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Abstract. We consider model checking of Qualitative Networks, a pop-
ular formalism for modeling signal transduction networks in biology. One
of the unique features of qualitative networks, due to them lacking initial
states, is that of “reducing reachability sets”. Simply put, a state that is
not visited after i steps will not be visited after i′ steps for every i′ > i.
We use this feature to create a compact representation of all the paths
of a qualitative network of a certain structure. Combining this compact
path representation with LTL model checking leads to significant accel-
eration in performance. In particular, for a recent model of Leukemia,
our approach works at least 5 times faster than the standard approach
and up to 100 times faster in some cases. Our approach enhances the
iterative hypothesis-driven experimentation process used by biologists,
enabling fast turn-around of executable biological models.

1 Introduction

Formal verification methods hold great promise for biological research. Over
the years, various efforts have repeatedly demonstrated that the use of formal
methods is beneficial for gaining new biological insights as well as directing new
experimental avenues. Experimental biology is an iterative process of hypothesis-
driven experimentation of a particular biological system of interest. The idea to
boost this process using formal executable models describing aspects of biological
behaviors, also known as Executable Biology, has proved to be successful in cell
biology and shed new light on cell signalling and cell-cell communication.

Biological systems can be modelled at different levels of abstraction. On a cel-
lular level, we usually consider the causality relations between molecular species
(e.g., genes, proteins) inside the cell (collectively called signal transduction net-
works), and between cells (intercellular signalling). These can be described by
various state-transition systems such as compositional state machines, Petri nets,
and process calculi.

One successful approach to the usage of abstraction in biology has been the
usage of Boolean networks [23]. Boolean networks call for abstracting the status
of each modeled substance as either active (on) or inactive (off). Although a



very high level abstraction, it has been found useful to gain better understand-
ing of certain biological systems [20, 22]. The appeal of this discrete approach
along with the shortcomings of the very aggressive abstraction, led researchers
to suggest various formalisms such as Qualitative Networks [21] and Gene Regu-
latory Networks [16] that allow to refine models when compared to the Boolean
approach. In these formalisms, every substance can have one of a small discrete
number of levels. Dependencies between substances become algebraic functions
instead of Boolean functions. Dynamically, a state of the model corresponds to
a valuation of each of the substances and changes in values of substances occur
gradually based on these algebraic functions. Qualitative networks and similar
formalisms (e.g., genetic regulatory networks [23]) have proven to be a suitable
formalism to model some biological systems [3, 20,21,23].

Here, we consider model checking of qualitative networks. One of the unique
features of qualitative networks is that they have no initial states. That is, the
set of initial states is the set of all states. Obviously, when searching for specific
executions or when trying to prove a certain property we may want to restrict
attention to certain initial states. However, the general lack of initial states
suggests a unique approach towards model checking. It follows that if some state
is not reachable by exactly n steps, for some n, it will not be reachable by exactly
n′ steps, for every n′ > n. These “decreasing” sets of reachable states allow to
create a more efficient symbolic representation of all the paths of a certain length.

However, this observation alone is not enough to create an efficient model
checking procedure. Indeed, accurately representing the set of reachable states at
a certain time amounts to the original problem of model checking (for reachabil-
ity), which does not scale. In order to address this we use an over-approximation
of the set of states that are reachable by exactly n steps. We represent the over-
approximation as a Cartesian product of the set of values that are reachable for
each variable at every time point. The computation of this over-approximation
never requires us to consider more than two adjacent states of the system. Thus,
it can be computed quite efficiently. Then, using this over-approximation we
create a much smaller encoding of the set of possible paths in the system.

Finally, an LTL formula is translated to an additional set of constraints on
the set of paths. Our encoding is based on temporal testers [17].

We test our implementation on many of the biological models developed using
Qualitative Networks. The experimental results show that there is significant
acceleration when considering the decreasing reachability property of qualitative
networks. In many examples, in particular larger and more complicated biological
models, this technique leads to considerable speedups. The technique scales well
with increase of size of models and with increase in length of paths sought for.

These results are especially encouraging given the methodology biologists
have been using when employing our tools [2]. Typically, models are constructed
and then compared with experimental results. The process of model develop-
ment is a highly iterative process involving trial and error where the biologist
compares a current approach with experimental results and refines the model
until it matches current experimental knowledge. In this iterative process it is
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important to give fast answers to queries of the biologist. We hope that with the
speed ups afforded by this new technique, model checking could be incorporated
into the routine methodology of experimental biologists using our tools.

1.1 Related work

Over the last decade, the usage of model checking has proven to be extremely
useful for the analysis of discrete biological models (e.g., [4,5,9,12,13,21]), leading
to numerous new biological findings. This is part of a general “trend” to adopt
(and adapt) approaches from formal verification and formal methods for usage
in biological modeling [1, 11,12,14].

Analysis of Boolean Networks and Qualitative Networks has been done either
manually or with ad-hoc techniques. The main form of analysis applied is that
of stability. That is, identifying in which states the system can remain even after
very long executions. In particular, if all states of the system (or most of them)
lead to the same loop and if that loop is small (in particular if it consists of
one state) then the network is more “stable”. Traditionally, analysis was done
by manually inspecting the graphs of configurations that the system gives rise
to [10,15,19].

