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Thesis Statement

Deep relaxation of filesystem metadata synchronization and serialization improves the scalability of
HPC filesystems. Software-defined filesystem directory types are effective mechanisms for data to
be more flexibly stored and indexed without requiring the underlying storage to understand all data
structures and without requiring expensive post-processing.
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1 Introduction

Scientific applications are typically highly-optimized parallel simulation programs that run on High Per-
formance Computing (HPC) platforms. A notable difference separating HPC platforms from commodity
computing platforms is the efficiency the former possesses for running a single large application that con-
sumes the entire machine. Similarly, these platforms’ underlying filesystems, a special class of filesystem
known as the parallel filesystem |15 |70, 72| |84], are uniquely optimized for concurrent accesses to a single
file or a single directory. Unlike many commodity filesystems that are paired with co-located compute
and storage for cost-effective high bandwidth |19, [24], HPC filesystems are typically deployed with ded-
icated storage. This better isolates the failure domain of compute from that of storage [75|. and helps
improve system manageability with storage nodes each having its own operating system (OS), and data
more conveniently shared across multiple computing platforms [57]. This thesis targets large-scale HPC
applications that use tens of thousands of nodes across hundreds of thousands of CPU cores.

1.1 A Two-Pronged Approach for Overcoming HPC Bottlenecks

As people build larger and more powerful supercomputers [2} 22} 40, 58], we are standing at the dawn of
the exascale age. The sheer size of future machines will bring unprecedented levels of concurrency. For
applications that write one file per process, increased concurrency will cause more files to be accessed si-
multaneously and this requires the metadata information of these files to be managed more efficiently (64}
66]. An important factor preventing existing HPC filesystems from being able to more efficiently absorb
filesystem metadata mutations is the continued use of a single, globally consistent filesystem namespace
to serve all applications running on a single computing environment. Although having a shared filesys-
tem namespace accessible from anywhere in a computing environment has many welcome benefits |27} 50,
59|. it increases each application process’ communication with the filesystem’s metadata servers for syn-
chronizing and serializing concurrent filesystem metadata changes. While modern parallel filesystems
separate metadata from data movement [25], excessive filesystem metadata synchronization and serializa-
tion activities can still noticeably hamper job progress and are considered harmful in general |1} [16]. This
is especially the case when all the metadata synchronization and serialization work is coordinated by a
small, fixed set of filesystem metadata servers as we see in many HPC platforms today |31} 70, |72]. Since
scientific applications are typically self-coordinated batch programs, the first theme of this thesis is about
taking advantage of knowledge about the system and scientific applications to drastically reduce, and in
extreme cases remove, unnecessary filesystem metadata synchronization and serialization, enabling HPC
applications to better enjoy the increasing level of concurrency in future HPC platforms.

While overcoming filesystem metadata bottlenecks during simulation I/O is important, achieving efficient
analysis of large-scale simulation output is an even more important enabler for fast scientific discovery.
With future exascale machines, simulation output will only become larger and more detailed than it is
today. Some modern-day scientific data analysis already consists of queries that are highly selective and
these types of queries will continue to be important |14} |77]. To prevent analysis queries from experiencing
excessive I/0O delays, a simulation’s output can be, at the cost of favoring sparse queries, carefully reor-
ganized for efficient retrieval. Data reorganization is effective because simulation output is often written



without considering the efficiency of the queries following the simulation |47} |76]. But data reorganization
can be extremely time-consuming when its processing requires data to be read back from storage in large
volumes [17,|20]. The second theme of this thesis is about leveraging idle CPU cycles during the writing
of data on the compute nodes of an application to perform data reorganization and indexing, enabling
data to be transformed to a read-optimized format without undergoing expensive readbacks.

1.2 Thesis Components

This thesis consists of three components. The first and the second thesis components are centered on
developing new filesystem metadata designs with drastically relaxed filesystem metadata synchronization
and serialization. The third component focuses on developing techniques for leveraging idle computing
resources available during application I/O to serve efficient data reorganization and indexing.

Deep metadata writeback caching (§3.2). Scientific applications are typically carefully programmed
simulation jobs that do not necessarily benefit from the strict semantics provided by traditional filesystems.
For example, many scientific applications may not require sequential consistency or immediate global vis-
ibility for namespace updates |7]. Taking advantage of this property, the first component of this thesis
presents two deep metadata writeback caching mechanisms, allowing a set of cooperative client processes
to delay applying certain filesystem metadata mutations |66, [92]. That is, instead of synchronously commu-
nicating every filesystem metadata mutation to the server, each process can log some of its mutations in a
private writeback cache, deferring all synchronization and serialization operations until an eventual bulk
insertion, where all previously logged mutations are batch integrated to the global filesystem namespace.
To achieve this efficiently, this thesis uses a log format derived from TableFS [64] in which each filesystem
metadata mutation is recorded as a row in a set of tables constructed with a modified LevelDB realization
of a Log-Structured Merge Tree (LSM-Tree) [56].

Two deep writeback caching mechanisms are developed. One is pessimistic and was demonstrated with
IndexFS [66]. The other is optimistic and was demonstrated with BatchFS [92].

Fully-decentralized metadata (§3.3). By aggressively decreasing the frequency of metadata synchro-
nization and serialization, deep metadata writeback caching enables a client process to quickly absorb a
large number of filesystem metadata mutations. But to make its metadata changes useful to others, the
process must synchronize with a dedicated filesystem metadata server to merge logged mutations. To
further relax synchronization, the second component of this thesis goes beyond deep writeback caching
and bulk insertion, and explores a case in which a user is allowed to more intensely delay the merge of
its filesystem metadata mutations, possibly forever if, for example, all users of the data are known a pri-
ori. To achieve this, a bold filesystem metadata architecture is imagined in which filesystem namespaces
are no longer deemed global or implicitly shared among all application processes, and clients” private
writeback caches of filesystem metadata mutations are each considered a separate namespace. This keeps
unrelated job processes from sharing a single filesystem namespace unnecessarily, or from having to wit-
ness each other’s filesystem metadata mutations. Also relaxed in this bold design is the conventional use
of dedicated server machines to serve filesystem metadata. Instead, a parallel job directly instantiates a
filesystem metadata service in client middleware that operates on only scalable object storage and com-



municates with other jobs by sharing or publishing logs of filesystem metadata mutations. This results
in a fully-decentralized filesystem metadata layer, and constitutes this thesis’s most aggressive filesystem
metadata synchronization relaxation. Because the core idea is to have different job processes see different
filesystem namespaces, this thesis refers to this new design as no ground truth.

