted
protein acidic and rich in cysteine, matrix metalloproteinases, small leucine-
rich proteoglycans, periostin and collagen type I that mediate effects on tumor
growth, invasion, metastasis and resistance to chemotherapy [11]. Among them,
EGF, bFGF, VEGF, TGFβ1, and PDGFBB are essential mediators of the in-
terplay between PCCs and PSCs that have been considered in our model.

Autocrine and paracrine involving EGF/bFGF [27]. EGF and bFGF
can be secreted by both PCCs and PSCs. In turn, they will bind to EGFR and
FGFR respectively on both PCCs and PSCs to activate their proliferation and
further secretion of EGF and FGF.
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Interplay through VEGF [39]. As a proangiogenic factor, VEGF is found
to be of great importance in the activation of PSCs and angiogenesis during the
progression of PCs. VEGF, secreted by PCCs, can bind with VEGFR on PSCs to
activate the PI3K pathway. It further promotes the migration of PSCs through
PIP3→AKT, and suppresses the transcription activity of P53 via MDM2.

Autocrine and paracrine involving TGFβ1 [27]. PSCs by themselves
are capable of synthesizing TGFβ1, suggesting the existence of an autocrine
loop that may contribute to the perpetuation of PSC activation after an initial
exogenous signal, thereby promoting the development of pancreatic fibrosis.

Interplay through PDGFBB [11]. PDGFBB exists in the secretion of
PCCs, whose production is regulated by TGFβ1 signaling pathway. PDGFBB
can activate PSCs and initiate migration and proliferation as well.

3 The Modeling Language

Rule-based modeling languages are often used to specify protein-to-protein reac-
tions within cells and to capture the evolution of protein concentrations. BioNet-
Gen language is a representative rule-based modeling formalism [14], which con-
sists of three components: basic building blocks, patterns, and rules. In our
setting, in order to simultaneously simulate the dynamics of multiple cells, in-
teractions among cells, and intracellular reactions, we advance the specifying
power of BioNetGen by redefining basic building blocks and introducing new
types of rules for cellular behaviors as follows.

Basic building blocks. In BioNetGen, basic building blocks are molecules
that may be assembled into complexes through bonds linking components of dif-
ferent molecules. To handle multiscale dynamics (i.e. cellular and molecular lev-
els), we allow the fundamental blocks to be also cells or extracellular molecules.
Specifically, a cell is treated as a fundamental block with subunits corresponding
to the components of its intracellular signaling network. Furthermore, extracel-
lular molecules (e.g. EGF) are treated as fundamental blocks without subunits.

As we use BNs to model intracellular signaling networks, each subunit of a
cell takes binary values (it is straightforward to extend BNs to discrete models).
The Boolean values - “True (T)” and “False (F)” - can have different biological
meanings for distinct types of components within the cell. For example, for
a subunit representing cellular process (e.g. apoptosis), “T” means the cellular
process is triggered, and “F” means it is not triggered. For a receptor, “T” means
the receptor is bound, and “F” means it is free. For a protein, “T” indicates this
protein has a high concentration, and “F” indicates that its concentration level
is below the value to regulate downstream targets.

Patterns. As defined in BioNetGen, patterns are used to identify a set
of species that share features. For instance, the pattern C(c1) matches both
C(c1, c2 ∼ T ) and C(c1, c2 ∼ F ). Using patterns offers a rich yet concise de-
scription in specifying components.