Obviously, this approach severely limits the size of systems that can be an-
alyzed. As qualitative networks define finite-state systems, the technology to
support model checking through existing model checkers is widely available. Pre-
vious attempts to use standard model checking tools and techniques on these
types of biological models have proven unsatisfactory [8]. Both SAT-based and
BDD-based techniques could not scale to handle large models.

In previous work (e.g. [21], [8]) custom techniques have been developed for
reasoning about the final states reached by biological models. The technique
in [8] is related to our results as it uses a similar abstraction domain to reason
about sets of states of a Qualitative Network. However, the approach in [8] is
specifically tailored for stabilization and it was not clear how to apply it to model
checking (or path representation). It is also more aggressive than the approach
advocated here and scales to larger models.

In [18], the techniques in [8] are used for reasoning about hardware designs.
They show how to use these techniques to handle a restricted subset of LTL.

1.2 Structure of the paper

The paper is structured as follows. In Section 2 we introduce qualitative networks
and their usage through an example. In Section 3 we give the formal background
and fix notations. Then, in Section 4 we explain the decreasing reachability con-
cept and the abstraction that we use with it. We also include a brief explanation
of the types of paths we are looking for. We then give some experimental results
(Section 5). We conclude in Section 6.
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Fig. 1. A pictorial view of part of a model describing aspects of cell-fate determination
during C. elegans vulval development [12]. The image shows two cells having the “same
program”. Neighboring cells and connections between cells are not shown.

2 Qualitative Networks Example

We start with an example giving some introduction to Qualitative Networks and
the usage of LTL model checking in this context.

Figure 1 shows a model representing aspects of cell-fate determination during
C. elegans vulval development [12]. The part shown in the figure includes three
cells. Each cell in the model represents a vulval precursor cell and the elements
inside it represent proteins whose level of activity influences the decision of the
cell as to which part of the vulva the descendants of the cell should form. All
cells execute the same program and it is the communication between the cells
themselves as well as communication between the cells and additional parts of
the model (i.e., external signals) that determine a different fate for each of the
cells. Understanding cell-fate determination is crucial for our understanding of
normal development processes as well as occasions where these go wrong such
as disease and cancer. The pictorial view gives rise to a formal model expressed
as a qualitative network [21]. Formal definitions are in the next section.

Each of the cells in the model includes executing components, for example
LET-60, that correspond to a single variable. Each variable v holds a value,
which is a number in {0,1, . . . ,Nv}, where Nv is the granularity of the variable.
Specifically, in Figure 1 all variables range over {0,1,2}. A target function, Tv,
defined over the values of variables affecting v (i.e., having incoming arrows into
v), determines how v is updated: if v < Tv and v < Nv then v′ = v + 1, if v > Tv
and v > 0 then v′ = v − 1, else v does not change. In a qualitative network all
variables are updated synchronously in parallel.
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Intuitively, the update function of each variable is designed such that the
value of the variable follows its target function, which depends on other vari-
ables. In the biological setting, the typical target of a variable, v, combines the
positive influence of variables w1,w2, . . .ws with the negative influence of vari-
ables ws+1,ws+2, . . .ws+r:

Tv(w1,w2, . . .ws+r) = max(0, ⌊
1

s

s

∑
k=1

wk −
1

r

r

∑
k=1

ws+k +
1

2
⌋)

Graphically, this is often represented as an influence graph withx▸ edges between
each of w1,w2, . . . ,ws and v and x◾ edges between each of ws+1,ws+2, . . . ,ws+r

and v. More complicated target functions can be defined using algebraic expres-
sions over {w1, . . . ,ws+r}. We refer the reader to [2, 3, 20, 21] for further details
about other modeling options.

Specifically, in the model above, the target of lst is:

Tlst =min(2 − signalact,1) ∗ lin-12

This models activation by lin-12 and inhibition by signalact. However, inhi-
bition occurs only when signalact is at its maximal level (2). When inhibition
is not maximal the target follows the value of lin-12. The target of SEM-5 is:

TSEM-5 =max(0,2 − ((2 − signalact) ∗ (max(lst − 1,0) + 1)))

This function means that lst inhibits SEM-5 and signalact activates it. How-
ever, activation takes precedence: inhibition takes effect only in case that activa-
tion is not at its maximum value (2), and only when inhibition is at its maximum
value (2). Otherwise, the target follows the value of its activator (signalact).

Models are analyzed to ensure that they reproduce behavior that is observed
in experiments. A mismatch between the model and experimental observations
signifies that something is wrong with our understanding of the system. In such
a case, further analysis is required in order to understand whether and how
the model needs to be changed. Models are usually analyzed by simulating them
and following the behavior of components. A special property of interest in these
types of models is that of stability : there is a unique state that has a self loop
and all executions lead to that state [8, 21]. When a model does stabilize it is
interesting to check the value of variables in the stabilization point. In addition,
regardless of whether the model is stabilizing or not, model checking is used to
prove properties of the model or to search for interesting executions. For the
model in Figure 1 the following properties, e.g., are of interest.