While having no ground truth may largely eliminate false sharing in the write path, it increases the work
a filesystem has to do in the read path when the results of multiple previous jobs are combined and used
as the input for a follow-up job. This includes detecting and resolving potential conflicts, and looking
at a potentially large number of places in storage for relevant metadata information. To improve read
responsiveness, instead of having each reader risk performing an excessive amount of work whenever a
filesystem metadata read operation is executed, one or more namespace curation services can be deployed
to have related filesystem metadata mutations pre-sorted and indexed in memory such that subsequent
filesystem metadata read operations can complete faster.

The idea of a no-ground-truth parallel filesystem is still on-going work. Benefits of this design were par-
tially demonstrated with DeltaFS [93].

Dynamic Data Reorganization and Indexing (§3.4). Many scientific simulations are written as bulk
synchronous parallel programs [43]. They generate output by periodically halting computation and writ-
ing information to storage. With modern HPC platforms, this process is expected to be slow and blocked
on storage. This leaves idle CPU cycles on the compute nodes of a simulation application. After a sim-
ulation run, fast data analysis is traditionally achieved by careful data post-processing. But due to the
growing size of data, data post-processing is becoming increasingly time-consuming as it often requires
data to be read back from storage in large volumes. To improve time-to-insight, the last component of
this thesis aims to overlap data reorganization and indexing with simulation I/O so that data can be
optimized for fast queries without incurring a large number of data readbacks.

To reduce overhead, this thesis leverages the aforementioned idle CPU cycles to perform data reorgani-
zation and indexing. Processing data in parallel with simulation I/O across a large number of CPU cores
enables the dynamic transformation of data representation. Dynamically transforming data as it streams
to storage further enables expensive data readbacks to be avoided. The overall process can be viewed as
a special form of simulation-time data processing, or in-situ data processing. Dynamically transformed
data allows post-simulation data analysis queries, or post-analysis queries, to be answered efficiently.

Dynamic data reorganization and indexing is developed as a special directory type called the Indexed
Massive Directory in DeltaFS [90]. It was demonstrated on up to 131,072 CPU cores [91].

1.3 Work Done

¢ The design of two different deep filesystem metadata writeback caching mechanisms allowing a set
of collaborative client processes to quickly absorb a large number of filesystem metadata mutations.
One mechanism is pessimistic and uses locks. The other is optimistic, relaxing the use of locks. Both
mechanisms improve performance by deferring until an eventual bulk insertion the synchronization
and serialization of a burst of filesystem metadata mutations that are known to be cooperative (§3.2).



¢ A modified LevelDB realization of a LSM-Tree allowing fast bulk insertion operations. Fast LSM-Tree
bulk insertion, along with a log-structured filesystem metadata representation, is key to enabling fast
filesystem metadata bulk insertion. The latter is an integral component of a deep filesystem metadata

writeback cache (§3.2).

* An evaluation of the two deep filesystem metadata writeback caching mechanisms using two prototype
systems, IndexFS and BatchFS, respectively. Experiment results show that client-side deep writeback
caches can significantly improve filesystem metadata throughput (e.g., file creates, deletes, and opens)
when the metadata changes a client makes are known to be cooperative (§3.2).

* A preliminary study of a fully-decentralized filesystem metadata design featuring no global filesystem
namespace, no dedicated filesystem metadata server, and no ground truth. Preliminary results from a
prototype system, DeltaFS, show that decentralized, transient, per-job filesystem metadata servers scale
better than, and beyond, a fixed set of dedicated filesystem metadata server machines (.

* The design of an in-situ data processing mechanism for dynamically reorganizing and indexing data
as data is written to storage. This new approach improves traditional post-processing approaches by
being able to transform data to a read-optimized format without requiring massive readbacks (§3.4).

* A realization of this in-situ data processing mechanism as a software-defined filesystem directory type
that can be efficiently instantiated on client middleware. To achieve high performance, this realization
includes techniques for scalable all-to-all communication among a large number of CPU cores, a new
data partitioning scheme for fast data partitioning, and a flattened LSM-Tree for efficient indexing of
bursts of scientific data (§3.4).

* A large-scale demonstration of this realization using a prototype system, DeltaFS, and a scalable par-
ticle simulation code, VPIC, on LANL's Trinity computing cluster with a shared scientific goal of per-
forming trajectory analysis across a small subset of one trillion particles.

The largest run used 131,072 CPU cores, 4,096 compute nodes, and simulated 2 trillions particles (i.e.,
2 trillion keys). Results show that dynamically generated data indexes allow per-particle trajectories
to be quickly recalled regardless of how large the simulation is (which was not considered possible
without performing potentially costly data post-processing or in-transit data computing). In addition,
producing data indexes as data is written to storage only slightly increases (10%-35%) write time and
requires only a small amount of extra storage (~3%) for storing data indexes (§3.4).

1.4 Work To Be Done

* More evaluation of the two proposed deep filesystem metadata writeback cache mechanisms with a
focus on the cost of deferred filesystem metadata synchronization and serialization as opposed to their
benefits on the write path (§3.2).

¢ A complete design of a no-ground-truth parallel filesystem. This includes a new filesystem metadata
representation, a mechanism for finding and merging filesystem namespace snapshots, a scheme for
garbage collection, and a high-performance realization of this idea (§3.3).

¢ A demonstration of this no-ground-truth idea on real-world scientific applications and workflows. This
includes a prototype no-ground-truth filesystem implementation, integration of this prototype with a



selective set of scientific applications and workflows, and a comparison of this new approach with
traditional approaches that use dedicated filesystem metadata servers (§3.3).

Work is expected to be completed within 1 year of the proposal date.

2 Background and Related Work

This section starts by linking HPC fault-tolerance to filesystems’ capability to handle the growing num-
ber of files. Next it discusses ways for filesystems to better handle the growing number of files. Then
it discusses some of the major problems with dedicating server machines for running global filesystem
namespaces. Following that, it discusses the current state-of-the-art for doing data post-processing and
reorganization. Finally, it notes the software-defined storage principle embodied in this thesis.

2.1 HPC Fault-Tolerance and Filesystem Metadata Performance

A key reason an application’s I/O increases with its problem size is fault tolerance [29||71]. As hardware
is not reliable, many scientific applications write checkpoints to shield themselves from various system
failures 35l [69]. In cases where an application’s checkpoint size increases with its problem size, increasing
the problem size increases the application’s I/O for checkpointing [6, 8]. And because an application is
more likely to fail when its problem size increases, increasing the problem size additionally requires the
application to perform checkpointing more frequently and this causes more I/O activities |68, 88].