Rules. In BioNetGen, three types of rules are used to specified: binding/un-
binding, phosphorylation, and dephosphorylation. Here we introduce nine rules
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in order to describe the cellular processes in our model and the potential thera-
peutic interventions. For each type of rules, we present its formal syntax followed
by examples that demonstrate how it is used in our model.
Rule 1: Ligand-receptor binding

< Lig > + < Cell > (< Rec >∼ F )→< Cell > (< Rec >∼ T ) < binding rate >

Remark : On the left-hand side, the “F” value of a receptor < Rec > indicates
that the receptor is free. When a ligand < Lig > binds to it, the reduction of
number of extracellular ligand is represented by its elimination. In the mean-
while, “< Rec >∼ T”, on the right-hand side, indicates that the receptor is not
free any more. Note that, the multiple receptors on the surface of a cell can be
modeled by setting a relatively high rate on the following downstream regulating
rules, which indicates the rapid “releasing” of bound receptors. An example in
our microenvironment model is the binding between EGF and EGFR for PCCs:
“EGF + PCC(EGFR ∼ F )→ PCC(EGFR ∼ T ) 1”.
Rule 2: Mutated receptors form a heterodimer

< Cell > (< Rec1 >∼ F,< Rec2 >∼ F )→
< Cell > (< Rec1 >∼ T,< Rec2 >∼ T ) < mutated binding rate >

Remark : Unbound receptors can bind together and form a heterodimer. For ex-
ample, in our model, the mutated HER2 can activate downstream pathways
of EGFR by binding with it and forming a heterodimer: “’PCC(EGFR ∼
F,HER2 ∼ F )→ PCC(EGFR ∼ T,HER2 ∼ T ) 10”.
Rule 3: Downstream signaling transduction
Rule 3.1 (Single parent) upregulation (activation, phosphorylation, etc.)

< Cell > (< Act >∼ T,< Tar >∼ F )→
< Cell > (< Act >∼ T,< Tar >∼ T ) < trate >

Rule 3.2 (Single parent) downregulation (inhibition, dephosphorylation, etc.)

< Cell > (< Inh >∼ T,< Tar >∼ T )→
< Cell > (< Inh >∼ T,< Tar >∼ F ) < trate >

Rule 3.3 (Multiple parents) Downstream regulation

< Cell > (< Inh >∼ F,< Act >∼ T,< Tar >∼ F )→
< Cell > (< Inh >∼ F,< Act >∼ T,< Tar >∼ T ) < trate >

< Cell > (< Inh >∼ T,< Tar >∼ T )→
< Cell > (< Inh >∼ T,< Tar >∼ F ) < trate >

Remark : Instead of using kinetic rules (such as in ML-Rules), our language use
logical rules of BNs to describe intracellular signal cascades. Downsteam signal
transduction rules are used to describe the logical updating functions for all
intracellular molecules constructing the signaling cascades. For instance, Rule 3.3
presents the updating function < Tar >(t+1)= ¬ < Inh >(t) ×(< Act >(t)+ <
Tar >(t)), where “< Inh >” is the inhibitor, and “< Act >” is the activator. In
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this manner, concise rules can be devised to handle complex cases, where there
exists multiple regulatory parents. Note that our model follows the biological
assumption that inhibitors hold higher priorities than activators with respect to
their impacts on the target. “+” and “×” in logical functions represent logical
“OR” and “AND” respectively. An example in our model is that, in PCCs, STAT
can be activated by JAK1: “PCC(JAK1 ∼ T, STAT ∼ T ) → PCC(JAK1 ∼
F, STAT ∼ T ) 0.012” and “PCC(JAK1 ∼ T, STAT ∼ F ) → PCC(JAK1 ∼
F, STAT ∼ T ) 0.012”.
Rule 4: Cellular processes
Rule 4.1 Proliferation

< Cell > (Pro ∼ T )→
< Cell > (Pro ∼ F )+ < Cell > (Pro ∼ F, · · · ) < pro rate >

Remark : When a cell proliferates, we keep the current values of subunits for the
cell that initiates the proliferation, and assume the new cell to have the default
values of subunits. The “· · · ” in the rule denotes the remaining subunits with
their default values.
Rule 4.2 Apoptosis

< Cell > (Apo ∼ T )→ Null() < apop rate >

Remark : A type “Null()” is declared to represent dead cells or degraded molecules.
In our model, the apoptosis of PSCs is described as “PSC(Apo ∼ T )→ Null()
5e− 4”.
Rule 4.3 Autophagy

