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Abstract—We present a probabilistic reachability analysis of
a (nonlinear ODE) model of a neural circuit in Caeorhabditis
elegans (C. elegans), the common roundworm. In particular, we
consider Tap Withdrawal (TW), a reflexive behavior exhibited
by a C. elegans worm in response to vibrating the surface on
which it is moving. The neural circuit underlying this response is
the subject of this investigation. Specially, we perform bounded-
time reachability analysis on the TW circuit model of Wicks et
al. (1996) to estimate the probability of various TW responses.
The Wicks et al. model has a number of parameters, and we
demonstrate that the various TW responses and their probability
of occurrence in a population of worms can be viewed as a
problem of parameter uncertainty.

Our approach to this problem rests on encoding each TW
response as a hybrid automaton with parametric uncertainty.
We then perform probabilistic reachability analysis on these
automata using a technique that combines a §-decision procedure
with statistical tests. The results we obtain are a significant
extension of those of Wicks et al. (1996), who equip their model
with fixed parameter values that reproduce a single TW response.
In contrast, our technique allow us to more thoroughly explore
the models parameter space using statistical sampling theory,
identifying in the process the distribution of TW responses.

Wicks et al. conducted a number of ablation experiments on
a population of worms in which one or more of the neurons in
the TW circuit are surgically ablated (removed). We show that
our technique can be used to correctly estimate TW response-
probabilities for four of these ablation groups. We also use our
technique to predict TW response behavior for two ablation
groups not previously considered by Wicks et al.

I. INTRODUCTION

Due to the simplicity of its nervous system (302 neurons,
~5,000 synapses) and the breadth of research on the animal,
C. elegans, the common roundworm, is a model system for
neuroscience. The complete connectome of the worm is docu-
mented [1], [2], and a number of interesting experiments have
been carried out on its locomotory neural circuits connecting
sensory neurons to motor neurons [3], [4], [5], [6].
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We are particularly interested in the Tap Withdrawal (TW)
neuronal circuit, which governs the reactionary motion of the
animal when the petri dish in which it swims is subjected
to a mechanical tap [7]. (A related circuit, touch sensitivity,
controls the reaction of the worm when a stimulus is applied
to a single point on the body.)

The term “tap withdrawal” refers to the fact that worms
swimming in a petri dish tend to withdraw (turn around
and swim in the opposite direction) when subjected to a tap
stimulus. Presumably, this is because the tap causes them to
sense danger in their surrounding environment. The worms,
however, can be conditioned or habituated to ignore this
stimulus [8].

Studies of the TW circuit have traditionally involved using
lasers to ablate different neurons in the circuit of multiple
animals, and then measuring the response behavior when tap
stimuli are applied [9]. Such is the case for [10]; see also
Fig. 1. Such behaviors are logged with the percentage of the
experimental population to display that behavior.

Moreover, with the aim of predicting synaptic polarities
(unknown parameters) of the TW circuit, the dynamics of the
membrane potential of different neurons has been mathemati-
cally modeled [11]. This model is in the form of a system of
nonlinear ODEs with an indication of the polarity (inhibitory
or excitatory) of each neuron in the circuit.

The Wicks et al. circuit model has a significant number
of parameters, including gap-junction conductance, membrane
capacitance and leakage current, that decisively affect the
circuit’s behavior. Fixed values for these parameters have been
provided based on the measurements performed on single in-
vitro neurons [11]. The model therefore produces the predom-
inant behavior in most ablation groups with a few exceptions.

While the experimental work and the model presented
in [11] were by no means insubstantial, the exploration of the
model is vastly incomplete. Fixed parameter values fit through
experimentation cause the model to replicate the predominant
behavior seen in the mentioned experiments, but little can
be gained beyond that. All such animals are not created
equal owing to genetic variation, and, during their lifetime,
they are exposed to stimuli of varying intensity, duration,



and frequency. Carefully and (semi-)exhaustively varying the
circuit parameters of the [11] model should provide us with
insights underlying these processes, and ultimately help us to
understand the learning process in neural circuits.

Towards this end, in [12], we explored the parameter
spaces of the Wicks et al. model using reachability analysis to
estimate key model parameters for various TW responses. The
main idea was to augment the state space of the model with
parameters and compute “reachtubes” (overapproximation of
the model’s reachable state space) by varying parameters in
the initial conditions. We performed our reachability analysis
based on automatically computing discrepancy functions de-
veloped by Fan et al. [13].