For applications that write one file per process, increased I/O activities cause more files to be accessed si-
multaneously and this requires the metadata information of these files to be managed more efficiently 21,
60, 83, |84l 187]. Applications write one file per process because this is known to be a robust way to hope the
filesystem distributes data more evenly across its backend storage servers |72]. This allows the underlying
storage bandwidth to be more fully utilized so the application is able to minimize its time spent reading
and writing data and maximize time spent on scientific calculation [61} 62]. Another reason applications
write one file per process is to avoid concurrent write sharing. Removing such sharing reduces lock con-
tention and minimizes partial block updates |7, |70, |72, 84]. An important reason partial block updates are
inefficient is that each such update requires block data to be read from storage, updated in memory, and
then written back to storage.

2.2 Better Handling the Growing Number of Files

The first step to better handle the growing number of files is to devise an efficient filesystem metadata
representation that reduces the number of disk seeks required by each filesystem metadata mutation.
This is accomplished by work done under SimFS [65] and TableFS [64]. with filesystem metadata stored
as rows in tables constructed by a modified LevelDB'’s realization of a LSM-Tree [56].



This thesis continues to use LSM-Trees for indexing filesystem metadata. Not only are LSM-Trees more
write-optimized than regular B-Trees, but they can also be extended to enable fast filesystem metadata
bulk insertion operations and to implement efficient filesystem namespace snapshots |66} |92, [93].

The second step to better handle the growing number of files is to devise a better namespace partitioning
scheme that allows more servers to handle filesystem metadata operations simultaneously. This is ac-
complished by work done under IndexFS [66] and ShardFS [86], with filesystem namespaces aggressively
partitioned to all available filesystem metadata servers in both designs.

Unfortunately, even with an efficient filesystem metadata representation and an aggressive filesystem
namespace partitioning scheme, today’s filesystem metadata semantics still expect every filesystem meta-
data operation an application executes to be globally synchronized and serialized, and HPC applications
continue to experience bottlenecks. As one example, a key problem faced by IndexFS and ShardFsS is to
correctly enforce access control over all pathname lookups performed in a hierarchical filesystem names-
pace. That is, access to an object specified by a pathname requires permission to lookup that object’s name
in its parent directory, and permission to lookup that parent directory’s name in the grandparent directory,
recursing as specified by the pathname back to either the filesystem’s root directory or a directory cur-
rently open in the caller’s process. This multi-lookup resolution of a pathname is conventionally regarded
as an atomic operation that must be carefully synchronized (e.g., by obtaining locks from one or more
filesystem metadata servers) and serialized (e.g., by waiting for existing locks to clear) with respect to all
filesystem operations on pathnames, and metadata operations with a same prefix of their absolute path-
names may conflict with one another. Consequently, pathname resolution, being one of many filesystem
metadata activities that require global synchronization and serialization, constitutes a main bottleneck for
filesystem metadata scaling, especially when multiple filesystem metadata servers are used.

To optimize pathname lookups, IndexFS uses dynamically partitioned namespace with client caching
whereas ShardFS explores replicated directories with sharded files as an alternative. But to really achieve
the levels of scale and performance future platforms require, synchronization of anything global should
be avoided as much as possible so parallel filesystem metadata accesses can be further decoupled and
parallelized. This thesis builds upon prior work, but better leverages knowledge about the system and
HPC applications to explore deeper degrees of decoupling than do TableFS, IndexFS, and ShardFS.

2.3 Filesystem Metadata Semantics and Their Relaxation

Today, every filesystem metadata operation invoked by any process in an HPC cluster is expected to be
synchronized and serialized with respect to all metadata operations invoked by any other process run-
ning in the cluster. One reason filesystems choose such strict, online transaction processing (OLTP) like
semantics for metadata is to secure instant global visibility, which allows filesystem metadata mutations
completed at one client to be immediately accessible to all filesystem clients requesting new metadata in-
formation. This is a vital property in terms of applications that use filesystems to communicate. Another
reason filesystems choose strict semantics for metadata is to allow filesystem namespace integrity (e.g., no
filename collisions) to be promptly checked and defended. This is important for potential mistakes and
errors to be propagated back to the original application call site at the earliest possible moment, which is



in turn crucial for applications to recover, or die, quickly. While historically developed from early single-
node operating systems, semantics as such now largely represent what people believe as filesystems.

Synchronously executing and serializing every filesystem metadata operation causes frequent client-server
communication, which can be prohibitively expensive at scales. To alleviate this problem, delegations are
often leased to client processes that enable direct operation over disjoint portions of a filesystem’s names-
pace. Upon lease expiration or invalidation, mutations handled by a client are replayed at the server.

Unfortunately, even though mechanisms as such help decouple and parallelize filesystem metadata ac-
cesses, they are typically carefully designed to preserve global filesystem metadata synchronization and
serialization properties, and therefore can not provide enough decoupling and parallelism for future HPC
applications running on exascale machines. For example, leased delegations are typically immediately in-
validated when other clients access respective regions of a filesystem’s namespace. Similarly, delegations
with write accesses (e.g., a write lock on a directory) are typically only leased to a single client process,
with concurrent write accesses (e.g., multiple processes create files under a single directory simultane-
ously) either causing leases to be rapidly transferred among multiple client processes, or causing all leases
to be revoked so future accesses must directly synchronize with the server 59, |84]. It is possible for the
use of more fine-grained delegations to further decouple and parallelize filesystem metadata accesses [21}
70]. but so long as global filesystem metadata synchronization and serialization properties are withheld,
marginal performance improvements as such will continue to be dwarfed by the increased concurrency
seen in future exascale HPC platforms.

In database systems, optimistic concurrency control (OCC) is often elected when data contention is known
to be rare, a characteristic that many HPC applications share as well. One way to achieve OCC is to allow
transactions to each operate on a snapshot of a database, perform all operations in complete isolation, and
then undergo a single verification step that checks all potential conflicts |37]. This allows transactions to
complete without the expense of managing locks and without having transactions wait for other trans-
actions’ locks to clear. As a result, transactions can experience less coupling from each other and more
transactions can make progress in parallel.

Inspired by the ideas of OCC, the goal of this thesis is to leverage fast filesystem metadata bulk insertion
and fast formation of filesystem namespace snapshots to construct protocols to aggressively defer filesys-
tem metadata synchronization and serialization, and in extreme cases, without requiring locks. That is,
clients optimistically assume there will be no conflict, and do not do two-phase locking. And instead
of synchronously integrating filesystem metadata mutations, each client is allowed to log mutations in a
private writeback cache, until an eventual bulk insertion that batch commits all logged changes.