< Cell > (Aut ∼ T )→< Mol > + · · · < auto rate >

Remark : The molecules on the right-hand side of this type of rules will be released
into the microenvironment due to autophagy. They are the existing molecules
expressed inside this cell when autophagy is triggered.
Rule 5: Secretion

< Cell > (< secMol >∼ T )→
< Cell > (< secMol >∼ F )+ < Mol > < sec rate >

Remark : When the secretion of “< Mol >” has been triggered, its amount in
the microenvironment will be added by 1. Note that, we can differentiate the
endogenous and exogenous molecules by labeling the secreted “< Mol >” with
the cell name. In our model, we have “PCC(secEGF ∼ T )→ PCC(secEGF ∼
F ) + EGF 2.7e− 4”.
Rule 6: Mutation
< Cell > (< Mol >∼< unmutated >)→

< Cell > (< Mol >∼< mutated >) < mrate >

Remark : For mutant proteins that are constitutively active, we set a very high
value to the mutation rate “mrate”. In this way, we can almost keep the value
of the mutated molecule as what it should be. For example, in our model, the
mutation of oncoprotein Ras in PCCs is captured by “PCC(RAS ∼ F ) →
PCC(RAS ∼ T ) 10000”.
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Rule 7: Constantly over-expressed extracellular molecules

CancerEvn→ CancerEvn+ < Mol > < sec rate >

Remark : We use this type of rules to mimic the situation that the concentration
of an over-expressed extracellular molecule stays in a high level constantly.
Rule 8: Degradation of extracellular molecules

< Mol >→ Null() < deg rate >

Remark : Here, “Null()” is used to represent dead cells or degraded molecules.
For instance, bFGF in the microenvironment will be degraded via “bFGF →
Null() 0.05”.
Rule 9: Therapeutic intervention

< Cell > (< Mol >∼< untreated >)→
< Cell > (< Mol >∼< treated >) < treat rate >

Remark : Given a validated model, intervention rules allow us to evaluate the
effectiveness of a therapy targeting at certain molecule(s). Also, the well-tuned
value of the intervention rate could, more or less, give indications when deciding
the dose of medicine used in this therapy, based on the Law of Mass Action.

Our extension allows the BioNetGen language to be able to model not only
the signaling network within a single cell, but also interactions among multiple
cells. It also allows one to simulate the dynamics of cell populations, which is
crucial to cancer study. Moreover, describing the intracellular dynamics using the
style of BNs improves the scalability of our method by overcoming the difficulty
of obtaining values of a large amount of model parameters from wet laboratory,
which is a common bottleneck of conventional rule-based languages and ML-
Rules. Note that, similar to other rule-based languages, our extended one allows
different methods for model analysis, since more than one semantics can be
defined for the same syntax.

4 Statistical Model Checking

Simulation can recapitulate a number of experimental observations and provide
new insights into the system. However, it is not easy to manually analyze a
significant amount of simulation trajectories, especially when there is a large set
of system properties to be tested. Thus, for our model, we employ statistical
model checking (StatMC), which is a fully automated formal analysis technique.
In this section, we provide an intuitive and brief description of StatMC. The
interested reader can find more details in [24].

