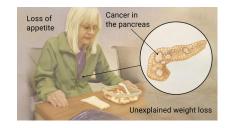
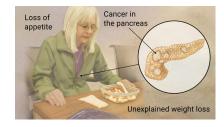
Formal Modeling and Analysis of Pancreatic Cancer Microenvironment

Qinsi Wang

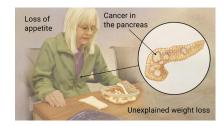

Computer Science Department, Carnegie Mellon University

Natasa Miskov-Zivanov, Bing Liu, James R. Faeder, Michael Lotze,
Edmund M. Clarke

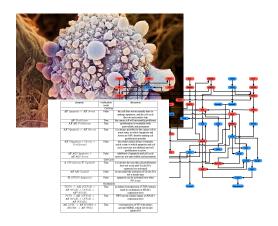
CMSB 2016


Pancreatic Cancer

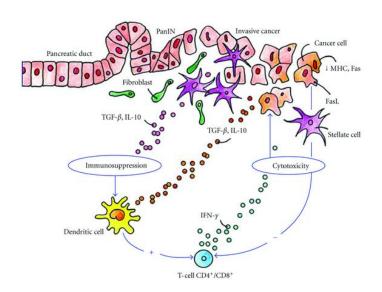
- the 7th most common cause of cancer deaths globally, and
- the **4th** in US


Pancreatic Cancer

- the **7th** most common cause of cancer deaths globally
- the 4th in US
- hard to diagnose in the early stages
 - no symptoms
 - the lack of biomarkers allowing early screening



Pancreatic Cancer


- the 7th most common cause of cancer deaths globally
- the 4th in US
- hard to diagnose in the early stages
 - no symptoms
 - the lack of biomarkers allowing early screening
- very poor prognosis

Studies on Pancreatic Cancer Cells

Pancreatic Cancer Microenvironment / Stroma

Pancreatic Cancer Cells and Stellate Cells

Pancreatic cancer cells

- ↑Proliferation
- ↑Migration/invasion
- ↑Metastasis
- ↑Stem cell niche

Activated pancreatic stellate cells

- ↑Proliferation
- ↑Fibrosis/ECM synthesis
- †Angiogenic factors, MMPs
- ↑Migration and metastasis

Motivation Contributions

 Study the interplay between PCCs and PSCs, and identify major pathways and molecules in PSCs

- Study the interplay between PCCs and PSCs, and Identify major pathways and molecules in PSCs
- Construct the first multicellular and multiscale model

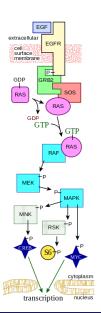
Motivation Contributions

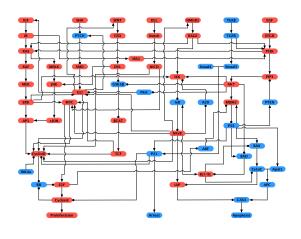
- Study the interplay between PCCs and PSCs, and Identify major pathways and molecules in PSCs
- Appropriate modeling formalism (multiple cells, cell populations, both cellular and molecular dynamics, ···)

 Construct the first multicellular and multiscale model

- Study the interplay between PCCs and PSCs, and Identify major pathways and molecules in PSCs
- Appropriate modeling formalism (multiple cells, cell populations, both cellular and molecular dynamics, · · ·)

- Construct the first multicellular and multiscale model
- Propose a multiscale hybrid rule-based modeling language


- Study the interplay between PCCs and PSCs, and Identify major pathways and molecules in PSCs
- Appropriate modeling formalism (multiple cells, cell populations, both cellular and molecular dynamics, · · ·)
- Validate our model, and then predict possible targets for PC treatments


- Construct the first multicellular and multiscale model
- Propose a multiscale hybrid rule-based modeling language

- Study the interplay between PCCs and PSCs, and Identify major pathways and molecules in PSCs
- Appropriate modeling formalism (multiple cells, cell populations, both cellular and molecular dynamics, · · ·)
- Validate our model, and then predict possible targets for PC treatments