– Do there exist executions leading to adjacent primary fates in which increase
of LS happens after down-regulation of lin-12?
This property is translated to an LTL formula of the following format:

θ ∧ FGfi,j ∧ (¬diUli) ∧ (¬djUli),

where θ is some condition on initial states, fi,j is the property characterizing
the states in which VPCs i and j are both in primary fate, di is the property
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that lin-12 is low in VPC i, li is the property that di is high in VPC i, and
dj and lj are similar for VPC j. This property is run in positive mode, i.e.,
we are searching for execution that satisfies this property.

– Is it true that for runs starting from a given set of states the sequence of
occurrences leading to fate execution follows the pattern: MPK-1 increases
to high level then lin-12 is down-regulated, and then LS is activated.
This property is translated to an LTL formula of the following format:

θ Ô⇒ F (mi ∧XF (li ∧XFdi)),

where θ is some condition on initial states, mi is the property characterizing
states in which VPC i has a high level of MPK-1, li is the property char-
acterizing states in which VPC i has a low level of lin-12, and di is the
property characterizing states in which VPC i has a high level of LS. This
property is run in negative (model checking) mode, i.e., we are searching for
executions falsifying this property and expecting the search to fail.

3 Formal Background

We formally introduce the Qualitative Networks (QN for short) framework and
recall the definition of linear temporal logic (LTL for short).

Following [21], a qualitative network (QN), Q(V,T,N), of granularity N + 1
consists of variables: V = (v1, v2 . . . vn).

5 A state of the system is a finite map
s ∶ V → {0,1, . . .N}. Each variable vi ∈ V has a target function Ti ∈ T associ-
ated with it: Ti∶ {0,1, . . .N}n → {0,1, . . .N}. Qualitative networks update the
variables using synchronous parallelism.

Target functions in qualitative networks direct the execution of the network:
from state s = (d1, d2 . . . dn), the next state s′ = (d′1, d

′

2 . . . d
′

n) is computed by:

d′i =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

di + 1 di < Ti(s) and di < N,
di − 1 di > Ti(s) and di > 0,
di otherwise

(1)

A target function of a variable v is typically a simple algebraic function, such
as sum, over several other variables w1,w2 . . .wm (see, e.g., Section 2). We often
say that v depends on w1,w2 . . .wm or that w1,w2 . . .wm are inputs of v. In the
following, we use the term network to refer to a qualitative network.

A QN Q(V,T,N) defines a state space Σ = {s ∶ V → {0,1, . . .N}} and a
transition function f ∶ Σ → Σ, where f(s) = s′ such that for every v ∈ V we have
s′(v) depends on Tv(s) as in Equation (1). For a state s ∈ Σ we denote by s(v)
also by sv. In particular, fv(s) = f(s)(v) is the value of v in f(s). We say that
a state s is recurring if it is possible to get back to s after a finite number of
applications of f . That is, if for some i > 0 we have f i(s) = s. As the state space

5 For simplicity, we assume that all variables have the same range {0, . . . ,N}. The
extension to individual ranges is not complicated. Our implementation supports
individual ranges for variables.
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of a qualitative network is finite, the set of recurring states is never empty. We
say that a network is stabilizing if there exists a unique recurring state s. That
is, there is a unique state s such that f(s) = s, and for every other state s′ and
every i > 0 we have f i(s′) ≠ s′. Intuitively, this means that starting from an
arbitrary state, we always end up in a fixpoint and always the same one. A run
of a QN Q(V,T,N) is an infinite sequence r = s0, s1, . . . such that for every i ≥ 0
we have si ∈ Σ and si+1 = f(si).

We define linear temporal logic (LTL) over runs of qualitative networks as
follows. For every variable v ∈ V and every value n ∈ {0,1, . . .N}, we define an
atomic proposition v & n, where & ∈ {>,≥,≤,<}. Let AP denote the set of all
atomic propositions (for a network Q). The set of LTL formulas is:

ϕ ∶∶= AP ∣ ϕ ∨ ϕ ∣ ¬ϕ ∣ Xϕ ∣ ϕUϕ

As usual, we introduce ∧, →, F , and G, as syntactic sugar.
An LTL formula ϕ is satisfied over a run r = s0, s1, . . . in location i, denoted

r, i ⊧ ϕ according to the following:

– For ϕ = v & n ∈ AP we have r, i ⊧ ϕ if si(v) & n.
– For ϕ = ¬ψ we have r, i ⊧ ϕ if it is not the case that r, i ⊧ ψ.
– For ϕ = ψ1 ∨ ψ2 we have r, i ⊧ ψ1 ∨ ψ2 if either r, i ⊧ ψ1 or r, i ⊧ ψ2.
– For ϕ =Xψ we have r, i ⊧ ϕ if r, i + 1 ⊧ ψ.
– For ϕ = ψ1Uψ2 we have r, i ⊧ ϕ if there is j ≥ i such that r, j ⊧ ψ2 and for

every i ≤ k < j we have r, k ⊧ ψ1.

We say that a run r satisfies an LTL formula ϕ, denoted r ⊧ ϕ if r,0 ⊧ ϕ. Given
a Qualitative Network Q, we say that Q satisfies an LTL formula ϕ, denoted
Q ⊧ ϕ, if for every run r of Q we have r ⊧ ϕ. In case that Q /⊧ ϕ a counter
example is a run r such that r /⊧ ϕ.