Given a system property expressed as a Bounded Linear Temporal Logic
(BLTL) [24] formula and the set of simulation trajectories generated by apply-
ing the NFsim stochastic simulation to our rule-based model, StatMC estimates
the probability of the model satisfying the property (see the supplementary
document [2] for a brief introduction of BLTL). In detail, since the underlying
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semantic model of the stochastic simulation method NFsim that we used for our
model is essentially a discrete-time Markov chain, we need to verify stochastic
models. StatMC treats the verification problem for stochastic models as a statis-
tical inference problem, using randomized sampling to generate traces (or simu-
lation trajectories) from the system model, and then performing model checking
and statistical analysis on those traces. For a (closed) stochastic model and a
BLTL property ψ, the probability p that the model satisfies ψ is well defined
(but unknown in general). For a fixed 0 < θ < 1, we ask whether p ≤ θ, or what
the value of p is. In StatMC, the first question is solved via hypothesis testing
methods, while the second via estimation techniques. Intuitively, hypothesis tests
are probabilistic decision procedures, i.e., algorithms with a yes/no reply, and
which may give wrong answers. Estimation techniques instead compute (proba-
bilistic) approximations of the unknown probability p. The main assumption of
StatMC is that, given a BLTL property ψ, the behavior of a (closed) stochastic
model can be described by a Bernoulli random variable of parameter p, where
p is the probability that the system satisfies ψ. It is known that discrete-time
Markov chains satisfy this requirement [37]. Therefore StatMC can be applied
to our setting. More specifically, given σ is a system execution and ψ a BLTL
formula, we have that Prob{σ|σ |= ψ} = p, and the Bernoulli random variable
mentioned above is the following function M defined as follows: M(σ) = 1 if
σ |= ψ, or M(σ) = 0 otherwise. Therefore, M will be 1 with probability p and 0
with probability 1 − p. In general, StatMC works by first obtaining samples of
M , and then by applying statistical techniques to such samples to solve the veri-
fication problem. The whole checking process is illustrated in the supplementary
document [2].

5 Results and Discussion

In this section, we present and discuss formal analysis results for our pancreatic
cancer microenvironment model. The model file is available at http://www.cs.
cmu.edu/~qinsiw/mpc_model.bngl. All the experiments reported below were
conducted on a machine with a 1.7 GHz Intel Core i7 processor and 8GBRAM,
running on Ubuntu 14.04.1 LTS. In our experiments, we use Bayesian sequential
estimation with 0.01 as the estimation error bound, coverage probability 0.99,
and a uniform prior (α = β = 1). The time bounds and thresholds given in fol-
lowing properties are determined by considering the model’s simulation results.
The parameters in our model include initial state (e.g. abundance of extracel-
lular molecules) and reaction rate constants. The initial state was provided by
biologists based on wet-lab measurements. The rate constants were estimated
based on the general ones in the textbook [5]. The results in scenario I & II
demonstrate that using these parameters the model is able to reproduce key ob-
servations reported in the literature. We also performed a sensitivity analysis and
the results show that the system behavior is robust to most of the parameters
(the two sensitive parameters have been labeled in our model file).



12 Q. Wang et al.

Scenario I: mutated PCCs with no treatments

In scenario I, we validate our model by studying the role of PSCs in the PC
development.

Property 1: This property aims to estimate the probability that the population
of PCCs will eventually reach and maintain in a high level.

Prob=? {(PCCtot = 10) ∧ F 1200 G100 (PCCtot > 200)}

First, we take a look at the impact from the presence of PSCs on the dynamics of
PCC population. As shown in Table 1, with PSCs, the probability of the number
of PCCs reaching and keeping in a high level (Pr = 0.9961) is much higher
than the one when PSCs are absent (Pr = 0.405). This indicates that PSCs
promote PCCs proliferation during the progression of PC. This is consistent
with experimental findings [7, 11,39].

Property Estimated Prob # Succ # Sample Time (s) Note

Scenario I: mutated PCCs with no treatments

1 0.4053 10585 26112 208.91 w.o. PSCs

0.9961 256 256 1.83 w. PSCs

2 0.1191 830 6976 49.69 w.o. PCCs

0.9961 256 256 1.75 w. PCCs

3 0.9961 256 256 5.21 -

4 0.9961 256 256 4.38 -

Scenario II: mutated PCCs with different exsiting treatments

5 0.0004 0 2304 17.13 cetuximab and erlotinib

0.0012 10 9152 68.67 gemcitabine

0.7810 8873 11360 114.25 nab-paclitaxel

0.8004 7753 9686 73.83 ruxolitinib

Scenario III: mutated PCCs with blocking out on possible target(s)