To cover the parameter space of interest, the technique
in [13] divides the space into a finite number of J§-balls.
The required number of J-balls depends on the maximum
eigenvalue of the Jacobian of the dynamics. If the maximum
eigenvalue is positive, the computed reachtube may blow up
so much that the property can not be verified. In such case,
the technique refines the §-ball with smaller balls and redo the
computation for all of them. Additionally, the required number
of §-balls increases exponentially over the number of variables
in the model.

As, in the Wicks et al. model, the number of parameters is
27, the augmented system, along with 9 state variables, will
have 36 state variables in total. For this model, the maximum
eigenvalue is also not always negative over time. Thus, the
technique in [13], simply does not scale up to explore the
complete parameter-space of the model.

For this reason, in [12], we augmented the model with at
most three parameters. Despite considering a small number
of parameters, we still could not cover the entire biologically
relevant range for these parameters. We were able to explore
only a tiny fraction of the parameter space.

In this paper, we address the same problem, but using the
more robust technique of statistical sampling theory. We per-
form bounded-time probabilistic reachability analysis on the
Wicks et al. model to estimate the probability of various TW
responses related to parameter uncertainty. Instead of providing
a certain answer about a reachability problem of a dynamical
system, this analysis provides an estimated probability. We take
advantage of this probabilistic analysis to derive population
percentages that exhibit various behaviors in response to tap
stimuli. Importantly, statistical sampling theory combined with
reachability analysis can handle large-scale systems for which
traditional reachability analysis may not scale.

For the purpose of our analysis, we first encode various
responses of the TW circuit as stochastic hybrid automata. We
then perform the probabilistic reachability analysis to estimate
the probability for each response of the TW circuit using the
SReach tool [14], which is a probabilistic bounded reachability
analyzer. This technique allows us to augment the model with
a large number of parameters and to more thoroughly explore
the models parameter space using statistical sampling theory,
identifying in the process the distribution of TW responses.

The rest of the paper is organized as follows. Section II in-
troduces the TW circuit and the Wicks et al. model. Sections III
enumerates all response patterns of the TW circuit. Section IV

describes how we formulate probabilistic reachability analysis
of TW circuit using SReach. Section V presents our results for
various ablation groups. Section VI considers related work.
Section VII offers our concluding remarks and directions for
future work.
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Flg 1: Effect of ablation on Tap Withdrawal reflex (experimental results). The length of
the bars indicate the fraction of the population demonstrating the particular behavior. [10]

II. BACKGROUND

In C. elegans, there are three classes of neurons: sensory,
inter, and motor. For the TW circuit, the sensory neurons are
PLM, PVD, ALM, and AVM, and the inter-neurons are AVD,
DVA, PVC, AVA, and AVB. The model we are using abstracts
away the motor neurons as simply forward and reverse move-
ment. Neurons are connected in two ways: electrically via bi-
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Flg 2: Tap Withdrawal Circuit of C. elegans. Rectangle: Sensory Neurons; Circle:
Inter-neurons; Dashed Undirected Edge: Gap Junction; Solid Directed Edge: Chemical
Synapse; Edge Label: Number of Connections [15]; Dark Gray: Excitatory Neuron; Light
Gray: Inhibitory Neuron; White: Unknown Polarity. FWD: Forward Motor system; REV:
Reverse Motor System.



directional gap junctions, and chemically via uni-directional
chemical synapses. Each connection has varying degrees of
throughput, and each neuron can be excitatory or inhibitory,
governing the polarity of transmitted signals. These polarities
were experimentally determined in [11], and used to produce
the circuit shown in Fig. 2.

In [10], Wicks et al. performed a series of laser ablation
experiments in which they knocked out neurons in a group
of animals (worms), subjected them to a tapped surface, and
recorded the magnitude and direction of the resulting behavior.
Fig. 2 shows the response types for each of their experiments.

A. Mathematical Model of the TW Circuit

The dynamics of a neuron’s membrane potential, V, is
determined by the internal state of the neuron together with
sum of all input currents [16], written as:

av. 1

dt  CR
where V' represents the membrane potential, C' is the mem-
brane capacitance, R is the membrane resistance, Vleak jg
the leakage potential, 19 and I°*¥" are gap-junction and
the chemical synapse currents, respectively, and I°%"™ is the
applied external stimulus current. The summations are over
all neurons with which this neuron has a (gap-junction or
synaptic) connection.