- Construct the first multicellular and multiscale model
- Propose a multiscale hybrid rule-based modeling language
- Statistical model checking is used to carry out model validation and prediction

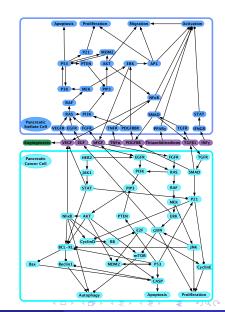
Cell Signaling Pathways

Our Pancreatic Cancer Microenvironment Model

Pancreatic cancer cell (PCCs):

Pathways regulating

- Proliferation,
- Apoptosis, and
- Autophagy.


Pancreatic stellate cell (PSCs):

Pathways regulating

- Proliferation,
- Apoptosis,
- Activation, and
- Migration.

Interactions between PCCs and PSCs: EGF, bFGF, VEGF, TGF β 1, and

PDGFBB

Biological Background - Pancreatic Cancer Cells

Cell Function	Promote (+) / Inhibit (-)	Pathway
	+	K-RAS mutation-induced RAS path-
Proliferation		way
Fromeration	+	HER2/neu mutation-induced EGFR
		pathway
	+	EGF-EGFR pathway
	+	bFGF pathway
	+	TGFeta 1 pathway
Apoptosis	-	K-RAS mutation-induced PI3K path-
		way
	-	HER2/neu mutation-induced PI3K
		pathway
Autophagy	-	Pathways upregulating mTOR
Autophagy	+	Overexpressed NF κ B and Beclin1

Biological Background - Pancreatic Stellate Cells

Cell Function	Promote (+)	Pathway			
	/ Inhibit (-)				
	+	PDGFBB pathway			
Activation	+	TGFeta 1 pathway			
	+	TNFlpha pathway			
	+	MAPK pathway upregulated by EGF,			
Migration		bFGF, and VEGF			
	+	PDGFBB regulated PI3K pathway			
	+	PDGFBB regulated ERK-AP1 path-			
		way			
Proliferation	+	ERK-AP1 pathway upregulated by			
Fromeration		growth factors			
	-	Pathways upregulating tumor sup-			
		pressers			
Apoptosis	+	MAPK pathway via P53			

Biological Background - Extracellular Molecules

Pancreatic Cancer Cells Autocrine and paracrine involving EGF
Autocrine and paracrine involving bFGF
Paracrine involving VEGF
Autocrine and paracrine involving TGF β 1
Paracrine involving PDGFBB

Pancreatic Stellate Cells

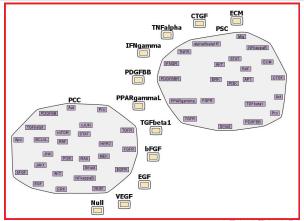
(Traditional) Rule-based Modeling (i.e. BioNetGen)

(Traditional) Rule-based Modeling (i.e. BioNetGen) aims at:

- Modeling reactions involving intracellular signaling molecules
- Describing dynamics continuously

(Traditional) Rule-based Modeling (i.e. BioNetGen) aims at:

- Modeling reactions involving intracellular signaling molecules
- Describing dynamics continuously

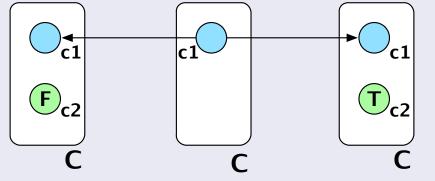


Multiscale Hybrid Rule-based Modeling can also:

- Describe intercellular interplay together with intracellular reactions
- In a hybrid way: continuously for intercellular, and discrete for intracellular

The basic building blocks

- Cells (with subunits as intracellular molecules), or
- Extracellular molecules (with no subunits)


The basic building blocks (Con.)