The cost of deferred synchronization and serialization is delayed error checking and hence a potential for
conflicting updates. To efficiently deal with conflicts, however, this thesis takes advantage of an efficient
filesystem metadata representation to allow conflicts to be quickly detected, reconciled, or in some cases,
quarantined. And different from traditional transactional databases, this thesis allows a batch of client
mutations to fail partially during a bulk insertion and does not necessarily roll back the whole “transac-
tion”. This avoids a minor infraction from destroying a potentially large amount of work. Notifications of
rejected filesystem metadata modifications are available to users in external logs and associated files may
be retained with mechanically modified names for users to resolve conflicts later.



2.4 Shifting Away from Global Filesystemn Namespaces

While scientific applications are programmed to use the platform’s underlying filesystem to access files,
this underlying filesystem does not have to be a long-standing service that maintains a global filesystem
namespace, and does not have to use only dedicated resources. In fact, an important factor restricting
existing HPC platforms’ metadata performance is the use of a shared filesystem metadata plane to provide
a global filesystem namespace that serves all applications running on a single computing platform.

First, having a shared filesystem namespace increases each application’s communication with the filesys-
tem’s metadata servers. This is due to the increased filesystem metadata cache invalidation and subse-
quent lease renewal traffic caused by filesystem metadata activities made by other concurrent applications
running on the same platform. For more communication is needed to execute filesystem metadata oper-
ations, it limits the overall metadata throughput each application is able to effectively receive.

Second, dedicating a shared filesystem metadata plane increases the burden of achieving efficient resource
allocation. This is because the total amount of machine resources devoted to each HPC platform is largely
fixed and cannot be easily changed once the platform goes online, so potentially many machine resources
will have to be reserved for the shared filesystem metadata plane just for it to be ready for an envisioned
peak metadata demand. But since the right amount of resources can be difficult to estimate, sticking to a
fixed set of dedicated server machines almost always causes a waste of the machines’ computing resources
when the demand is too low, or a bottleneck when the demand is too high.

2.5 Scientific Applications and Data Reorganization for Post-Analysis

Many scientific applications are time-based simulations that run in timesteps. In many scenarios simu-
lation state is periodically saved to storage for post-analysis. For simulations whose state involves lots
of small objects, the simulation state is most efficiently dumped when these small objects are batched
together and appended to storage using large sequential writes [67]. To operate efficiently, applications
minimize their time spent writing state to slow storage in order to maximize time spent in simulation.

For simulations whose output is not written in the optimal order for post-analysis queries, output data
must be carefully reorganized so queries can be answered quickly [18, 20]. Unfortunately, despite the de-
ployment of faster interconnection network and larger parallel filesystems, storage remains a primary bot-
tleneck both for simulation I/O and for data reorganization |6, 8. 39]. Today, moving data in large volumes
is still costly. And the ever-widening gap between compute and 1/0O is slowly increasing the overhead
of traditional post-writing data reorganization approaches [17, |18]. As simulations keep gaining size and
resolution, there is also an opportunity for the use of more optimized data structures to produce more
efficient data indexes and storage layouts. While faster storage media are available, their effective band-
width is limited by the interconnection speed, and their reduced storage density prevents data from being
stored solely in such media [46] |48]. For future platforms, not only will scientific analysis continue to be
slow and blocked on storage when data is not structured for the reads, but the cost of data reorganization
itself will become increasingly prohibitive when it is performed inefficiently.



2.6 Different Approaches for Data Reorganization

Traditionally, data reorganization is done by waiting until all data produced by a simulation is written
to storage and then having a separate post-processing program to readback the simulation’s data from
storage and then transform it to a more read-optimized format. While this form of data reorganization
conveniently decouples a simulation from its final data representation, the expensive data readback step
it requires renders it increasingly inefficient and time-consuming as the compute-I/O gap grows.

One way to drastically reduce data readback is to reorganize data as data streams to storage. This can be
generally referred to as in-situ data processing. Current state-of-the-art achieves it by adding additional
nodes to a job to stage data so data can be asynchronously reorganized while the original simulation
switches to its own computation |4l |5, 53, |54, |78l 79| |89]. An important drawback to this approach is the
extra job nodes that must be dedicated to perform the in-situ reorganization of the job’s periodic output.

To improve resource utilization, this thesis explores the use of idle computing resources on the compute
nodes of an application to complete in-situ data reorganization and indexing. This avoids the needs of
additional job nodes. Idle computing resources are temporarily available because some scientific appli-
cations are effectively forced to pause their computation during their I/O phases [8]. This thesis refers
to in-situ processing that leverages only those temporarily available computing resources as embedded
in-situ processing.

2.7 Software-Defined Filesystem Software

An overarching principle of this thesis is the use of client middleware to redefine data and filesystem
metadata accesses. As demonstrated by lots of previous work |7, 33, 63| 80|, client middleware, written as
user-space code, affords semantics and optimizations that are more tailored to the needs of the applica-
tion at hand, and can be deployed without changing the rest of the platform. This enables filesystems to
better adapt to new types of applications and computing environments, and to better accommodate the
increasing level of concurrency to be seen in future exascale machines.

In addition, deploying filesystems as client middleware allows the computing resources on the main
computing platform to be better utilized, and can help reduce server-side resource contention seen in tra-
ditional filesystem servers. Moreover, the compute nodes’ interconnection network, typically faster than
the storage system, can too be used by the filesystem to implement more efficient filesystem operations.

Finally, dynamically instantiating filesystems as client middleware can better decouple applications from
the platform’s underlying storage. This is because applications will have the ability to choose from a
potentially wide variety of filesystem middleware implementations, and to self-decide the right amount
of computing resources to be devoted to the filesystem. As a result, filesystem design and provisioning
decisions can be separated from the overall design of the platform, and future HPC platforms can be built
with only scalable object storage and no longer need to size the filesystem potentially prematurely.



3 Thesis Components

discusses difficulties and assumptions. discusses deep metadata writeback caching
and its implementations in IndexFS and BatchFS respectively. [Section 3.3|discusses filesystem metadata

decentralization and its realization in DeltaFS. Finally,[Section 3.4|discusses streaming data reorganization
and its implementation in DeltaFS as a special type of directory named the Indexed Massive Directory.

3.1 General Assumptions for Scientific Applications

A) Self-coordination. Unlike interactive programs such as OS shells, many scientific applications are
self-coordinated batch programs that, when started, continue until completion without requiring human
intervention. To perform I/O operations, these applications typically allow filenames to be constructed
during program execution, or directly use filenames supplied by users. To maximize efficiency, program-
mers typically configure or program their applications to avoid filename collisions. This convention makes
it possible for a filesystem to improve performance by aggressively deferring the synchronization of cer-
tain filesystem metadata mutations that are known to be cooperative (e.g., concurrent unique file creates
beneath a checkpointing directory). By exploiting this convention, deferred mutations can be efficiently
applied later using a filesystem batch mechanism without risking accumulating a large number of errors
(e.g., filename conflicts) that can be expensive to fix or wasting a potentially giant portion of work.