1 )
(Vleak _ V) + 6 Z (Igap + Jsym + Istzm)

The current flows between neuron ¢ and j via n;; gap-
junctions can be seen as the current passing through n parallel
resistors. Therefore, based on the Ohm’s law, one can derive
the gap-junction current equation as follows:

Ifjap =90, (V; = Vi)

where the constant g% is the maximum conductance of the
gap junction, and n;; is the number of gap-junctions between
neurons ¢ and j. The conductance g defines the strength of
a connection between two neurons. As a consequence, it sets
the amount of shared information of the two neurons. This
key parameter significantly affects the behavior of the neural
circuits.

Chemical synapses transfer information by releasing neuro-
transmitters [17]. Inspired by Hodgkin-Huxley model of ionic
channels [18], one can model such behavior as a synaptic
current flowing from presynaptic neuron j to post-synaptic
neuron ¢ as below:

I = g (B, — Vi)
where g;7"(t) is the voltage-dependent synaptic conductance

of neuron 4, n;¢" is the number of synaptic connections from
neuron j to neuron ¢, and F; is the reversal potential of neuron
7 for the synaptic conductance.

The chemical synapse is characterized by a synaptic sign,
or polarity, specifying if said synapse is excitatory or in-
hibitory. The value of Ej; is assumed to be constant for the
same synaptic sign.

For a neuron of C. elegans at equilibrium, the membrane
potential on average is around -30mV. According to the Eq.
II-A, by setting the reversal potential value to a higher values
than the resting potential of a neuron, the synaptic current

increases and therefore an excitatory behavior is realized. On
the contrary, an inhibitory synapse is developed by placing
the value of the reversal potential less than the equilibrium
potential of the neuron.

Dynamics of the Synaptic conductance depends on the
membrane potential state of the presynaptic neuron V;. For
the sake of simplicity, Wicks et al. model such dynamics by
the steady-state response of the synapse as follows

91" (1) = 92" (V))

where the conductance at steady-state is given by:

syn

gggn(‘/]) = - V=V
1+exp(k VJRm;e )

/" presents the maximum synaptic conductance, V" is the
pre-synaptic equilibrium potential, and Vggynge is the pre-
synaptic voltage range over which the synapse is activated.

k is an experimentally derived constant, valued at -4.3944.

Combining all of the above pieces, the mathematical model
of the TW circuit is a system of nonlinear ODEs, with each
state variable defined as the membrane potential of a neuron
in the neural circuit. Consider a circuit with N neurons. The
dynamics of the i** neuron of the circuit is given by:

N

v, Vi -V »
avi _ M= Vi 1997 4 psun 4 pstim 1
dt C:R; +7:21( ity T4 ) (H
17 = nfP st (V; — Vi) )
" =n g  (E; = Vi) 3)
syn fygn 4
9ij = Vv )

1+exp (kzﬁ)

The equilibrium potentials (V *?) of the neurons are com-
puted by setting the left-hand side of Eq. (1) to zero [11].
This leads to a system of linear equations, that can be solved
as follows:

Ver=A"" )
where matrix A is given by:
B {Rmf;’pgw if i #
T R gl g 2 i i =

and vector b is written as:

N
bi = ‘/11 + R’rni Z EJn/gyngfnyn/Q

()
j=1

III. TAP WITHDRAWAL RESPONSE PATTERNS

The Wicks et al. model does not explicitly incorporate ne-
matode locomotion. It simply defines the relationship between
the animals locomotion and activation of the TW circuit that
controls the behavior.

Wicks et al. assumes that the output of the TW circuit
controls locomotory behavior primarily through the action of
the inter-neurons AVB and AVA. The AVA interneurons make
gap junctions and chemical synapses with motor neurons AS,



VA, and DA that excite backward locomotion, whereas the
AVB interneurons form gap junctions with the motor neurons
VB and DB that excite forward locomotion. Thus, Wicks et al.
simply assume that the degree of backward (forward) locomo-
tion is proportional to the depolarization of the AVA (AVB)
interneuron and inversely proportional to the depolarization of
the AVB (AVA) interneuron. Recently, Kawano et al. present
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Fig. 3: Nllustration of oy and o,.

a study in [19] that supports the assumptions made by Wicks
et al. on directional movement of C. elegans. Through in-vivo
calcium imaging, electrophysiology and behavioral analyses
of wild-type animals and innexin mutants, they show that the
initiation of reversal movement is directly correlated with a
increased calcium level in AVA. In contrast, the initiation of
forward movement is associated with an increased calcium
level in AVB and a decrease of the calcium transient correlated
with either a reduced forward velocity or reversals.

