CyberCardia Project: Modeling, Verification and Validation of Implantable Cardiac Devices

A Collaborative Project of the NSF Cyber-Physical Systems Frontier Program

Md. Ariful Islam, Hyunkyung Lim, Nicola Paoletti, Houssam Abbas, Zhihao Jiang, Jacek Cyranka, Rance Cleaveland, Sicun Gao, Edmund Clarke, Radu Grosu, Rahul Mangharam, Elizabeth Cherry, Flavio Fenton, Richard Gray, James Glimm, Shan Lin, **Qinsi Wang** and Scott Smolka

Carnegie Mellon University, FDA, University of Maryland, Georgia Tech, TU WIEN, Stony Brook University, and CyberCardia

Workshop on Formal Methods for Biological and Biomedical Systems, Shenzhen, China, Dec 18th, 2016

The Story of David ¹

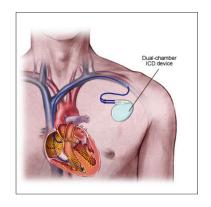
- Pacemaker implanted with baseline HR of 60 bpm
- Well-conditioned with avg HR of < 60 bpm
- Resulted in pacemaker sensing bradycardia and continuously pacing
- At 2-month checkup, cardiologist discovered mistake and realized that pacemaker had not been necessary
- His heart, however, had remodeled and pacemaker now required!

¹Actual patient story

Lessons Learned

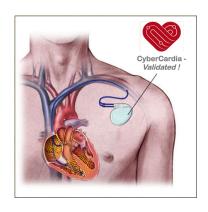
His case highlights the need for:

- Heart modeling and simulation from patient data to evaluate patient-specific conditions
- Automated selection of 8,000+ parameter combinations to guide cardiologists to choose most appropriate settings
- Heart model as part of patient electronic health records


CyberCardia Verification and Validation for Medical CPSs

Goal:

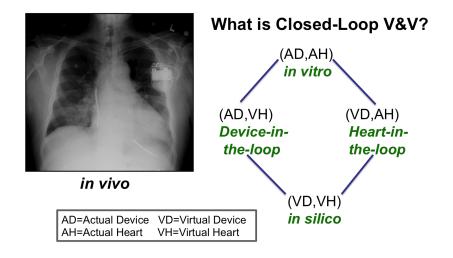
- Accurate & detailed cardiac models needed for patient-specific
- Formal analysis: closed-loop V&V


Current Practice:

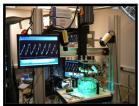
- Safety & efficacy of medical devices established largely by clinical trials
- Difficulties in programming devices with patient-specific settings

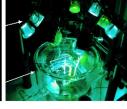
Our Vision

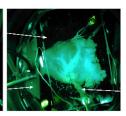
- Closed-loop CyberCardia-V&V of devices!
- With patient-specific settings
- Streamlined regulatory process
- Shorter Time-To-Market
- Fewer Device Recalls



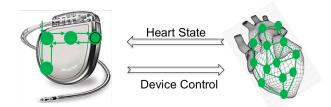
Closed-loop CyberCardia-V&V


- Virtualize (in silico) patient's heart and/or device
- Perform verification in each of 4 scenarios
- Each with its own attendant benefits!




Closed-loop CyberCardia-V&V (contd.)

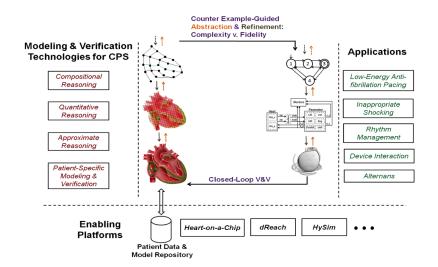
In Vitro: Actual Heart, Actual Device

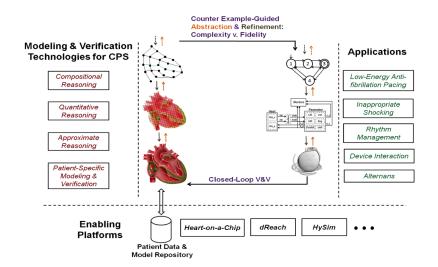


- Optical-mapping wet-lab setup (Flavio Fenton, GT) where:
- Surgically removed heart will be in the loop with actual device
- V&V possible in this setup by repeatedly running experiments

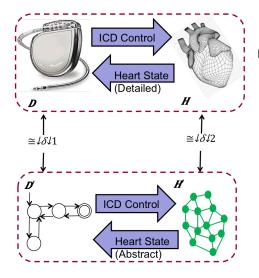
In Silico: Virtual Heart, Virtual Device

- Will develop detailed & accurate patient-specific heart & device models
- In this fully in silico setup, we can perform exhaustive or semi-exhaustive verification
- Compositional, approximate and quantitative reasoning will be essential here!