B) Sequential sharing. Scientific applications persist information by writing data into files that are dy-
namically created during an application run. As a side effect of the scheduling of work, these files are often
not read until after the application has completed its write phase. This renders sequential consistency and
immediate global visibility for namespace updates almost unnecessary for these files, making it possible
and more efficient for a set of cooperative client processes to buffer per-process namespace mutations, and
to form deep storage writeback caches to serve in-situ data reorganization and indexing. There is a special
use case, however, for application owners monitoring their process’ output files for user steering and fast
detection of wasted resources. This thesis deals with this separately.

C) One file per process. As HPC best practice, scientific applications typically have their processes write
data into separate files. Because different processes operate on different sets of files, it enables each process
to establish a private filesystem metadata writeback cache that is decoupled from those of other processes.
One file per process is often referred to as N-N parallel I/O. This thesis focuses on this parallel I/O pattern.
N-1 parallel I/O, on the other hand, can be efficiently transformed into N-N I/O with middleware software
such as the PLFS filesystem [7].

3.2 Deep Metadata Writeback Caching

To maximize resource utilization, scientific applications are typically carefully programmed to perform
filesystem operations cooperatively. This reduces filesystem data and metadata contentions. For exam-
ple, many parallel scientific applications have unique process IDs encoded in the names of the files they

10



create so name collision can be programmatically prevented. The first component of this thesis leverages
this knowledge to relax filesystem metadata synchronization and serialization so that parallel filesystem
metadata accesses can be more aggressively decoupled and parallelized.

Traditionally, filesystem metadata operations are synchronously executed and serialized with respect to all
concurrent filesystem metadata operations. This thesis component develops two deep filesystem metadata
writeback caching protocols for relaxing this behavior. Each protocol enables a filesystem client to apply
some of its filesystem metadata mutations in its private writeback cache, deferring their synchronization
and serialization until an eventual bulk insertion that batch integrates all changes.

The first protocol uses locks to control and minimize potential conflicts |66]. The second protocol is more
optimistic, deferring filesystem metadata synchronization and serialization without locks [92].

3.2.1 Enabling Technique: A Log-Structured Filesystem Metadata Representation

A deep client cache of filesystem metadata mutations requires an optimized on-storage filesystem meta-
data representation for clients to efficiently spill and access filesystem metadata information stored in an
out-of-core storage. A large-scale delay in applying potentially massive amounts of filesystem metadata
mutations further requires a representation that allows efficient bulk insertion.

To this end, this thesis uses a log format derived from TableFS, in which filesystem metadata is represented
as a giant filesystem metadata mutation log, with each log entry having an associated row in a set of tables
constructed with a modified LevelDB realization of an LSM-Tree.

Efficient filesystem namespace snapshotting. With filesystem metadata effectively logged as tables of
filesystem metadata mutations, each prefix of those tables is essentially a filesystem namespace snapshot.
The immutability of these tables further allows each snapshot to be shared almost trivially.

Fast metadata bulk insertion. The use of a log-structured format for filesystem metadata makes fast
metadata bulk insertion possible. That is, a client wanting to insert a large amount of filesystem metadata
mutations to a server can do so by constructing a table of these mutations and then directly injecting that
table to the server’s LSM-Tree. This allows data to be inserted to a server without being pushed through
the server’s write-ahead log and in-memory writeback buffers, and without the overhead of being written
and formatted by the server as a logically equivalent table in the server’s LSM-Tree.

Maximizing metadata mutation commutativity. To prevent metadata mutations bulk inserted by a
client from conflicting with those from other clients or mutations synchronously recorded at the server,
it is important for bulk inserted mutations to be as commutative as possible. Two filesystem metadata
mutations are commutative if switching their application order does not change the final result. In extreme
cases, mutations commutative with all other mutations can be bulk inserted into anywhere in the server’s
LSM-Tree without causing conflicts.

One way to maximize commutativity is to use locks and to restrict the use of bulk insertion to the creation
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of new files under an empty filesystem directory tree, as the following protocol does.

3.2.2 Protocol 1: Locked Empty Trees

With filesystem metadata recorded as tables, a filesystem client may complete file creation locally if the file
is known to be new and later bulk insert all file creates to the server using an efficient table insertion. This
eliminates the one-RPC-per-file-create overhead seen in traditional parallel and distributed filesystems,
and allows new files to be created and opened much faster, similar to the PLFS filesystem |7]. The total file
creation throughput, usually dictated by the number of dedicated filesystem metadata servers a filesystem
has, can be temporarily boosted as well to scale linearly with the number of clients.

Inspired by this observation, the first protocol is to enable a set of cooperative filesystem client processes to
collectively lock a newly created directory. And instead of synchronously integrating filesystem metadata
mutations (e.g., file creates) beneath this directory, each client process simply logs operations to be applied
later in a bulk insertion.

This protocol is optimized for parallel scientific applications to decouple and parallelize their filesystem
metadata activities beneath mission-critical directories (e.g., a checkpointing directory). First, being able
to log and apply filesystem metadata mutations locally enables a parallel application to execute impor-
tant filesystem metadata operations in parallel, and without the burden of frequent synchronization and
serialization. Second, being able to bulk insert logged filesystem metadata mutations as formatted tables
releases a server from having to re-execute potentially every filesystem metadata mutation performed by
a client [36]. This brings down the cost of final integration.

API: a special “mkdir” operation. A filesystem client wanting to use this specific form of writeback
caching issues a mkdir with a special flag “LOCALIZE”, which causes a corresponding server to create
the directory and return it with a renewable write lease.

During the lease period, all files and subdirectories created inside this special directory are exclusively
served and recorded by the client itself. Before its lease expires, the client must return the corresponding
subtree to the server, in the form of one or more tables, through the underlying storage. Once the lease
expires, all bulk inserted entries will become visible to all other clients.

While the best performance is achieved when a client renews its lease many times, it may not delay bulk
insertion arbitrarily. Once another client asks for access to a localized subtree, future lease renewals are
denied and the lease-holding client must quickly complete its remaining bulk inserts. This prevents a
client from blocking other clients indefinitely. If multiple clients want to cooperatively share a localized
subtree, they can do so by each issuing a mkdir with a special flag “SHARED_LOCALIZE”. In such case,
all clients should complete bulk inserts before the lease expires.