- Boolean values (T or F), easy to extend to discrete values
- Different biological meanings

Subunit	Т	F
cell function / secretion	being triggered	not being triggered
receptor	being bounded	being free
protein	high concentration	low concentration
	• • •	• • •

Patterns

- To identify a set of species that share a set of features
- Provides a rich yet concise description

Rules
Rule 1: Ligand-receptor binding
Rule 2: Mutated receptors form a heterodimer
Rule 3: Downstream regulation: Encoding Logical Functions as Rules
Rule 4: Cell functions
Rule 5: Secretion
Rule 6: Degradation of extracellular molecules
Rule 7: Mutation
Rule 8: Constantly over-expressed extracellular molecules
Rule 9: Human/treatment intervention

Rule 1: Ligand-receptor binding

$$Lig + Cell(Rec \sim F) \rightarrow Cell(Rec \sim T)$$
 brate

Rule 3: Downstream regulation: Encoding Logical Functions as Rules

Given a logical updating function $Mol_3^{(t+1)} = \neg Mol_1^{(t)} \times (Mol_2^{(t)} + Mol_3^{(t)})$ where " Mol_1 " is the inhibitor and " Mol_2 " is the activator of " Mol_3 ".

$$\mathit{Cell}(\mathit{Mol}_1 \sim \mathit{F}, \mathit{Mol}_2 \sim \mathit{T}, \mathit{Mol}_3 \sim \mathit{F})
ightarrow Cell(\mathit{Mol}_1 \sim \mathit{F}, \mathit{Mol}_2 \sim \mathit{T}, \mathit{Mol}_3 \sim \mathit{T}) \quad \mathit{trate}$$
 $\mathit{Cell}(\mathit{Mol}_1 \sim \mathit{T}, \mathit{Mol}_3 \sim \mathit{T})
ightarrow \mathit{Cell}(\mathit{Mol}_1 \sim \mathit{T}, \mathit{Mol}_3 \sim \mathit{F}) \quad \mathit{trate}$

Rule 7: Mutation

 $Cell(Mol \sim F) \rightarrow Cell(Mol \sim T)$ mrate

 $Cell(Mol \sim T) \rightarrow Cell(Mol \sim F)$ mrate

Rule 9: Human/treatment intervention

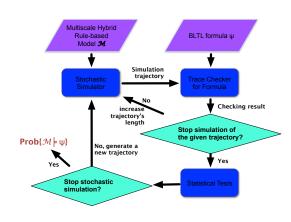
```
Cell(Mol \sim T) \rightarrow Cell(Mol \sim F) intrate

Cell(Mol \sim F) \rightarrow Cell(Mol \sim T) intrate

CancerEnv \rightarrow extraMol intrate

extraMol \rightarrow Null() intrate
```

Statistical Model Checking


Bounded Linear Temporal Logic (BLTL)

The syntax of BLTL is given by: $\psi ::= x \sim v |\neg \psi| \psi_1 \vee \psi_2 |\psi_1 U^t \psi_2$ Example BLTL formula: $\neg F^5 G^{10}(Ras = 1 \land P53 = 0)$

F: eventually, G: always, U: until

Statistical Model Checking to Estimate $Prob_{=?}(\mathcal{M} \models \psi)$

- State Space Exploration unavoidable for complex systems
- Easier to simulate a complex system than to build its transition relation
- Goal: Provide probabilistic guarantees using fewer simulations
- Method: Trace Checker
 + Statistical Testing
 Methods

