Formal Modeling of Biological Systems

(Invited Paper)

Qinsi Wang
Computer Science Department
Carnegie Mellon University, USA
ginsiw @cs.cmu.edu

Abstract—As biomedical research advances into more com-
plicated systems, there is an increasing need to model and
analyze these systems to better understand them. For decades,
biologists have been using diagrammatic models to describe
and understand the mechanisms and dynamics behind their
experimental observations. Although these models are simple to
be built and understood, they can only offer a rather static picture
of the corresponding biological systems, and scalability is limited.
Thus, there is an increasing need to develop formalism into
more dynamic forms that can capture time-dependent processes,
together with increases in the models scale and complexity. In
this invited review paper, we argue that the formal modeling
formalisms can be applied fruitfully to biological systems, and
can be complementary to the traditional mathematical descriptive
modeling approaches used in systems biology. We also discuss one
example: a stochastic hybrid model of the effect of estrogen at
different levels in species’ population in a freshwater ecosystem.

I. INTRODUCTION

Systems biology studies biological components including
molecules, cells, organisms, species, and ecosystems. It aims
to better understand the properties of individual parts within
complex living systems as well as the dynamics of entire
systems. To achieve this, given quantitative measurements of
the behavior of groups of interacting elements, mathematical
and computational models are constructed to reproduce and
predict dynamical behaviors. For decades, graphic models
have been used to describe and understand the mechanisms
behind the experimental observations of biological systems.
Although these models are simple to be built and understood,
they can only offer a rather static picture of the corresponding
biological systems, and scalability is limited. Then, models
expressed mathematically (e.g. using differential equations)
have occupied the leading position, where they are simply
translated into computer programs simulating those models.
Along with the collaboration between biologists and com-
puter scientists becomes tighter, researchers have realized that
biological systems and (distributed) computer systems share
a lot of features. That is, similar to (distributed) computer
systems, biological systems consist of various components,
whose behaviors are partially decided by the communication
with each other. This led to an increasing interest for system
biologists and computer scientists in borrowing existing for-
mal specification and analysis techniques that were designed
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for computer systems and in developing biological domain-
specific methods, and thus to the success of application of
these techniques to biomedical systems.

As shown in Figure 1, with formal and executable models
and well-founded analysis methods for them, it offers an excel-
lent means to present knowledge about biological systems, and
to reason about these systems rigorously. Moreover, traditional
in-vivo and in-vitro experiments are usually expensive, and
need to take an awfully long time. While, the execution of
formal models, offering in silico evaluation of hypotheses,
only takes comparatively little time and effort. Especially,
when considering different experimental configurations, mul-
tiple wet-lab experiments need to be carried out repeatedly.
Whereas, for formal models, only trivial modifications on
the initial assignment of system variables and parameters are
required.

In the following, a non-exhaustive literature review with
regards to formal modeling formalisms that have been success-
fully applied to biological and biomedical systems is given.
We discuss the main ideas and important features of five
specification languages that have fallen on fertile ground in
systems biology. (See [8], [25], [45] for reviews of more
classes of formal models that have been used in systems
biology.) Furthermore, this review will take the further step of
demonstrating how to model the effect of estrogen at different
levels in species’ population in a freshwater ecosystem as a
stochastic hybrid system. We hope that this short review can
be an aid for both systems biologists and computer scientists to
gain a better understanding of related concepts and theory that
have been focused on currently in this area, so as to further
promote the collaboration.

II. FORMAL MODELING OF BIOLOGICAL SYSTEMS
A. Boolean Networks

Boolean networks (BNs), as one of the most widely used
formal models, were firstly introduced by Kauffman [42]
in 1969, where BNs were used to model gene regulatory
networks. A BN is a directed graph containing a set of
nodes. Nodes are defined as Boolean variables, whose values
represent the dynamic activity and behavior of the involved
elements (e.g., genes or proteins). At each time step, the next
value of a variable is determined by a Boolean function of its
regulators. The values of all variables form a global state to
be updated synchronously. In this way, the execution of a BN



Experimental Biology

il ‘

v
/k'
Experimental = Network
Design Identification

Formal Specification and Analysis Methods

Fig. 1: Experimental biology itself is an iterative process
of hypothesis-driven experimentation of a specific biological
system. We can boost this process by using formal executable
models, and formal analysis methods, such as model checking,
to provide interesting new hypotheses for biological experi-
mental design.

illuminates the causal and temporal relationships between the
involved elements.