Lock-controlled relaxation. With the logging and deferring of filesystem metadata changes restricted

to newly created subtrees, and non-cooperative client processes locked out from seeing these subtrees,
conflicts are largely avoided. There is one special case, however, for the set of client processes holding the
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Figure 1: Performance comparison among PVFS, PLES, and IndexFS with and without deep client filesystem meta-
data writeback caching and bulk insertion. PVFES filesystem metadata was stored in an in-memory tmpfs. All runs
used 1 filesystem metadata server and 16 client processes performing filesystem metadata operations. IndexES with
bulk insertion delivers comparable metadata write performance to PLFS and better metadata read throughput.

lock to generate mutually conflicting updates. While not expected to occur frequently, conflicting updates
are resolved at the server arbitrarily (e.g., by having the last to bulk insert win).

3.2.3 Protocol 1: Evaluation

Protocol 1is prototyped as an extension to the IndexFS filesystem [66]. It is compared with PVFS |30], PLFS
17]. and the original IndexFS without deep metadata writeback caching or bulk insertion.

PVFS is a traditional parallel filesystem. It manages filesystem metadata using Berkeley DB [55] and han-
dles filesystem metadata operations synchronously using dedicated filesystem metadata servers. PLFS
was originally developed to offer an N-1 interface for checkpointing while implementing only N-N check-
pointing. It defers global synchronization of concurrent writes to a single file by logging the writes of
each process and not serializing them until the file is read by a subsequent reader program. In addition
to logging mutations of a file, PLFS techniques can also be used to log mutations of a filesystem names-
pace such as the creation of new files. While PLFS writes can be extremely fast, its client logging of file or
namespace mutations is never understood by the underlying filesystem. Compared with PLFS, the deep
client metadata writeback caching mechanism discussed in this thesis is more general purpose and more
integrated with the filesystem.

Experiment results show that IndexFS with deep metadata writeback caching can create and stat files an
order of magnitude faster than the IndexFS without it, which is in turn an order of magnitude faster than
PVFS, as shows. While PLFS delivers the fastest metadata write throughput, IndexFS with deep
metadata writeback caching delivers comparable write performance and better read throughput.
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3.2.4 Protocol 2: Forked Namespaces (“Git” like Filesystem Metadata)

Inspired by development of the first protocol, the goal of the second protocol is to drive this deep writeback
caching and bulk insertion idea further. First, instead of restricting logging and deferring to newly created
subtrees, the second protocol tries to apply them to the entire namespace. Second, instead of locking out
non-cooperative clients, the second protocol tries to defer synchronization and serialization without using
locks. Finally, instead of focusing on decoupling and parallelizing mainly file and directory creations, the
second protocol tries to allow filesystem metadata read operations to be sped up as well.

More specifically, the second protocol is to enable a set of cooperative filesystem client processes to indi-
vidually checkout a specific filesystem image as a filesystem namespace snapshot. This snapshot is then
used by each client process as a basis to locally complete all subsequent filesystem metadata operations
until a later bulk insertion that commits all logged filesystem metadata mutations against this snapshot
to the server in a single step.

Securely checking out filesystem images as snapshots. To obtain a filesystem namespace snapshot,
a client issues a special “snapshot” call to the server. The server then flushes all its in-memory buffers to
storage and returns the client with a manifest listing all tables comprising the server’s current filesystem
image. Since tables are designed to be immutable, they conveniently serve as a snapshot.

A filesystem client without permission to read a directory must be prohibited from reading the attributes
of the files under that directory. To forbid a malicious client from accessing restricted data by scanning an
entire filesystem snapshot inappropriately, filesystem servers can generate separate tables for each user-
group combination such that every file referred to in an table has the same permission bits. The filesystem
server then uses these permission bits to set the permission of the table in the underlying storage. This
way, expected high-level access control can be correctly enforced by the underlying storage system. This
mechanism is designed for environments with simple ACL practices, which we expect in most HPC plat-
forms. Similarly, user quota control is also synchronously enforced by the underlying storage system. For
ease of implementation, quota management may only apply to file data, as the size of metadata is almost
always dwarfed by the size of data within an entire filesystem image.

Minimizing conflicts without locks. Unlike the first protocol in which non-cooperative clients are locked
out from interfering with cooperative clients’ private writeback caches, the second protocol allows concur-
rent modifications to a snapshotted filesystem image both from cooperative clients (through logging in pri-
vate writeback caches) and non-cooperative clients (by directly updating the server’s copy). To minimize
potential conflicts when cooperative clients eventually flush their private writeback caches, the second
protocol restricts the use of private writeback caching to only files and directories that are newly created
by a client (i.e., these files and directories do not initially exist in the filesystem namespace snapshot sent
by the server). Essentially, this ensures that each bulk insertion only monotonically adds information to a
server, and does not modify information originally held by that server. This maximizes the commutativity
of each client bulk insertion’s filesystem metadata mutations, and minimizes the work a server has to do
to reconcile potential conflicts.
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Figure 2: Empty file creation performance of HDFS and BatchFS with and without deep client filesystem metadata
writeback caching and bulk insertion. In all BatchFS runs, BatchFS used HDFS as the underlying filesystem for
data and filesystem metadata storage, with 8 HDFS data servers and 1 HDFS metadata server. Different numbers of
filesystem metadata servers (MDS) were deployed for BatchES, from 1 to 8. Client caching improves performance by
8x-360x compared with directly inserting files to HDFS and to BatchFS without the client-side caching.

3.2.5 Protocol 2: Evaluation

Protocol 2 is prototyped in BatchFS [92]. To demonstrate its potential, experiments were done using 8
NSF PRODBE Kidiak machines [26] comparing BatchFS and HDFS, a widely-used open-source filesystem
designed for big-data applications |73]. Each Kodiak machine has 2 CPU cores and 1 local disk.

In all experiments, a synthetic micro-benchmark tool, mdtest [41], was used to insert zero-byte files into
multiple newly created directories. A total of 8-64 client processes were used. Each client process creates
1 private directory and then inserts empty files into that directory. A total 1-64 million empty files were
created, depending on the total number of metadata servers each run had. All HDFS runs had 1 filesystem
metadata server. Different numbers of filesystem metadata servers (MDS) were deployed for BatchFS,
from 1 to 8. When client caching is enabled, each client process is counted as a filesystem metadata server.
The runs were configured to generate 1 million files for each available filesystem metadata server.

Compared with synchronously serializing every filesystem metadata operation using dedicated metadata
servers, allowing clients to directly apply filesystem metadata mutations leads to a more efficient filesys-
tem metadata path and a more aggressive use of system resources. Results show that caching filesystem
metadata mutations at clients can improve performance by 8x-360x compared with directly inserting files
to HDFS and to BatchFS without the client-side caching, as shows.