Under standard laboratory culture conditions, the ani-
mal predominantly generates continuous forward movement
without any tap stimulation [20], [21]. In [10], Wicks et
al. experienced, through in vivo experiment, only three tap
withdrawal responses: reversal, acceleration and no response.
The simulation of the Wicks et al. model for certain ablation
group (e.g., AVM,PVC- ablation group), however, shows the
animal can also predominantly generate continuous backward
movement without any tap stimulation. Additionally, the study
of Kawano et al. supports the evidence of new type of response
like deceleration (reduced forward velocity). These lead us to
believe that, at least in theory, it is possible to have few more
tap withdrawal responses as compared to what Wicks et al.
experienced in their wet-lab experiments.

Similar to [11], [19], we consider the directional movement
can be inferred based on the voltage difference between AVA
and AVB interneurons:

e Forward movement: vayp > vava
e Backward movement: vayvp < vava
e No movement: vayp ~ VaAva

Assume that o; = vhy g — V4. @ € {1,2} be the voltage
differences between AVB and AVA interneurons during non-
stimulation and stimulation period, respectively, as shown in
Fig. 3 and € is some small positive number. Based o,, we
categorize the TW responses into two subgroups:

e When oy >=0:
1)  Reversal: 09 <= —¢
2) No response: |02 <=¢€
3) Forward acceleration: (o2 >= €) A (02 >=
0'1)
4)  Forward deceleration: (g2 >=€)A (02 < 01)

e When o <O
1) Forward: o5 >=¢
2) No response: |02 <=¢€

3) Backward acceleration: (o2 <= —¢€) A
(0'2 <= 0'1)

4)  Backward deceleration: (o2 >= €) A (02 >
0'1)

Fig. 4 shows all four response patterns for the first
subgroup. The response patterns for the second subgroup,
however, will have the similar structures, if we interchange
AVB with AVA in the figure.

IV. PROBABILISTIC REACHABILITY ANALYSIS
OF TW CIRCUIT

In this section, we present a bounded-time probabilistic
reachability analysis to estimate the probability of various TW
responses, caused due to parameter uncertainty. Our approach
to this problem rests on encoding each TW response as a
hybrid automaton with parametric uncertainty. We then apply
probabilistic reachability analysis on each automaton that
combines § decision procedure with statistical tests.

Probabilistic reachability analysis using SReach:

SReach [14] is a probabilistic bounded reachability ana-
lyzer for two classes of models of stochastic hybrid systems:
(nonlinear) hybrid automata with parametric uncertainty, and
probabilistic hybrid automata with additional randomness. It
takes a stochastic hybrid automaton H, reachability properties
P, a numerical error bound § € QT, an unrolling depth
k € N, and a chosen statistical testing method as inputs. It then
encodes uncertainties in the given stochastic hybrid automaton
‘H . using random variables, and samples them according to the
given distributions. For each sample, a corresponding interme-
diate HA is generated by replacing random variables with their
assigned values. Then, the J-complete analyzer dReach [22] is
utilized to analyze each intermediate HA M, together with
the desired precision ¢ and unfolding depth k. The analyzer
returns either unsat or §-sat for A;. This information is then
used by a chosen statistical testing procedure to decide whether
to stop or to repeat the procedure, and to return the estimated
probability.

SReach supports a number of hypothesis testing and statis-
tical estimation techniques (see [14] for details). All methods
produce answers that are correct up to a precision that can be
set arbitrarily by the user. SReach can answer two types of
questions:

o  With hypothesis testing methods, SReach can answer
qualitative questions, such as “Does the model satisfy
a given reachability property in & steps with probabil-
ity greater than a certain threshold?”

e  With statistical estimation techniques, SReach can
offer answers to quantitative problems. For instance,
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Fig. 4: Different tap withdrawal responses when, before the applying tap stimulation, the animal moves in forward direction.

“What is the probability that the model satisfies a
given reachability property in k steps?”