The main advantage of this modeling language is that, even
with a strongly simplified view of biological networks, it can
still capture the network structure and dynamics, and offer bio-
logically meaningful predictions and insights. Also, using such
a high abstraction, it is possible to model interactions among
large numbers of elements and perform model validation and
model-based prediction. Besides being applied to analyze the
robustness and stability of genetic regulatory networks [4],
[22], [44], BNs have also been used to study cell signaling
networks and understand their impacts on distinct cell states
[30], [31], [34], [39]. Moreover, BNs can be inferred directly
from experimental time-series data [3], [23], [26], [52].

BNs use a coarse approximation where the status of each
modeled element as either active (on) or inactive (off) by
neglecting intermediate states. In real-word biological sys-
tems, some elements may have multiple states. The difference
between this binary assumption and biological reality led
researchers to suggest extensions of BNs, such as Qualitative
Networks (QNs) [53], Gene Regulatory Networks [48], and the
logical model considering the time delay mechanism THiIMED
[47]. In QNs, each variable can have one of a small discrete
number of values. Dependencies between variables become
algebraic functions instead of Boolean functions. Dynamically,
a state of the model corresponds to a valuation of variables
and changes in values of variables occur gradually based
on these algebraic functions. QNs have been shown to be a

suitable formalism to model some biological systems [11],
[19], [53]. For the logical model using THiMED, system
elements are modeled by multi-valued variables. The timing
details that capture relative delays between events are allowed,
and implemented by truth tables. Another type of extensions
of BNs copes with the inherent noise and the uncertainty in
biological processes, such as Boolean networks with noise
[2] and Probabilistic Boolean networks [54]. These model-
ing formalisms allow one to consider the uncertainty in the
knowledge of signaling networks as well as stochasticity in
biological systems.

B. Petri Nets

Petri nets [49] were created by Carl Adam Petri in 1962 to
describe chemical processes, and then were also intensively
employed in computer science to model and analyze concur-
rent and distributed systems. A Petri net is a graph with two
types of nodes - places and transitions, which are connected
by directed arcs. Places represent the resources of the system;
transitions indicates the events that can change the state of the
resources; and directed arcs, connecting places to transitions
and transitions to places, describe which places are pre and/or
post-conditions for which transitions. The data, in Petri nets,
are represented as so-called tokens. The state of the system
is represented by places holding tokens. Note that, one place
may hold multiple tokens. Given a start configuration of a Petri
net, which assigns tokens to each place, transitions change
the state of the system by moving tokens along edges. For
each transition, tokens are consumed from the input place
through the transition and then created in the output place(s). A
transition fires whenever it is enabled by the presence of some
tokens in one of the places directly connected to it. In a given
state of the system, there may be more than one transition
that can move a token, so that the execution of a Petri net is
non-deterministic.

Petri nets allow for concurrency and nondeterminism, and
provide a framework that supports both qualitative analy-
sis through the static structural topology of Petri nets, and
quantitative analysis via the time evolution of the token
distribution. Thus, this modeling language is more general
than BNs, and holds a good balance between modeling power
and analyzability. Petri nets are well-suited for modeling the
concurrent behavior of biochemical networks such as genetic
regulatory pathways. In detail, the places in a Petri net can
represent genes, protein species and complexes; transitions
represent reactions or transfer of a signal; directed arcs repre-
sent reaction substrates and products; and a transition firing
is execution of a reaction where substrates are consumed
and products are created. They have been used to describe
the concurrent behavior of biochemical networks, including
metabolic pathways and protein synthesis [16], [55].

Another good thing about Petri nets is that, there are several
successful extensions forming a very versatile framework
providing additional possibilities in modeling and analysis. For
instance, in timed Petri nets, transitions can be timed, which
allow for modeling the timing of the system as well. They



have been used to model and analyze signal transductions in
an apoptosis pathway [18]. In colored Petri nets, tokens with
different colors denote multiple possible values for each place,
and thus allow for distinct activation levels to be assigned to
resources. They have been used to analyze metabolic pathways
[28]. In stochastic Petri nets, probabilities have been added
to the different choices of the transitions to consider the
uncertainty of biomedical systems. They have been used to
analyze signaling pathways, where the number of molecules
of a given type is represented by the color of a place and
probabilities represent reaction rates [32], [36].