3.2.6 Pending Work

Evaluation of the cost of filesystem metadata bulk insertion and subsequent server integration. It is not a
surprise that client caching can improve performance at the write path. Client writeback caching is a big
win when cached information can be integrated at a low price. This thesis has designed techniques for
this to be the case, pending evidence proving so.
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3.3 Fully-Decentralized Metadata

In addition to being developed as self-coordinated parallel batch programs, many scientific applications
are configured with dedicated files for input and output, and do not necessarily benefit from a shared
global filesystem namespace. The second component of this thesis is to exploit this property to further
relax filesystem metadata synchronization and serialization over deep client writeback caching.

Traditionally, scientific applications co-located on a single HPC platform are forced to synchronize with a
dedicated parallel filesystem namespace to obtain access to the platform’s shared underlying storage. Syn-
chronizing with a dedicated filesystem namespace can be unnecessarily taxing due to global serialization.
This thesis decouples applications accessing a shared underlying storage from applications accessing a
shared filesystem namespace. That is, file objects stored within a single store may be indexed by different
filesystem namespaces created by different applications at different times, and a single filesystem names-
pace may index objects stored across different underlying stores.

Another important goal of this thesis is to decouple filesystems from dedicated services that are provi-
sioned by, and often purchased with, the platform. To achieve this, this thesis leverages lightweight client
middleware that can be dynamically instantiated by applications to provide filesystem metadata services.
This empowers each application to choose from different filesystem middleware implementations, and
to decide for itself the right amount of computing resources to devote to the filesystem. A metadata-
intensive application may devote a large portion of its computing resources to serve filesystem metadata
while a metadata-light application that reads and writes a single file may only dedicate a single CPU core
to handle all filesystem metadata operations without impacting overall performance.

This thesis component develops a serverless filesystem metadata architecture for achieving these goals.
It defines no global filesystem namespaces, and uses no dedicated filesystem metadata servers. Each
parallel job directly instantiates a private filesystem metadata service in client middleware. These private
metadata services operate on only scalable object storage, with jobs communicating with each other by
sharing or publishing logs of filesystem metadata mutations. The following sections discuss the rationale
behind this design, and outline its key components.

3.3.1 Rationale behind No Ground Truth

The first step to avoid global synchronization is to have applications individually define their own filesys-
tem namespaces. To reason about the impact of an absence of a global filesystem namespace, however,
this thesis considers the following cases.

No data sharing happens when a group of applications access mutually disjoint sets of data. Having no
global filesystem namespace won't be a problem when there is no sharing.

Sequential data sharing happens when the output of an application is subsequently used as input for

another application. Removing a global filesystem won't be a problem for sequentially sharing applica-
tions as long as there is a mechanism for data to be propagated from the writing application to the later
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reading application.

Concurrent data sharing happens when multiple related applications write data into a single set of files
without pre-deciding write order. In the absence of a global filesystem namespace, one of these appli-
cations can be elected as a master application, with its namespace then shared among all other follower
applications either in the conventional synchronous manner or using a mechanism previously discussed
(§3.2) to improve parallelism.

Anonymous synchronization happens when a group of applications use the namespace of a filesystem
primarily to achieve synchronization. For example, two application processes may use a “.LOCK” file to
achieve mutual exclusiveness [44].

Abstractly, filesystems were originally developed for applications to more easily access data stored in an
underlying storage. But with filesystem namespaces typically implemented with immediate global visi-
bility using transactional properties such as atomic renames and instant name collision checks, filesystems
have been sometimes used by applications to achieve communication beyond single data sharing. By re-
moving a global filesystem namespace, this thesis aims to restore filesystems to their original use-cases.
In the absence of a global filesystem namespace as a synchronization service, applications should seek
anonymous synchronization through a purpose-built mechanism outside of the filesystem, such as a ded-
icated lock service |11} 32|, or a shared message bus.

3.3.2 A Serverless Filesystem Metadata Architecture

This thesis envisions a serverless filesystem metadata architecture consisting of the following components.

Client filesystem metadata middleware is filesystem library code linked at each application’s process.
It is instantiated by each application process during bootstrapping and it provides each application pro-
cess with a private filesystem namespace that is separated from other filesystem namespaces. Each such
middleware instance can be viewed as a full-fledged but embedded filesystem metadata server capable of
executing filesystem metadata operations and writing logs of metadata mutations. Each application pro-
cess takes one or more filesystem namespace snapshots (logs of filesystem metadata mutations) as input,
and publishes its output as a new snapshot ready to be consumed by subsequent application processes.

Namespace snapshot registries. Instead of synchronizing with a global filesystem namespace for se-
quential data sharing, unrelated applications communicate with each other through sharing and pub-
lishing filesystem namespace snapshots. Each filesystem namespace snapshot is essentially a filesystem
metadata mutation log, recording filesystem metadata mutations relative to one or more base filesys-
tem namespace snapshots. In lieu of a “global filesystem namespace”, one or more external namespace
registries can be deployed to serve as repositories of published filesystem namespace snapshots. The in-
sertion, deletion, and selection of snapshots from these registries captures the true communication and
synchronization between unrelated applications. It is also possible for an integrated workflow engine to
automate namespace propagation such that a follow-up workflow step directly inherits namespaces from
its parent steps rather than looking them up externally through a public registry.
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Figure 3: Performance of creating and stating empty files within a single directory using IndexFS or DeltaFS on 124
NES PRObE Nome machines. The experiments compared running IndexFS on 1 and 16 dedicated server machines,
and running DeltaFS as client middleware on up to 107 client machines.

Snapshot search engines. With snapshot registries, filesystem namespace snapshots can be searched by
their names. To make snapshots searchable by other attributes (e.g., pathnames of files within a snapshot),
one or more snapshot search engines can be deployed to more thoroughly index snapshots. Each search
engine subscribes to one or more snapshot registries, and periodically updates its indexes.

3.3.3 Preliminary Results

The idea of a serverless filesystem is prototyped in DeltaFS. Preliminary experiments were done com-
paring DeltaFS and IndexFS on 124 NSF PRObE Nome machines |26]. Each Nome machine has 16 CPU
cores and 32GB of memory. The experiments compared running IndexFS using 1 and 16 dedicated server
machines, and running DeltaFS as client middleware on up to 107 client machines.

shows the performance of empty file creates under a shared directory. All runs used 512 syn-
thetic client processes on 64 client machines. DeltaFS delivers up to 3 orders of magnitude more through-
put thanks to a more efficient metadata path that avoids the use of RPC and being able to utilize client
resources to process filesystem metadata operations.

compares the performance of random file stats using different numbers of client machines,
from 35 to 107. Note that these numbers were deliberately selected to be poorly aligned with each other,
emphasizing the fact that DeltaFS is able to scale flexibly, without requiring the read phase job to be
perfectly aligned with the job at the write phase.