Results - Three Scenarios

Estimated Prob	# Succ	# Sample	Time (s)	Note
Scena	rio I: mut	ated PCCs v	ith no trea	tments
0.4053	10585	26112	208.91	w.o. PSCs
0.9961	256	256	1.83	w. PSCs
0.1191	830	6976	49.69	w.o. PCCs
0.9961	256	256	1.75	w. PCCs
0.9961	256	256	5.21	-
0.9961	256	256	4.38	-
0.0004	0	2304	17.13	cetuximab and erlotinib
	10		68.67	gemcitabine
				nab-paclitaxel
0.8004	7753	9686	73.83	ruxolitinib
Scenario III: mut	ated PCC	s with block	ing out on	possible target(s)
0.0792	38363	484128	3727.99	w.o. inhibiting ERK in
				PSCs
0.9822	2201	2240	17.37	w. inhibiting ERK in
				PSCs
0.1979	3409	17232	136.39	w.o. inhibiting ERK in
				PSCs
0.9961	256	256	2.01	w. inhibiting ERK in
				PSCs
0.2029	2181	10752	92.57	w.o. inhibiting MDM2 in
0.0061	251	256	2.10	PSCs
0.9961	256	256	2.18	w. inhibiting MDM2 in PSCs
0.0004	0	2204	15.77	
0.0004	U	2304	15.77	w.o. inhibiting RAS in PCCs and ERK in PSCs
0.0061	256	256	2.15	w. inhibiting RAS in
0.9961	236	236	5.15	PCCs and ERK in PSCs
0.0707	1340	1376	11 08	w.o. inhibiting STAT in
0.5/9/	1.549	15/0	11.90	PCCs and NFκB in PSCs
0.1631	1476	9056	81.61	w. inhibiting STAT in
0.1051	1470	7030	01.01	PCCs and NFκB in PSCs
	Scenario III: mut Scenario III: mut Scenario III: mt	Scenario I: mut.	Scenario I: mutated PCCs w	Scenario I: mutated PCCs with no trea 0.4053 10585 26112 208.91 0.9961 256 256 1.83 0.1191 830 6976 49.69 0.9961 256 256 1.75 0.9961 256 256 5.21 0.9961 256 256 4.38 Scenario II: mutated PCCs with different exist 0.0004 0 2304 17.13 0.0012 10 9152 68.67 0.7810 8873 11360 114.25 0.8004 7753 9686 73.83 Scenario III: mutated PCCs with blocking out on 0.0792 38363 484128 3727.99 0.9822 2201 2240 17.37 0.1979 3409 17232 136.39 0.9961 256 256 2.01 0.2029 2181 10752 92.57 0.9961 256 256 2.18 0.0004 0 2304 15.77 0.9961

Results - Scenario I: with no treatments

Property 1: To estimate the probability that the population of PCCs will eventually reach and maintain in a high level.

$$Prob_{=?} \{ (PCCtot = 10) \land F^{1200} \ G^{100} \ (PCCtot > 200) \}$$

Estimated Prob	# Succ	# Sample	Time (s)	Note
0.4053	10585	26112	208.91	w.o. PSCs
0.9961	256	256	1.83	w. PSCs

Results - Scenario I: with no treatments

Property 2: To estimate the probability that the number of migrated PSCs will eventually reach and maintain in a high amount.

$$Prob_{=?} \{ (MigPSC = 0) \land F^{1200} \ G^{100} \ (MigPSC > 40) \}$$

Estimated Prob	# Succ	# Sample	Time (s)	Note
0.1191	830	6976	49.69	w.o. PCCs
0.9961	256	256	1.75	w. PCCs

Results - Scenario II: with existing treatments

Property 5: To estimate the probability that the population of PCCs will eventually drop to and maintain in a low amount.

$$Prob_{=?} \{ (PCCtot = 10) \land F^{1200} \ G^{400} \ (PCCtot < 100) \}$$

Estimated Prob	# Succ	# Sample	Time (s)	Note
0.0004	0	2304	17.13	cetuximab and erlotinib
0.0012	10	9152	68.67	gemcitabine
0.7810	8873	11360	114.25	nab-paclitaxel
0.8004	7753	9686	73.83	ruxolitinib

Targeting at ERK in PSCs

Property 6: To estimate the probability that the number of PSCs will eventually drop to and maintain in a low level.

$$Prob_{=?} \{ (PSCtot = 5) \land F^{1200} \ G^{400} \ (PSCtot < 30) \}$$

Property 7: To estimate the probability that the population of migrated PSCs will eventually stay in a low amount.

$$Prob_{=?} \{ (MigPSC = 0) \land F^{1200} \ G^{100} \ (MigPSC < 30) \}$$

Property	Estimated Prob	# Succ	# Sample	Time (s)	Note
6	0.0792	38363	484128	3727.99	not inhibit
	0.9822	2201	2240	17.37	inhibit
7	0.1979	3409	17232	136.39	not inhibit
	0.9961	256	256	2.01	inhibit