We use bounded model checking [7] for checking whether a qualitative net-
work satisfies a given LTL formula ϕ. Intuitively, we search for a run of a cer-
tain structure (and length) that does not satisfy the formula by constructing a
Boolean formula whose satisfiability corresponds to such a run. Searching for
a counter example of length l means that we (1) create Boolean variables that
represent the state of the system in l different time points, (2) add constraints
that enforce that the transition of the qualitative network holds between every
two consecutive time points, (3) add constraints that enforce that the transition
of the qualitative network holds between the state at time l − 1 (last state) and
some previous state (i.e., that the sequence of states ends in a loop), and (4)
add Boolean variables and constraints that enforce satisfaction of the (negation
of) the temporal property.

In order to create a Boolean encoding of the LTL formula we use a variant of
the temporal testers approach in [17]. Specifically, for every temporal subformula
(and every time point in the trace) we add a Boolean variable that tracks the
truth value of the subformula at that time. The truth value of these variables are
connected to the truth values of propositions (encoded through the state of the
model) and truth values of other subformulas. In addition, we add constraints
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Concrete Decreasing Reachability

1 Σ0 = Σ;
2 Σ−1 = ∅;
3 j ∶=0;
4 while (Σj−1 ≠ Σj) {

5 Σj+1 = Σj ∖ {s
′
∈ Σj ∣ ∀s ∈ Σj .s

′
≠ f(s)};

6 j++;
7 }
8 return Σ0, . . . ,Σj−1;

Fig. 2. Computing decreasing reachability sets.

that enforce satisfaction of eventualities in the loop. In order to search for a
trace that satisfies a certain LTL formula we add the encoding of the formula
to the trace. Satisfiability then provides a run satisfying the formula. To prove
that all runs up of a certain length satisfy a formula, we add the encoding of the
negation of the formula to the trace. Unsatisfiability then provides a proof that
no run (of the given length) satisfies the formula.

4 Decreasing Reachability Sets

A notable difference between QNs and “normal” transition systems is that QNs
do not specify initial states. For example, for the classical stability analysis all
states are considered as initial states. It follows that if a state s of a QN is not
reachable after i steps, it is not reachable after i′ steps for every i′ > i. Thus,
there is a decreasing sequence of sets Σ0 ⊇ Σ1 ⊇ ⋯ ⊇ Σl such that searching for
runs of the network can be restricted to the set of runs of the form Σ0 ⋅Σ1⋯(Σl)

ω.
Here we show how to take advantage of this fact in constructing a more scalable
model checking algorithm for qualitative networks.

Consider a Qualitative Network Q(V,T,N) with set of states Σ ∶ V →

{0, . . . ,N}. We say that a state s ∈ Σ is reachable by exactly i steps if there
is some run r = s0, s1, . . . such that s = si. Dually, we say that s is not reachable
by exactly i steps if for every run r = s0, s1, . . . we have si ≠ s.

Lemma 1. If a state s is not reachable by exactly i steps then it is not reachable
by exactly i′ steps for every i′ > i.

The algorithm in Figure 2 computes a decreasing sequence Σ0 ⊃ Σ1 ⊃ ⋯ ⊃

Σj−1 such that all states that are reachable by exactly i steps are in Σi if i < j
and in Σj−1 if i ≥ j. We note that the definition of Σj+1 in line 5 is equivalent to
the standard Σj+1 = f(Σj). However, we choose to write it as in the algorithm
above in order to stress that only states in Σj are candidates for inclusion in
Σj+1. Given the sets Σ0, . . . ,Σj−1 every run r = s0, s1, . . . of Q satisfies si ∈ Σi

for i < j and si ∈ Σj−1 for i ≥ j. In particular, if Q /⊧ ϕ for some LTL formula
ϕ then the run witnessing the unsatisfaction of ϕ can be searched for in this
smaller space of runs. Unfortunately, the algorithm in Figure 2 is not feasible.
Indeed, it amounts to computing the exact reachability sets of the QN Q, which
does not scale well [8].
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Abstract Decreasing Reachability

1 ∀vi ∈ V . Di,0 ∶={0,1, . . .N};
2 ∀vi ∈ V . Di,−1 ∶=∅;
3 j ∶=0;
4 while (∃vi ∈ V . Di,j ≠Di,j−1) {

5 foreach (vi ∈ V ) {
6 Di,j+1 ∶=∅;
7 foreach (d ∈Di,j){

8 if (∃(d1, . . . , dm) ∈D1,j ×⋯ ×Dm,j . fv(d1, . . . , dm) = d){
9 Di,j+1 ∶=Di,j+1 ∪ {d};
10 }

11 }

12 }

13 j++;
14 }
15 return ∀vi ∈ V . ∀j′ ≤ j . Di,j′ ;

Fig. 3. Over-approximating decreasing reachability sets.

In order to effectively use Lemma 1 we combine it with over-approximation,
which leads to a scalable algorithm. Specifically, instead of considering the set
Σk of states reachable at step k, we identify for every variable vi ∈ V the domain
Di,k of the set of values possible at time k for variable vi. Just like the general
set of states, when we consider the possible values of variable vi we get that
Di,0 ⊇ Di,1 ⊇ ⋯ ⊇ Di,l. The advantage is that the sets Di,k for all vi ∈ V and
k > 0 can be constructed by induction by considering only the knowledge on
previous ranges and the target function of one variable.