C. Rule-based Modeling

The combinatorial explosion, which emerges from the com-
plexity of multi-protein assemblies, poses a major barrier to the
development of detailed, mechanistic models of biological sys-
tems. Modeling approaches, such as differential equations, that
need manually enumerating all potential species and reactions
in a network are impractical. To alleviate the problem, rule-
based modeling languages, such as the BioNetGen language
(BNGL) [24] and Kappa [21] have been developed. To address
the combinatorial complexity in biochemical systems, the key
idea of the rule-based languages is to represent interacting
molecules as structured objects and to use pattern-based rules
to encode their interactions. So that, a rich yet concise
description of signaling proteins and their interactions can
be provided. In other words, rule-based modeling specifies
only those components of a biological macromolecule that
are directly involved in a biochemical transformation. Also,
the reaction rules are defined as transformations of classes of
species, avoiding the need for specifying one reaction per each
possible state of a species.

Due to the similarity to the chemical reaction representation
widely used in systems biology, rule-based languages have
harvested a lot of attention among biologists. It has been
applied in the modeling of different cell signaling pathways
and networks [9], [10], [13].

Considering that these rule-based languages were designed
for describing molecular level dynamics, one growing need is
to extend them to span multiple biological levels of organi-
zation. ML-Rules [46] is a multi-level rule-based language,
which can consider multiple biological levels by allowing
objects to be able to contain collections of other objects.
This embedding relationship can affect the behavior of both
container and contents, and allows users to describe both inter-
and intra-cellular processes. Another extension of the BNGL
to enable the formal specification of not only the signaling net-
work within a single cell, but also interactions among multiple
cells is proposed in [58]. Unlike ML-Rules using continuous
rate equations to capture the dynamics of intracellular reac-
tions, this multiscale language models intracellular dynamics
using BNs, which reduces the difficulty of estimating the
values of hundreds of unknown parameters often involved
in large models. This has been used to capture the intra-
and inter- cellular dynamics involved in the pancreatic cancer
microenvironment [58].

The other increasing need is to take the spatial informa-
tion into consideration when carrying out the cell biological
modeling. SRSim [33], as one spatial extension of the BNGL,
integrates the BNGL with a three-dimensional coarse-grained
simulation building upon the LAMMPS molecular dynamics
simulator [51]. It allows for the formulation of reaction net-
works, and offers the dynamic simulation as well. SRSim has
been used to model and analyze the human mitotic kinetochore
[40]. Another spatial extension of the BNGL is cBNGL [35],
in which structures and rules are associated with the concept of
compartments and membranes. That is, cBNGL distinguishes
between three-dimensional (compartment volume) and two-
dimensional (surface) compartments. ML-Space [12], as a
spatial variant of ML-Rules, considers compartmental dy-
namics, mesh-based approaches, and individuals moving in
the continuous space. In ML-Space, species can be defined
as individual particles that react due to collisions, or as a
population of species residing in a small area [41]. It has
been used to study the dynamics of lipid rafts and their role
in receptor co-localization.

D. Hybrid Systems

Hybrid systems [5] are formal models that combine contin-
uous and discrete dynamics in a piecewise manner. In detail,
the state space of a hybrid system is defined by a finite set of
discrete modes. In each mode, the system evolves continuously
obeying processes, generally ordinary differential equations
(ODEs) [20]. Transition conditions control the switch from
one mode to another, which can be followed by a ‘reset’ of
the involved continuous variables. In general, the temporal
dynamics of a hybrid system is piecewise continuous.

By using ODEs, one of the most powerful techniques in
modeling system dynamics, hybrid systems aim to bridge the
gap between mathematical models and computational models
by combining the two. The continuous part of hybrid systems,
which are captured by differential equations, bears the closest
relationship to the underlying biochemical rate laws, thus
can accurately model complex biological systems. While,
the discrete part of such models is the executable control
mechanism that drives a hybrid system.

Hybrid systems are particularly suitable to model biological
systems that exhibit clear switching characteristics over time
(that is, the same system variables need to be regulated by
different processes in distinct discrete states), such as the cell
cycle. They have been successfully used to describe biological
systems at distinct levels, including genetic regulatory net-
works [7], cell signaling pathways [29], the cell cycle control
[17], the cardiac cell [61], bacteria-killing procedures [59], and
human ventricular action potentials in tissue [14].

E. Stochastic Hybrid Models

Stochastic hybrid systems (SHSs) are a class of dynamical
systems that involve the interaction of discrete, continuous,
and stochastic dynamics. Due to the generality, SHSs have
been widely used in systems biology, such as modeling subtilin
production in bacillus subtilis [38], and personalized prostate



cancer treatment [60]. To describe stochastic dynamics, uncer-
tainties have been added to hybrid systems in various ways.
A wealth of models has been promoted over the last decade.