SReach can also handle additional types of interesting prob-
lems, including the model validation/falsification problem with
prior knowledge, the parameter synthesis problem, and the
sensitivity analysis, by encoding them as bounded reachability
problems.

Normalization of the Wicks et al. model

SReach internally uses dReach [23], which relies on nu-
merical computation. As the the values of the parameters in
the Wicks et al. model are in the order of 10~2 to 10~12, the
computation often suffers from numerical instability. To take
into account this issue, we normalize the Wicks et al. model
with respect to the capacitance, which is a common practice in
modeling biological systems [24]. The values of the parameter
in this normalized model are in the order of 10 to 103.

To normalize, we combine Eqgs.(1) to (4):

N
y V V gn;lp a
Vi= R: C C. ng]p(vj - Vz)
A )
j—VEQ Ci (3

Ci j=1 1+ exp (

—)
VRange

syn

leak _ _1 9o — gt syn _ ogn"
Now lettlflg g; = w9 =& 9 = & and
3tim
Ievt = the normalized system dynamics can be written
as:

Vi = ok (v, - +gf“p2ng“”V )

N syn
ni " (E; — Vi)
=1+ exp (ki)

VRanJe

+I(6)

Hybrid automaton for TW circuit My :

For the TW circuit, Wicks et al. model the tap stimulus as a
phasic current that is applied to sensory neurons (AVM, ALM
and PLM) simultaneously. The phasic current is, typically, a
square-wave signal with a fixed duration. Due to the piece-
wise continuous nature of this signal, we represent Wicks et al.
model as a hybrid automaton by dividing the dynamics into
stimulus and non-stimulus modes. Additionally, when a tap is
applied to the worm, it is assumed that the worm is operating
in a stable condition. To take this into account, we apply
the stimulation after a transition period. Assume that [0, 7;]
is the transition period, [r;,7¢] is the stimulation period and
[0, 75] is the total simulation duration. Fig. 5 shows the hybrid
automaton Mry, for the Wicks et al. model. The subscript
and j in the figure are used to denote the sensory neurons and
the interneurons, respectively. We add an additional variable 7
to support time-triggered jump from one mode to another.
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Fig. 5: The 3-mode hybrid automaton My, for the Wicks
et al. model

TW response as Hybrid Automaton, M:

In section 3, we enumerated all possible TW responses
and formalized them in terms of o; and -, the steady-state
voltage difference between AVB and AVA interneurons during
non-stimulus and stimulation period. Hence, to encode a TW
response ¢ as hybrid automaton M, we augment Ay by
adding two additional state variables o1 and o>. As these two
variables measure the steady-state voltage differences, which
are constant in time, the vector-fields for them are set to zero.
However, as shown in Fig. 6, both o1 and o5 are reset to
vAvB — VAv 4 during the jump from “Mode 1” to “Mode 2”
and “Mode 2” to “Mode 3”, respectively. This ensures the
correct values of o1 and o5 in “Mode 3”.

Goal: @3 A ¢

Fig. 6: The 3-mode hybrid automaton A, for response ¢ of
the TW circuit

Parameter Uncertainty

C. elegans nervous system has been used for the study of
fundamental problems in the function of neurons and neuronal
circuits for many years. Due to its small size, the technique
to record electrophysiological data, however, was simply not
developed during the time when Wicks et al. derived the
mathematical model for the TW circuit.

For this model, Wicks et al. extrapolated the electro-
physiological data from Ascaris, a larger nematode related
to C. elegans. Based on [25], they first assumed a standard
membrane properties of each neuron in the TW circuit, such
as, membrane capacitance, resistance etc., for a unit area. They
then estimated the area based on the process lengths and cell
diameter, measured using electron micrographs and branching
morphology [26], [2], [27].

However, the diameter of the cell varies from 0.2 to 1.0 ym
and the soma diameters of the process lengths, assuming the
worm length of 1 mm, vary between 2 to 10 pm [27].
As a result, the surface area greatly varies, which, in turns,
causes variability in membrane properties. Like the membrane

properties, the gap-junction and synaptic conductance varied
among the population of the worms [28]. Both variability
causes parameter uncertainty in the mathematical model of
the TW circuit.

Estimating probability of each TW response on sReach:

Due to parameter uncertainty, we consider each parameter
p of the Wicks et al. model as a random variable. As a result,
M, becomes a stochastic hybrid automaton. Now for each
response ¢, we formulate a probabilistic reachability problem
as follows:

Estimate the probability such that
“Mode 3" A ¢ is reachable in My (7)

We solve this problem on SReach.