Consider the algorithm in Figure 3. For each variable, it initializes the set
of possible values at time 0 as the set of all values. Then, based on the possible
values at time j it computes the possible values at time j+1. The actual check can
be either implemented explicitly if the number of inputs of all target functions
is small (as in most cases) or symbolically (see [6]). Considering only variables
(and values) that are required to decide the possible values of variable vi at time
j makes the problem much smaller than the general reachability problem. Notice
that, again, only values that are possible at time j need be considered at time
j+1. That is, Di,j+1 starts as empty (line 6) and only values from Di,j are added
to it (lines 7–10). As before, Di,j+1 is the projection of f(D1,j × . . . ×Dm,j) on
vi. The notation used in the algorithm above stresses that only states in Di,j

are candidates for inclusion in Di,j+1.
The algorithm produces very compact information that enables to follow with

a search for runs of the QN. Namely, for every variable vi and for every time
point 0 ≤ k < j we have a decreasing sequence of domains

Di,0 ⊇Di,1 ⊇ ⋯ ⊇Di,k.

Consider a Qualitative Network Q(V,T,N), where V = {v1, . . . , vn} and a
run r = s0, s1, . . .. As before, every run r = s0, s1, . . . satisfies that for every i and
for every t we have st(vi) ∈Di,t for t < j and st(vi) ∈Di,j−1 for t ≥ j.
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We look for paths that are in the form of a lasso, as we explain below. We
say that r is a loop of length l if for some 0 < k ≤ l and for all m ≥ 0 we have
sl+m = sl+m−k. That is, the run r is obtained by considering a prefix of length
l−k of states and then a loop of k states that repeats forever. A search for a loop
of length l that satisfies an LTL formula ϕ can be encoded as a bounded model
checking query as follows. We encode the existence of l states s0, . . . , sl−1. We use
the decreasing reachability sets Di,t to force state st to be in D0,t×⋯×Dn,t. This
leads to a smaller encoding of the states s0, . . . , sl−1 and to smaller search space.
We add constraints that enforce that for every 0 ≤ t < l − 1 we have st+1 = f(st).
Furthermore, we encode the existence of a time l−k such that sl−k = f(sl−1). We
then search for a loop of length l that satisfies ϕ. It is well known that if there
is a run of Q that satisfies ϕ then there is some l and a loop of length l that
satisfies ϕ. We note that sometimes there is a mismatch between the length of
loop sought for and length of sequence of sets (j) produced by the algorithm in
Figure 3. Suppose that the algorithm returns the sets Di,t for vi ∈ V and 0 ≤ t < j.
If l > j, we use the sets Di,j−1 to “pad” the sequence. Thus, states sj , . . . , sl−1
will also be sought in ΠiDi,j−1. If l < j, we use the sets Di,0, . . . ,Di,l−2,Di,j−1 for
vi ∈ V . Thus, only the last state sl−1 is ensured to be in our “best” approximation

ΠiDi,j−1. A detailed explanation of how we encode the decreasing reachability
sets as a Boolean satisfiability problem is given in [6].

5 Experimental Results

We implemented this technique to work on models defined through our tool
BMA [2]. Here, we present experimental results of running our implementation
on a set of benchmark problems. We collected a total of 22 benchmark problems
from various sources (skin cells differentiation models from [8,21], diabetes mod-
els from [3], models of cell fate determination during C. elegans vulval develop-
ment, a Drosophila embryo development model from [20], Leukemia models con-
structed by ourselves, and a few additional examples constructed by ourselves).
The number of variables in the models and the maximal range of variables is
reported in Table 1.

Our experiments compare two encodings. First, the encoding explained in
Section 4, referred to as opt (for optimized). Second, the encoding that considers
l states s0, . . . , sl where st(vi) ∈ {0, . . . ,N} for every t and every i. That is, in
terms of the explanation in Section 4 for every variable vi and every time point
0 ≤ t ≤ l we consider the set Di,t = {0, . . . ,N}. This encoding is referred to
as näıve. In both cases we use the same encoding to a Boolean satisfiability
problem. Further details about the exact encoding can be found in [6].

We performed two kinds of experiments. First, we search for loops of length
10, 20, ⋯, 50 on all the models for the optimized and näıve encodings. Second, we
search for loops that satisfy a certain LTL property (either as a counter example
to model checking or as an example run satisfying a given property). Again, this
is performed for both the optimized and the näıve encodings. LTL properties
are considered only for four biological models. The properties were suggested
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Model name ♯Vars Range Model name ♯Vars Range

2var unstable 2 0..1 Bcr-Abl 57 0..2
Bcr-AblNoFeedbacks 54 0..2 BooleanLoop 2 0..1
NoLoopFound 5 0..4 Skin1D TF 0 75 0..4
Skin1D TF 1 75 0..4 Skin1D 75 0..4
Skin2D 3cells 2layers 0 90 0..4 Skin2D 3cells 2layers 1 90 0..4
Skin2D 3cells 2layers 2 90 0..4 Skin2D 5X2 TF 198 0..4
Skin2D 5X2 198 0..4 SmallTestCase 3 0..4
SSkin1D 0 30 0..4 SSkin1D TF 1 31 0..4
SSkin1D 30 0..4 SSkin2D 3cells 2layers 40 0..4
VerySmallTestCase 2 0..4 VPC lin15ko 85 0..2
VPC Non stabilizing 33 0..2 VPC stabilizing 43 0..2

Table 1. Number of variables in models and their ranges.

by our collaborators as interesting properties to check for these models. For
both experiments, we report separately on the global time and the time spent in
the SAT solver. All experiments were run on an Intel Xeon machine with CPU
X7560@2.27GHz running Windows Server 2008 R2 Enterprise.