One way expresses random initial values and stochastic
dynamical coefficients using random variables, resulting in hy-
brid automata (HAs) with parametric uncertainty [60]. When
modeling real-world biological systems using hybrid models,
parametric uncertainty arises naturally. Although its cause
is multifaceted, two factors are critical. First, probabilistic
parameters are needed when the physics controlling the system
is known, but some parameters are either not known precisely,
are expected to vary because of individual differences, or
may change by the end of the system’s operational lifetime.
Second, system uncertainty may occur when the model is
constructed directly from experimental data. Due to imprecise
experimental measurements, the values of system parameters
may have ranges of variation with some associated likelihood
of occurrence.

Another class of models integrates deterministic flows with
probabilistic jumps. When state changes forced by contin-
uous dynamics involve discrete random events, we refer to
such systems as probabilistic hybrid automata (PHAs) [56].
PHAs extend HAs with discrete probability distributions.
More precisely, for discrete transitions in a model, instead
of making a purely (non)deterministic choice over the set
of currently enabled jumps, a PHA (non)deterministically
chooses among the set of recently enabled discrete probability
distributions, each of which is defined over a set of transitions.
Although randomness only influences the discrete dynamics
of the model, PHAs are still very useful and have interest-
ing practical applications [57]. One interesting variation of
PHAs [60] allows additional randomness for both transition
probabilities and resets of system variables. In other words,
in terms of the additional randomness for jump probabilities,
for the probabilities attached to probabilistic jumps from one
mode, instead of having a discrete distribution with predefined
constant probabilities, they can be expressed by equations
involving random variables whose distributions can be either
discrete or continuous. This extension is motivated by the
fact that some transition probabilities can vary due to factors
such as individual and environmental differences in real-world
systems. When it comes to the randomness of variable resets,
a system variable can be reset to a value obtained according to
a known discrete or continuous distribution, instead of being
assigned a fixed value. When continuous probabilistic events
are also involved, we call them stochastic hybrid automata
(SHAs) [27].

Other models replace deterministic flows with stochastic
ones, such as stochastic differential equations (SDEs) [6] and
stochastic hybrid programs (SHPs) [50], where the random
perturbation affects the dynamics continuously. When all such
ingredients have been covered, there are models such as the
general stochastic hybrid systems (GSHSs) [15], [37]. In the
next section, we will show how to construct a stochastic hybrid
model of the effect of estrogen at different levels in species’
population change in a fresh water ecosystem.

III. A STOCHASTIC HYBRID MODEL OF EFFECT OF
ESTROGEN IN SPECIES’ POPULATION IN ECOSYSTEM

Hormones can be potential sources of the environmental
pollution. For example, estrogen could cause feminization of
fish, which will lead to the population change of species in the
fresh water ecosystem. To understand how different estrogen
levels affect the ecosystem, based on the 2014 CMU iGem
team’s experiments [1], we propose a stochastic hybrid model
to depict the population change of algae, fish, and bird. Dis-
tinct modes are used to consider different levels of estrogen,
and within each mode, dynamics are captured by ordinary
differential equations (ODEs), partial differential equations
(PDEs), and stochastic differential equations (SDEs).

Our water ecosystem model follows a simple tropic pyramid
structure. The algae are the food source of the fish, which in
turn is the food source for the bird. The dynamics for the
population of algae X (t) is captured by an ODE as follows.

{ d)st(t) = X(t)(pl - 61Y(t) - dl) (1)

where,

e p1, as a constant, is the reproduction rate for algae;

e €1, as a constant, is the rate consumed by fish;

e di, as a constant, is the natural death rate for algae; and
e xg is the initial population of algae.

For the fish population, we consider three different types
respectively: female fish Y (t), male fish Y,,, (¢), and feminized
male fish Y,,27(¢). Instead of using ODEs, where all individ-
ual fish are treated as identical, PDEs are used to consider
differences between individual organisms, such as age-specific
fertility and death rates. The following PDEs, where the age
structure of fish has been taken into consideration, describe
population change of fish of different types. The dynamics for
the population of female fish Y(t) is defined as follows.

y(at) 4 OVile) — vy (q,1)(ds(a) + es Z(t) + oY (1)
L eaX()

Yf (0, t) = %pz faff':z:tz Ym (al, t)da1 faff;:l:tz Yf (ag,t)dGQ

Yy(a,0) = yso(a)

Yi(t) = J3'™* Yy(a,t)da

2
where,
e Gfmat, @S a constant, is the maturity age of fish;
e Gfmaz, a5 a constant, is the maximum age of fish;
e da(a) is the natural death rate for fish. This function is
defined as

0, a=20
d2(a) - d27 ac (Oa afmaa;)
17 a4 = G fmax

e €2, as a constant, is the rate consumed by bird;

e 0, as a constant, is the death rate caused by the over-
crowding;

e S1, as a constant, is the surviving rate due to food
consuming;



e po, as a constant, is contact rate between mature male
and female fish for the reproduction; and
e Yro(a) is the initial population and age structure of female
fish.
The dynamics for the population of male fish Y,,(t) is
defined as follows.