Property 8: To estimate the probability that the number of PSCs entering the proliferation phase will eventually be less than the number of PSCs starting the apoptosis programme and this situation will maintain. (Target at MDM2 in PSCs)

$$\textit{Prob}_{=?} \; \{\textit{F}^{1200} \; \textit{G}^{400} \; ((\textit{PSCPro} - \textit{PSCApop}) < 0)\}$$

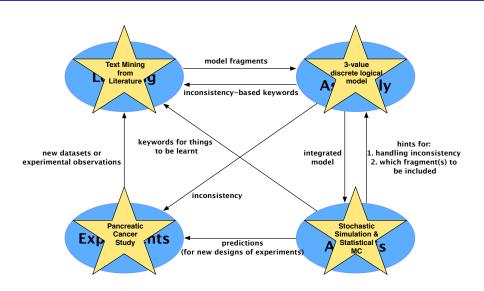
Estimated Prob	# Succ	# Sample	Time (s)	Note
0.2029	2181	10752	92.57	not inhibit
0.9961	256	256	2.18	inhibit

Property 9: To estimate the probability that the number of bFGF will eventually stay in such a low level. (RAS in PCCs and ERK in PSCs)

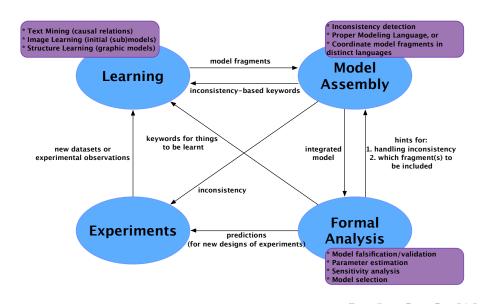
$Prob_{=?} \{F^{1200}\}$	G^{400}	(bFGF	< 100)}
--------------------------	-----------	-------	---------

Estimated Prob	# Succ	# Sample	Time (s)	Note
0.0004	0	2304	15.77	not inhibit
0.9961	256	256	3.15	inhibit

Property 10: To estimate the probability that the concentration of VEGF will eventually reach and keep in a high level. (STAT3/4 in PCCs and NF κ B in PSCs)


$$Prob_{=?} \{ F^{400} \ G^{100} \ (VEGF > 200) \}$$

Estimated Prob	# Succ	# Sample	Time (s)	Note
0.9797	1349	1376	11.98	not inhibit
0.1631	1476	9056	81.61	inhibit


Conclusion

- Construct a multicellular and multiscale model
- Propose a language for multiscale biological systems using continuous and discrete rules
- Apply stochastic simulation and StatMC to analyze system behaviors under diffident conditions
- Confirm experimental findings
- Gain insights on how existing treatments latching onto different targets can lead to distinct outcomes
- Predict potential new targets aiming at depleting PSCs and inhibiting the PC development

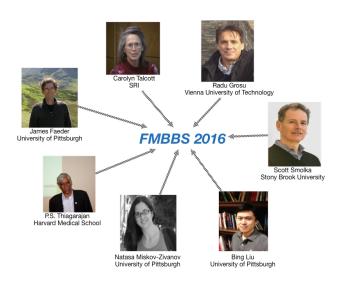
Future Work

Future Work

42 / 46

Thanks for your time! Questions?

FMBBS 2016



Home
Call for Papers
Organization
Accepted Papers
Invited Speakers
Program
Venue
Registration

FMBBS 2016

As biomedical research advances into more complicated systems, there is an increasing need to model and analyze these systems to better understand them. For decades, biologists have been using diagrammatic models to describe and understand the mechanisms and dynamics behind their experimental observations. Although these models are simple to build and understand, they offer only a rather static picture of the corresponding biological systems, and scalability is limited. Formal specification and analysis methods, such as model checking techniques, hold great promise in promoting further discovery and innovation for complicated biochemical systems. Models can be tested and adapted in the control of the c

FMBBS 2016

Questions?