In Tables 2 and 3 we include experimental results for the search for loops.
We compare the global run time of the optimized search vs the näıve search.
The global run time for the optimized search includes the time it takes to com-
pute the sequence of decreasing reachability sets. Accordingly, in some of the
models, especially the smaller ones, the overhead of computing this additional
information makes the optimized computation slower than the näıve one. For
information we include also the net runtime spent in the SAT solver.

In Table 4 we include experimental results for the model checking experiment.
As before, we include the results of running the search for counter example of
lengths 10, 20, 30, 40, and 50. We include the total runtime of the optimized
vs the näıve approaches as well as the time spent in the SAT solver. As before,
the global runtime for the optimized search includes the computation of the
decreasing reachability sets. The properties in the table are of the following form.
Let I, a − d denote formulas that are Boolean combinations of propositions.

– I → (¬a)Ub – we check that the sequence of events when starting from the
given initial states (I)satisfies the order b happens before a.

– I∧FGa∧F (b∧XFc) – we check that the model gets from some states (I) to
a loop that satisfies the condition a and the path leading to the loop satisfies
that b happens first and then c.

– I∧FGa∧F (b∧XF (c∧XFd)) – we extend the previous property by checking
the sequence b then c then d.

– I ∧FGa ∧ (¬b)Uc – we check that the model gets from some states (I) to a
loop that satisfies the condition a and the path leading to the loop satisfies
that b cannot happen before c.

– GFa ∧ GFb – we check for the existence of loops that exhibit a form of
instability by having states that satisfy both a and b.
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ä
ıv