6 0.0792 38363 484128 3727.99 w.o. inhibiting ERK in PSCs

0.9822 2201 2240 17.37 w. inhibiting ERK in PSCs

7 0.1979 3409 17232 136.39 w.o. inhibiting ERK in PSCs

0.9961 256 256 2.01 w. inhibiting ERK in PSCs

8 0.2029 2181 10752 92.57 w.o. inhibiting MDM2 in PSCs

0.9961 256 256 2.18 w. inhibiting MDM2 in PSCs

9 0.0004 0 2304 15.77 w.o. inhibiting RAS in PCCs
and ERK in PSCs

0.9961 256 256 3.15 w. inhibiting RAS in PCCs and
ERK in PSCs

10 0.9797 1349 1376 11.98 w.o. inhibiting STAT in PCCs
and NFκB in PSCs

0.1631 1476 9056 81.61 w. inhibiting STAT in PCCs
and NFκB in PSCs

Table 1: Statistical model checking results for properties under different scenarios
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Property 2: This property aims to estimate the probability that the number
of migrated PSCs will eventually reach and maintain in a high amount.

Prob=? {(MigPSC = 0) ∧ F 1200 G100 (MigPSC > 40)}

We then study the impacts from PCCs on PSCs. As shown in Table 1, without
PCCs, it is quite unlikely ((Pr = 0.1191) for quiescent PSCs to be activated.
While, when PCCs exist, the chance of PSCs becoming active ((Pr = 0.9961)
approaches to 1. This confirms the observation [20] that, during the development
of PC, PSCs will be activated by growth factors, cytokines, and oxidant stress
secreted or induced by PCCs.
Property 3: This property aims to estimate the probability that the number
of PCCs entering the apoptosis phase will be larger than the number of PCCs
starting the autophagy process and this situation will be reversed eventually.

Prob=? {F 400 (G300 (ApoPCC > 50 ∧AutoPCC < 50)

∧F 700 G300 (ApoPCC < 50 ∧AutoPCC > 50))}
We are also interested in the mutually exclusive relationship between apoptosis
and autophagy for PCCs reported in [21,28]. In detail, as PC progresses, apop-
tosis firstly overwhelms autophagy, and then autophagy takes the leading place
after a certain amount of time. This situation is described as property 3 and its
estimated probability is close to 1 (see Table 1).
Property 4: This property aims to estimate the probability that, it is always
the case that, once the population of activated PSCs reaches a high level, the
number of migrated PSCs will also increase.

Prob=? {G1600 (ActPSC > 10→ F 100 (MigPSC > 10))}

One reason why PC is hard to be cured is that activated PSCs will move towards
mutated PCCs, and form a cocoon for the tumor cells, which can protect tumor
from attacks caused by therapies [7,16]. We investigate this by checking property
4, and obtain an estimated probability approaching to 1 (see Table 1).
Scenario II: mutated PCCs with different existing treatments
Property 5: This property aims to estimate the probability that the population
of PCCs will eventually drop to and maintain in a low amount.

Prob=? {(PCCtot = 10) ∧ F 1200 G400 (PCCtot < 100)}

Property 5 means that, after some time, the population of PCCs can be main-
tained in a comparatively low amount, implying that PC is under control. We
now consider 5 different drugs that are widely used in PC treatments - cetux-
imab, erlotinib, gemcitabine, nab-paclitaxel, and ruxolitinib, and estimate the
probabilities for them to satisfy property 5. As shown in Table 1, monoclonal
antibody targeting EGFR (cetuximab), as well as direct inhibition of EGFR (er-
lotinib) broadly do not provide a survival benefit in PCs. Inhibition of MAPK
pathway (gemcitabine) has also not been promising. These results are consistent
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with clinical feedbacks from patients [1]. While, strategies aiming at deplet-
ing the PSCs in PCs (i.e. nab-paclitaxel) can be successful (with an estimated
probability 0.7810). Also, inhibition of Jak/Stat can be very promising (with
an estimated probability 0.8004). These results are supported by [38] and [22],
respectively.
Scenario III: mutated PCCs with blocking out on possible target(s)