Device-in-the-Loop: Virtual Heart, Actual Device


Adds a CPS dimension!

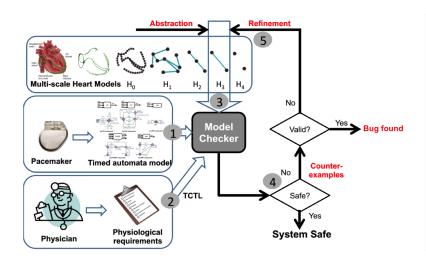
- Heart-on-a-Chip model, with interface to actual device.
 Pioneered by Co-PI Mangharam et al.
- Beyond hardware-in-the-loop testing via Statistical Model Checking verification


The CyberCardia Framework

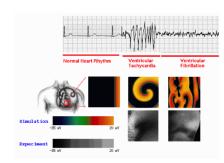
The CyberCardia Framework

Compositional & Approximate Verification

D×**H**: Difficult to verify


Detailed feedback-composed closed-loop model of device (D) & heart (H)

D'×**H**': Easier to verify


Abstract feedback-composed closed-loop model of device (D') & heart (H')

Compositional & Approximate Verification (contd.)

Reduced Model for Cardiac Action Potential

- Models are used to explain cardiac arrhythmia
- Existing models are complex and not amenable for formal verification
- Our collaborators developed a reduced model of cardiac action potential that can reproduces
 - Cellular excitability and its recovery
 - Beat-to-beat cellular alterations
 - Unstable spiral waves and spiral wave breakup

Electrocardiac Defibrillation Modeling

Goal: Study the effect of defibrillating shock on fibrillation

- Existing model (Chaste model by Oxford Univ.) cannot reproduce experimental results accurately
- We improve Chaste model by adding electroplating current (CyberCardiac model, SBU)
- CyberCardiac model can reproduce experimental results more accurately

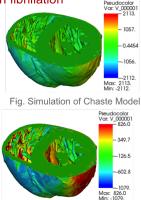
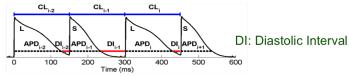
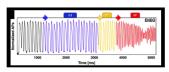


Fig. Simulation of CyberCardiac Model

Regular Expression for Irregular Rhythm

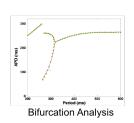

- Peak Detection: Implantable cardioverter-defibrillator (ICD) detects peaks in ECG
- Discriminator: Detected peaks are used to discriminate fatal and no-fatal rhythms
- Decision Error:
 - Over-sensing (too many false peaks detected)
 - under-sensing (too many true peaks missed)
 - Accounted for 10% decision error (Swerdlow et al.)

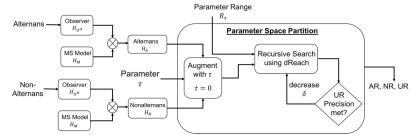
Our Contribution:


- · Wavelet-based characterization of peak
- Propose the use of Quantitative Regular Expression (QRE) to describe wavelet-based peak detection
- Formalize commercial peak detection algorithm (Medtronic) as a QRE
- · Study accuracy and sensitivity of QRE-based peak detection algorithm

Formal Verification of Alternans

 Cardiac alternans appears as a beat-to-beat long-short alternation of action potential duration (APD)




· Often leads to fibrillation

Bifurcation Analysis of Alternans

 Finding bifurcation points (BP) that split the parameter space into alternans and non-alternans regions

Ongoing Work

- Model-based clinical trial
- Personalized patient heart model
- Integration of research with education for cross-disciplinary projects

Rance Cleaveland UMD / Fraunhofer

Elizabeth Cherry RIT

Ed Clarke CMU

Arnab Ray Fraunhofer

Rick Gray

FDA

Flavio Fenton Gatech

James Glimm Stony Brook

Radu Grosu Stony Brook / Vienna

Sanjay Dixit Director of Cardiac Electrophysiology Philadelphia VA Hospital