e
O

p
t

2
va

r
u
n
st

a
b
le

6
.9

2
0
.7

8
0
.2

1
0

0
.4

6
0
.5

4
0

0
0
.5

1
0
.5

7
0

0
B

cr
-A

b
l

6
7
.7

6
9
.3

2
2
8
.9

2
1
.4

6
1
9
6
.6

8
9
.4

9
1
4
2
.4

1
1
.3

1
2
8
1
.2

7
1
0
.2

9
1
0
8
.1

4
1
.8

5
B

cr
-A

b
lN

o
F

ee
d
b
a
ck

s
6
6
.5

2
6
.7

7
2
9
.5

8
0
.7

1
2
0
1
.5

9
6
.7

1
1
0
1
.6

9
0
.5

6
3
0
7
.6

0
6
.6

0
2
1
9
.7

2
0
.6

2
B

o
o
le

a
n
L

o
o
p

0
.4

9
0
.5

1
0

0
0
.4

8
0
.5

7
0
.0

1
0

0
.5

3
0
.5

9
0
.0

1
0
.0

1
N

o
L

o
o
p
F

o
u
n
d

0
.7

8
0
.7

4
0
.0

6
0
.0

1
1
.1

4
0
.9

3
0
.0

9
0
.0

3
1
.4

5
1
.0

4
0
.1

0
0
.0

6
S
k
in

1
D

T
F

0
1
3
6
.2

1
1
4
0
.7

8
1
2
2
.8

5
1
2
7
.4

7
2
1
8
.5

2
8
0
.3

3
1
9
1
.0

6
5
5
.2

3
1
2
7
.2

8
9
6
.4

9
8
6
.0

5
6
0
.0

6
S
k
in

1
D

T
F

1
1
6
7
.3

2
1
7
3
.0

3
1
5
4
.0

0
1
5
9
.5

5
6
9
8
.4

7
4
4
5
.3

2
6
7
0
.7

7
4
1
9
.2

4
8
8
3
.3

5
5
7
2
.0

3
8
4
2
.0

6
5
3
6
.0

4
S
k
in

1
D

9
0
.9

2
6
8
.8

2
7
7
.6

3
5
4
.5

4
4
5
.6

7
2
3
.2

1
1
7
.5

5
8
.7

7
1
3
3
.7

2
2
3
.4

6
9
2
.3

6
8
.1

3
S
k
in

2
D

3
ce

ll
s

2
la

y
er

s
0

5
6
7
.3

1
6
4
0
.7

1
5
4
5
.4

9
6
1
8
.4

4
2
3
8
.2

8
2
0
5
.1

5
1
9
2
.2

8
1
6
2
.1

4
1
6
4
.7

9
2
1
8
.7

7
9
3
.4

5
1
5
3
.1

1
S
k
in

2
D

3
ce

ll
s

2
la

y
er

s
1

9
1
0
.0

8
5
5
3
.2

7
8
9
1
.7

0
5
3
5
.0

2
8
2
.0

4
1
1
7
.4

8
4
4
.7

0
8
2
.7

9
1
2
2
.7

7
2
1
9
.0

4
6
4
.9

6
1
6
7
.6

5
S
k
in

2
D

3
ce

ll
s

2
la

y
er

s
2

3
1
5
.2

0
1
6
9
.9

2
2
9
3
.4

5
1
5
1
.6

4
1
2
1
.1

2
3
6
.5

8
7
4
.4

9
1
8
.7

4
1
8
8
.7

8
3
9
.3

6
1
1
4
.8

1
2
0
.1

5
S
k
in

2
D

5
X

2
T

F
5
1
1
.3

1
2
2
3
.9

3
4
5
9
.3

8
1
8
2
.6

5
1
4
6
6
.9

0
3
9
1
.9

6
1
3
7
8
.8

0
3
5
3
.0

6
1
2
7
5
.3

0
7
3
.7

7
1
1
3
5
.2

5
3
5
.8

3
S
k
in

2
D

5
X

2
3
4
3
.9

6
8
5
.6

4
3
0
0
.0

3
5
6
.7

1
7
2
1
.5

8
5
7
.2

0
6
3
0
.9

2
2
8
.4

6
9
6
5
.2

4
4
8
.2

6
8
2
8
.1

2
1
6
.8

3
S
m

a
ll
T

es
tC

a
se

0
.5

3
0
.5

4
0
.0

1
0

0
.5

4
0
.7

3
0
.0

1
0

0
.6

0
0
.5

4
0
.0

1
0

S
S
k
in

1
D

0
7
0
.7

1
6
9
.0

0
6
3
.7

1
6
1
.9

3
2
1
.3

5
2
0
.7

1
5
.8

7
5
.9

3
3
3
.0

7
3
2
.7

4
1
2
.5

2
1
2
.3

4
S
S
k
in

1
D

T
F

1
9
.7

7
1
0
.0

5
2
.8

8
2
.9

3
2
2
.8

5
2
6
.0

2
8
.2

3
9
.0

4
3
5
.6

1
3
5
.1

6
1
5
.1

2
1
4
.9

6
S
S
k
in

1
D

1
4
5
.2

8
1
4
6
.7

4
1
3
8
.6

1
1
3
9
.7

6
3
2
.0

0
3
3
.3

8
1
8
.2

9
1
8
.5

1
3
3
.8

9
3
3
.8

0
1
3
.5

7
1
3
.4

9
S
S
k
in

2
D

3
ce

ll
s

2
la

y
er

s
3
0
1
.3

3
1
5
8
.6

2
2
8
6
.8

0
1
4
8
.0

8
6
3
.4

6
5
0
.1

2
3
5
.4

4
3
6
.1

4
8
6
.2

6
3
2
.4

1
4
4
.3

0
1
4
.9

1
V

er
y
S
m

a
ll
T

es
tC

a
se

0
.3

7
0
.4

2
0

0
0
.3

9
0
.4

3
0
.0

1
0

0
.4

0
0
.4

3
0
.0

1
0

V
P

C
li
n
1
5
k
o

8
.3

1
6
.8

1
3
.3

5
0
.3

2
1
4
.8

7
6
.7

4
5
.1

3
0
.2

6
2
1
.9

9
6
.7

6
7
.4

2
0
.2

0
V

P
C

N
o
n

st
a
b
il
iz

in
g

3
.4

3
3
.4

0
0
.8

5
0
.2

6
6
.0

2
3
.9

5
1
.2

3
0
.2

9
9
.3

5
4
.8

7
2
.1

0
0
.6

2
V

P
C

st
a
b
il
iz

in
g

3
.3

1
4
.7

9
0
.7

4
0
.1

4
5
.8

4
4
.7

9
0
.9

9
0
.1

8
9
.1

0
4
.6

7
1
.9

2
0
.1

4

Table 2. Searching for loops (10, 20, 30).

When considering the path search, on many of the smaller models the new
technique does not offer a significant advantage. However, on larger models, and
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Table 3. Searching for loops (40, 50).

in particular the two dimensional skin model (Skin2D 5X2 from [21]) and the
Leukemia model (Bcr Abl) the new technique is an order of magnitude faster.
Furthermore, when increasing the length of the path it scales a lot better than
the näıve approach. When model checking is considered, the combination of the
decreasing reachability sets accelerates model checking considerably. While the
näıve search increases considerably to the order of tens of minutes, the opti-
mized search remains within the order of 10 seconds, which affords a “real-time”
response to users.
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Global Time (Sec) Sat Time (Sec) Ratio