V. RESULTS AND DISCUSSION

In this section, we solve problem 7 to estimate the proba-
bility of TW response patterns in various ablation groups. In
our analysis, we consider each parameter as a random variable
with both uniform and normal distribution.

As we discussed in Section 1V, the values of the param-
eters are determined based on the size of surface area of
neurons, gap-junctions and synapses. But these surface areas
vary among population. According to [28], the area of gap-
junction vary between 1 to 10 nem? and standard gap-junction
conductance per unit area (1 cm?) is 1 S (Siemens) [29]. We
use this information as the basis to consider 1 to 10 nS as
the biologically relevant range for gap-junction conductance
and g7 is chosen by dividing capacitance of the correspond-
ing neuron. However, as we could not find any biologically
relevant ranges for synaptic and leakage conductance from
the literature, we considered those parameters as constants
according to the Table 1 from [11].

We performed our analysis on the control and five ablation
groups. In each analysis, we consider Bayesian sequential
estimation with 0.05 as the estimation error bound, 0.95 as
the coverage probability, and a uniform prior ( « = 8 = 1).
For initial condition, we first simulated the Wicks et al. model
without applying any stimulation and then considered the
steady state values from simulation as the initial conditions.
We set the initial value of o and o5 to zero, stimulus current
as 100 pA/pF and € to 10~* (0.1 mV). For computation, we
used parallel version of SReach on a 32-core machine.

Table 1 shows the estimated probability of each TW
response for all six groups, where we considered ¢/ as a
uniform random variable in the given range described above. In
contrast, Table 2 shows the results where we considered them
as a normal random variables. For the random distribution, we
considered the values of g7“¥ chosen by Wicks et al. in [11] as
mean. We, however, chose the variance in such a way so that
the normal distribution cover 99% of the range of ¢/**. In all
cases, the predominant response in each group is highlighted
in bold on both tables.

The predominant responses that we determined from our
analysis for the four groups conform with the predominant



Group REV NR F-ACC F-DEC FWD B-ACC B-DEC
Pr RT (s) Pr RT (s) Pr RT (s) Pr RT (s) Pr RT (s) Pr RT (s) Pr RT (s)
Control 0.83 2343.87 0.039 252.58 | 0.015 26.37 0.121 897.47 0.015 26.37 0.015 26.37 0.015 26.37
PLM 0.83 1309.73 0.015 11.33 0.015 11.33 0.127 862.53 0.015 11.33 0.015 11.33 0.015 11.33
ALM-AVM | 0.015 9.57 0.015 9.57 0.689 1578.83 0.33 1442.56 | 0.015 9.57 0.015 9.57 0.015 9.57
ALM-DVA 0.414 1406.31 0.0303 41.04 0.015 15.70 0.547 1766.48 0.015 15.70 0.015 15.70 0.015 15.70
AVM-PVC 0.015 3.33 0.015 3.33 0.015 333 0.015 3.33 0.015 3.33 0.984 | 25521 0.015 3.33
AVM-PLM 0.03 72.02 0.015 16.49 0.015 16.49 0.97 419.39 0.015 16.49 0.015 16.49 0.015 16.49

TABLE I: Estimated probability and runtime for all response patterns by considering all g/*” as uniform random variables

responses that Wicks et al. obtained based on their ablation
experiments on actual worm in [10]. Note that Wicks et al. did
not differentiate the acceleration and deceleration responses
in both forward and backward directions. As a result, their
distributions on the TW responses have only three responses,
as opposed to the seven responses in our distributions. In
addition to these four groups, we performed analysis on two
new ablation groups: AVM,PLM- and AVM,PVC-.

By comparing Table 1 with Table 2, we notice that the
estimated probability of predominant response, computed by
considering the parameters as normal random variables, is
closer to the value obtained by Wicks et al. This indicates that
the parameters are more likely to follow normal distribution
over uniform distribution.

VI. RELATED WORK

Iyengar et al. [30] present a Pathway Logic (PL) model of
neural circuits in the marine mollusk Aplysia. Specifically, the
circuits they focus on are those involved in neural plasticity
and memory formation. PL systems do not use differential
equations, favoring qualitative symbolic models. They do not
argue that they can replace traditional ODE systems, but
rather that their qualitative insights can support the quantitative
analysis of such systems. Neurons are expressed in terms of
rewrite rules and data types.