Pt 4 Pl = Y, <a t><d2< ) + e22< ) +ov ()
—51X(t)) = [ f(a)Ym(a,t)da

Y (0,1) = 5p2 [, Yo, (al, )day [} “f*"”Y t(az,t)das

Ym( ) ymO( )

Yot ) = foaf"“” Y, (a,t)da .

where, f(a) is the feminized rate for male fish. As the older
a fish is, the more the accumulated estrogen in its body is.
As the feminized rate is positively linear to the accumulated
estrogen amount in the body, we define f(a) = Ymo(a)
is the initial population and age structure of malfmfilsh

The dynamics for the population of feminized male fish
Yimaf(t) is defined as follows.

dY,,
Do) — y, o (1) (51X (8)

+ fo et f(a)Ym(a,
Yin2f(0) =0

—da(a) —eaZ(t) — oY (1))
t)da

“4)
Then, the total number of fish Y (¢) is the sum of three

distinct types:
Y () =Y(t) + Yo (t) + Yinas(t)

Last, considering the random entrance and exit of bird over
the given area, the following SDE is used to capture the
population dynamics of bird.

{ A2 — Z(t)(ps — d3 + s2Y () + o5V (1) Z(£)AW;
Z(O) = 20

®)

where,

e p3, as a constant, is the reproduction rate for bird;

e ds3, as a constant, is the natural death rate for bird;

e Sy, as a constant, is the surviving rate due to food

consuming;

e zo is the initial population of bird; and

e 05 is fluctuation rate.

If no estrogen is introduced into the environment, the
ecosystem is stable and the model simulates what is essentially
the predator-prey interaction. That is, initially there is a
relatively high amount of fish, and relatively low amounts
of bird and algae. This puts a strain on the fish population,
while simultaneously making it easy for the bird to find
prey due to the combination of a large food source and low
competition for that food source. Thus this leads to a dip in
the fish population and a peak in the bird population. The
dip in the fish population also leads to a peak in the algae
population, as the algae can grow without being consumed
as fast due to the lack of fish. This scenario puts a strain
on the bird population as there is now too much competition
for a smaller food source, while simultaneously making it

easy for the fish to find food due to the combination of a
large food source and low competition for that food source.
Thus the population is back to the initial starting conditions,
and the model continues to cycle through these scenarios
ad infinitum. When various amounts of estrogen have been
added, the estrogen leads to the feminization of male fish,
with higher concentrations of estrogen corresponding to an
increased likelihood of feminization. Feminized male fish
cannot reproduce, which leads to more frequent dips in the
fish population and can throw the entire ecosystem out of
the equilibrium as described above. Essentially our model
attempts to capture the long-term effects of estrogen, and
demonstrates how sensitive a freshwater ecosystem can be to
various concentrations of estrogen.

Our model involves rather complicated nonlinear integro-
partial differential equations, which, moreover, often have ac-
companying nonlinear integro-boundary conditions, and SDEs.
Such model equations are very difficult to analyze, not men-
tioning when hybrid dynamics are also involved. To be able
to handle the probabilistic reachability analysis of this model,
we are developing a platform by integrating numerical solving
algorithms into our analyzers of hybrid systems - dReach [43],
and of stochastic hybrid systems - SReach [60].

IV. CONCLUSION

Formal models offer system biologists a platform where
they can use computational modeling and analysis tools to
clarify and demystify complex systems. Models can be tested
and adapted inexpensively in silico providing new insights.
However, development of accurate and efficient modeling
methodologies and analysis techniques are still open chal-
lenges for biological and biochemical systems. One long-term
goal is that large-scale models should revolutionize biology
and medicine and enable design of new therapies. To achieve
this, general modeling and analysis frameworks will be needed
for predictive and comprehensive models, such as whole-cell
models, where various elements (e.g. genes, and proteins) and
types of interactions (e.g. transport, and regulation) should be
considered. Another goal is to automatically include useful and
existing results from existing literature, public databases, and
experimental data when building formal models for the biolog-
ical systems. This will be benefited from creating a framework
that will allow for creating and studying causal, explanatory
models of complicated biological systems in which interac-
tions have important causal effects. The modules included
in the framework should provide functionality necessary for
automation of information mining, information assembly and
explanation of biological systems.
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