Model name Näıve Opt Näıve Opt Global Sat

Bcr-Abl1 69.30 9.04 26.67 0.90 7.66 29.61 sat
Bcr-Abl1 188.13 12.21 87.70 1.42 15.40 61.47 sat
Bcr-Abl1 380.24 13.12 292.21 2.01 28.96 145.02 sat
Bcr-Abl1 648.02 12.37 349.70 2.30 52.38 151.87 sat
Bcr-Abl1 1005.37 11.52 588.34 2.17 87.19 270.93 sat
Bcr-Abl2 47.04 10.97 9.94 0.72 4.28 13.76 Unsat
Bcr-Abl2 136.48 8.62 41.04 0.75 15.82 54.66 Unsat
Bcr-Abl2 285.28 11.28 112.35 0.77 25.28 144.58 Unsat
Bcr-Abl2 561.65 9.29 443.91 0.80 60.41 553.83 Unsat
Bcr-Abl2 781.64 12.03 408.55 0.87 64.96 465.55 Unsat
Bcr-Abl3 48.64 8.47 9.54 0.83 5.74 11.45 Unsat
Bcr-Abl3 133.83 9.10 38.68 1.11 14.69 34.81 Unsat
Bcr-Abl3 283.73 9.45 106.61 1.16 30.01 91.28 Unsat
Bcr-Abl3 596.50 9.50 466.01 1.18 62.78 394.48 Unsat
Bcr-Abl3 853.53 10.05 480.77 1.36 84.89 351.99 Unsat
Bcr-Abl4 75.27 9.19 44.50 0.80 8.18 55.31 sat
Bcr-Abl4 202.06 9.95 143.49 1.53 20.30 93.50 sat
Bcr-Abl4 296.02 11.35 116.24 2.54 26.07 45.74 sat
Bcr-Abl4 740.39 11.00 621.41 1.96 67.24 316.19 sat
Bcr-Abl4 975.97 10.42 823.53 1.10 93.63 747.14 sat
Bcr-AblNoFeedbacks1 42.98 6.25 7.94 0.40 6.87 19.51 Unsat
Bcr-AblNoFeedbacks1 163.33 8.18 95.43 0.77 19.95 123.90 Unsat
Bcr-AblNoFeedbacks1 302.17 6.41 122.25 0.46 47.07 260.90 Unsat
Bcr-AblNoFeedbacks1 493.28 6.41 314.24 0.45 76.92 686.28 Unsat
Bcr-AblNoFeedbacks1 809.97 6.45 680.70 0.46 125.51 1461.69 Unsat
Bcr-AblNoFeedbacks2 44.88 6.39 6.59 0.40 7.01 16.27 Unsat
Bcr-AblNoFeedbacks2 117.96 6.34 20.98 0.39 18.58 53.61 Unsat
Bcr-AblNoFeedbacks2 312.73 7.59 231.87 0.46 41.18 500.00 Unsat
Bcr-AblNoFeedbacks2 527.40 6.31 423.61 0.39 83.46 1084.74 Unsat
Bcr-AblNoFeedbacks2 751.45 6.83 362.09 0.44 109.87 806.35 Unsat
Bcr-AblNoFeedbacks3 60.99 6.95 20.45 0.64 8.77 31.64 sat
Bcr-AblNoFeedbacks3 204.66 7.06 144.58 0.61 28.97 233.95 sat
Bcr-AblNoFeedbacks3 356.33 8.81 267.48 0.49 40.42 539.32 sat
Bcr-AblNoFeedbacks3 Time out 7.06 Time out 0.42 N/A N/A sat
VPC non stabilizing1 30.14 10.83 4.83 0.69 2.78 6.93 Unsat
VPC non stabilizing2 17.42 9.85 3.59 1.11 1.76 3.24 sat
VPC non stabilizing3 52.01 11.91 26.69 1.48 4.36 17.93 Unsat
VPC non stabilizing4 19.53 8.31 7.08 0.60 2.34 11.77 Unsat
VPC stabilizing1 3.75 5.11 0.31 0.07 0.73 3.99 Unsat
VPC stabilizing2 5.53 5.32 0.86 0.11 1.04 7.41 sat

Table 4. Model checking results.

6 Conclusions and Future Work

We have presented a new technique for model checking Qualitative Networks.
Our technique utilizes the unique structure of Qualitative Networks to construct
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“decreasing reachability sets”. These sets form part of a compact representation
of paths in the QN and lead to significant acceleration in an implementation of
bounded model checking.

Our main aim is to use these methods in order to gain new biological insights.
These aspects will be reported elsewhere; the work presented here is about the
various techniques we have developed and evaluated. The tool has been made
available to our biologist collaborators. We are working on adding LTL model
checking as one of the supported analysis techniques in our tool BMA [2]. We
find the experimental results very encouraging especially given the iterative de-
velopment methodology biologists have been using when employing our tools [2].
As mentioned, our users “try out” several options and refine them according to
results of simulation and verification. In this iterative process it is most impor-
tant to be able to give fast answers to queries of the user. We hope that with the
speed ups afforded by this new technique model checking could be incorporated
into the workflow of using our tools.

We note that the encoding of target functions for highly connected variables is
not efficient. Enumerating all possible options entails going over a large number
of options. For example, a variable that has 8 inputs (or more) ranging over
{0,1,2} requires to enumerate 38 = 6561 options for the transition table of one
variable (not to mention adding 6561 Boolean variables per variable per state
in the path – see [6]). We are currently working on alternative approaches to
analyze the target function of a single variable to enable better encoding of it.
We note that this is a problem also of stability analysis [8].

We intend to remove the initial states from “normal” transition systems and
evaluate whether decreasing reachability sets could prove useful for other types
of systems as well.
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