Their simulations, unlike our reachability analysis, do not
provide exhaustive exploration of the state space. Additionally,
PL models are abstractions usually made in collaboration
between computer scientists and biologists. Our work meets
the biologists on their own terms, using the pre-existing ODE
systems developed from physiological experiments.

Tiwari and Talcott [31] build a discrete symbolic model of
the neural circuit Central Pattern Generator (CPG) in Aplysia.
The CPG governs rhythmic foregut motion as the mollusk
feeds. Working from a physiological (non-linear ODE) model,
they abstract to a discrete system and use the Symbolic
Analysis Laboratory (SAL) model checker to verify various
properties of this system. They cite the complexity of the
original model and the difficulty of parameter estimation as
motivation for their abstraction.

In [12], we performed reachability analysis based on
automatically computing discrepancy functions [13] on the
Wicks et al. model [11] to estimate key model parameters
for various TW responses. The technique, however, was not

scalable enough to explore the entire parameter space of the
model. In this work, on the other hand, we apply probabilistic
reachability analysis to explore the large parameter space
using SReach. Compared to methods that explore the entire
sample spaces of random variables, such as ProbReach [32],
SReach can handle complex systems with multiple random
variables with affordable performance and without sacrificing
the estimation accuracy. SReach has been successfully applied
to real-world biological models - an atrial fibrillation model,
a prostate cancer treatment model, and synthesized bacteria-
killing procedure model - and cyber-physical systems [14].

VII. CONCLUSIONS

We present a probabilistic reachability analysis of the
Wicks et al. model of the TW circuit in (C. elegans). In
particular, we perform bounded-time probabilistic reachability
analysis on this model to estimate the probability of various
TW responses. The Wicks et al. model has a number of
parameters, and we demonstrate that the various TW responses
and their probability of occurrence in a population of worms
can be viewed as a problem of parameter uncertainty.

Our approach to this problem rests on encoding each
TW response as a hybrid automaton with parametric uncer-
tainty. We then perform probabilistic reachability analysis on
these automata using a technique that combines a §-decision
procedure with statistical tests. The results we obtain are a
significant extension of those of Wicks et al., who equip their
model with fixed parameter values that reproduce a single
TW response. In contrast, our technique allow us to more
thoroughly explore the models parameter space using statistical
sampling theory, identifying in the process the distribution of
TW responses. We show that our technique can be used to
correctly estimate TW response-probabilities for the control
group as well as three of ablation groups that Wicks et al.
considered in wet-lab experiments. We also use our technique
to predict TW response behavior for two ablation groups not
previously considered by Wicks et al.

For future work, we intend to conduct ablation experiments
to validate the results we obtained using our technique for two
new groups. Furtheremore, we will employ our probabilistic
approach in order to define the parameter-space of a more
detailed conductance-based model of C. elegans neurons where
the calcium channels and pumps in each neuron are precisely
modeled; consequently, one can compare the state of the art
Ca®t imaging data with our results.



Group REV NR F-ACC F-DEC FWD B-ACC B-DEC
Pr RT (s) Pr RT (s) Pr RT (s) Pr RT (s) Pr RT (s) Pr RT (s) Pr RT (s)
Control 0.95 801.78 0.030 87.45 0.015 16.48 0.038 282.67 0.015 16.48 0.015 16.48 0.015 16.48
PLM 0.95 639.06 0.015 10.49 0.015 10.49 0.04 164.72 0.015 10.48 0.015 10.48 0.015 10.48
ALM-AVM | 0.015 8.57 0.015 8.57 0.861 973.60 | 0.158 728.97 0.015 8.57 0.015 8.57 0.015 8.57
ALM-DVA 0.433 1399.37 0.062 | 286.47 | 0.015 15.325 0.585 1518.54 | 0.015 16.48 0.015 16.48 0.015 16.48
AVM-PVC 0.015 333 0.015 3.33 0.015 3.33 0.015 3.33 0.015 333 0.984 | 25521 0.015 3.33
AVM-PLM 0.015 19.27 0.015 19.27 0.015 19.27 0.984 458.66 0.015 19.27 0.015 19.27 0.015 19.27

TABLE II: Estimated probability and runtime for all response patterns by considering all g7“” as normal random variables
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