Scenario I and II have demonstrated the descriptive and predictive power of
our model. In scenario III, we use the validated model to identify new therapeutic
strategies targeting molecules in PSCs. Here we report 4 potential target(s) of
interest from our screening.
Property 6: This property aims to estimate the probability that the number
of PSCs will eventually drop to and maintain in a low level.

Prob=? {(PSCtot = 5) ∧ F 1200 G400 (PSCtot < 30)}

Property 7: This property aims to estimate the probability that the population
of migrated PSCs will eventually stay in a low amount.

Prob=? {(MigPSC = 0) ∧ F 1200 G100 (MigPSC < 30)}

The verification results of these two properties (Table 1) suggest that inhibiting
ERK in PSCs not only lowers the population of PSCs, but also inhibits PSC
migration. The former function can reduce the assistance from PSCs in the
progression of PCs indirectly. The later one can prevent PSCs from moving
towards PCCs and forming a cocoon to protect PCCs against cancer treatments.
Property 8: This property aims to estimate the probability that the number
of PSCs entering the proliferation phase will eventually be less than the number
of PSCs starting the apoptosis programme and this situation will maintain.

Prob=? {F 1200 G400 ((PSCPro− PSCApop) < 0)}

The increased probability (from 0.2029 to 0.9961 as shown in Table 1) indicates
that inhibiting MDM2 in PSCs may reduce the number of PSCs by inhibiting
PSCs’ proliferation and/or promoting their apoptosis. Similar to the former role
of inhibiting ERK in PSCs, it can help to treat PCs by alleviating the burden
caused by PSCs.
Property 9: This property aims to estimate the probability that the number
of bFGF will eventually stay in such a low level.

Prob=? {F 1200 G400 (bFGF < 100)}

As mentioned in property 5, 6, and 7, inhibiting RAS in PCCs can lower the num-
ber of PCCs, and downregulating ERK in PSCs can inhibit their proliferation
and migration. Besides these, we find that, when inhibiting RAS in PCCs and
ERK in PSCs simultaneously, the concentration of bFGF in the microenviron-
ment drops (see Table 1). As bFGF is a key molecule that induces proliferation
of both cell types, targeting RAS in PCCs and ERK in PSCs at the same time
could synergistically improve PC treatment.
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Property 10: This property aims to estimate the probability that the concen-
tration of VEGF will eventually reach and keep in a high level.

Prob=? {F 400 G100 (V EGF > 200)}

Furthermore, inhibiting STAT in PCCs and NFκB in PSCs simultaneously post-
pones and lowers the secretion of VEGF (see Table 1). VEGF plays an important
role in the angiogenesis and metastasis of pancreatic tumors. Thus, the combina-
tory inhibition of STAT in PCCs and NFκB in PSCs may be another potential
strategy for PC therapies.

6 Conclusion

We present a multicellular and multiscale model of the PC microenvironment.
The model is formally described using the extended BioNetGen language, which
can capture the dynamics of multiscale biological systems using a combination
of continuous and discrete rules. We carry out stochastic simulation and StatMC
to analyze system behaviors under distinct conditions. Our verification results
confirm the experimental findings with regard to the mutual promotion between
PCCs and PSCs. We also gain insights on how existing treatments latching onto
different targets can lead to distinct outcomes. These results demonstrate that
our model might be used as a prognostic platform to identify new drug targets.
We then identify four potentially (poly)pharmacological strategies for deplet-
ing PSCs and inhibiting the PC development. We plan to test our predictions
empirically. Another interesting direction is to extend the model by considering
spatial information [12] and TAMs in the PC microenvironment.
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