The throughput for both IndexFS runs increases as the total amount of dedicated server resources in-

crease. Not having any dedicated metadata servers, DeltaFS jobs each use the embedded DeltaFS code to
perform filesystem metadata operations. As a larger set of machines were used to serve filesystem meta-
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data, DeltaFS jobs are able to achieve higher metadata read throughput. The throughput increases as job
scales.

3.4 Embedded In-Situ Data Processing

At exascale, scientific simulations will reach unprecedented levels of scale and complexity. The resulting
datasets require efficient data pipelines to quickly unlock the scientific insight buried within the data.
The last component of this thesis presents an embedded in-situ data processing mechanism dynamically
transforming write-optimized data to a read-optimized format without incurring significant extra storage
I/0 activities. To achieve this, a simulation’s data output is on the fly partitioned among the simulation’s
job processes and indexed with a modified LSM-Tree at each data partition. To minimize extra storage
I/0, this thesis partitions and indexes data as, and only as, data is written to storage the very first time (i.e.,
write-once, no reading back or re-writing). Data partitioning maps each query to a single partition, while
the indexes dynamically created at each partition further accelerate per-partition data lookups.

3.4.1 Design Goals

A) Fast queries without requiring O(data size) post-processing. Consider a scientific simulation that
runs in timesteps. To trace its progress, simulation state is periodically persisted to storage for post-
analysis. Traditionally, efficient analysis of large-scale simulation output can be achieved through careful
data post-processing that may be prohibitively time-consuming. This thesis processes data in-situ, with a
goal of making post-processing unnecessary for certain classes of post-analysis queries. Designing this in-
situ process as an embedded function further prevents it from requiring dedicated computing resources.

B) Resource-obliviousness. For experiments that are allocated with limited computing hours, simula-
tion output is not necessarily analyzed on the main computing cluster, and analysis may be performed on
a side cluster. Compared to the main cluster, side clusters possess less computational power and enjoy less
total bandwidth to the underlying storage. Another important goal of this thesis component is to enable
resource-oblivious scientific analysis such that data can be quickly queried even using a small side cluster,
and in extreme cases, with perhaps a laptop that is equipped with only a single CPU core.

3.4.2 Key Idea: Reusing Idle CPU Cycles to Perform In-situ Data Reorganization and Indexing

For simulations whose state is written to storage synchronously (i.e., the simulation does not overlap
storage 1/O with simulation computation), the writing process is expected to be limited by and blocked
on storage. This leaves idle CPU cycles on compute nodes of the simulation and this thesis reuses these
idle CPU cycles to perform in-situ data operations. In addition, because the simulation is effectively forced
to pause its computation during its I/O phases, the compute nodes’ interconnection network, often faster
than the storage system, is leveraged by this thesis as well to serve in-situ activities.

19



3.4.3 Targeted Workloads and Data Modeling

Highly-selective post-analysis queries. This thesis component targets simulations whose post-analysis
consists of queries that are highly-selective, and knowledge about the data to be queried is not known
until the simulation concludes. That is, a scientist does not necessarily know what to query before the
simulation ends and may rely on the final state of the simulation to determine what is interesting. Because
all keys may be queried, instead of being a potential waste of work, it is important for all data to be in-situ
indexed such that queries against any specific key can be answered efficiently.

This thesis models data as simple key-value pairs. Queries are performed only through keys. Each query
targets one specific key and returns data for it across a series of timesteps. This thesis targets large-scale
simulations with trillions of keys generated per timestep and hundreds of timesteps per simulation.

3.4.4 Embedded Data Partitioning

To partition data, an application’s data output is hashed among the application’s processes via the plat-
form’s interconnection network. While data partitioning is important in constructing an optimized stor-
age layout for efficient data analysis, performing it within an embedded function across a large number
of processes and under intensive memory pressure is non-trivial.

Aggressive writeback buffering. Even with today’s fast HPC interconnection network, this thesis has
found it imperative to aggressively buffer data before sending a batch of it over to the network so commu-
nication costs can be adequately hidden and amortized. For situations where all processes send data to
all other processes, every process needs to buffer data to be sent to every other process. Unfortunately, for
large-scale simulations with hundreds of thousands of processes, the total amount of memory required
for efficient use of the network through buffering at each process will quickly become unacceptable to
application programmers sharing the same memory, making direct all-to-all communication (i.e., each
process directly sends messages to each other process) infeasible.

Scalable all-to-all communication through multi-hop routing. To restrict memory use in large-scale
application runs, this thesis routes messages via multiple hops with each application process potentially
simultaneously acting as a sender, a receiver, and an intermediate message forwarder. Messages are no
longer directly sent to their final destinations. Instead, application processes each forward some of their
messages to other processes in the application to progress message delivery such that each process only
needs to communicate with a small subset of its peers. This prevents a process from having to make and
maintain connections to all other processes, and better limits the per-process memory state.

Avoiding overloading the network. Even with fast HPC interconnects, all-to-all data movement across
a large number of application processes and compute nodes can be prohibitively expensive. This is es-
pecially true when the compute nodes performing the network communication is equipped with slow-
spinning processors [3| 42| [52| |74] for cost-effective high computing throughput (i.e., total flops per ma-
chine) such that single-threaded event handlers executed at critical regions (e.g., performing software tag
matching at the NICs) are no longer fast enough to meet latency targets [51].
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To reduce shuffle overhead, this thesis uses a scheme that decreases the total amount of messages sent
through the network when performing online data partitioning. The key idea is to persist each key-value
pair to local or shared storage directly, moving it quickly off the network. Then partitioning is performed
on a compact representation of the key-value pairs. This compact representation consists of a prefix de-
rived from the key and the ID of the process that generated the key-value pair. This representation is more
compact than previous work that moves keys and pointers to data |49, 66].

3.4.5 Embedded Data Indexing

Traditionally, efficient read and write performance is achieved by allocating a small in-memory data struc-
ture (e.g., a B-Tree) to absorb incoming writes and then merging the data into a larger read-optimized
on-disk data structure (e.g., a larger B-Tree) whenever the small in-memory data structure is full. This
log-structured merge-mechanism forms the basis of many high-performance data systems today [28] |38,
45, |80, |82]. But the need to repeatedly read back data from storage and re-merge it with incoming data ren-
ders this mechanism prohibitively expensive. This is particularly true when the process is running within
an embedded in-situ data function co-located with a scientific application, in which sufficient runnable
windows to complete even the lightest form of log-structured merging, or any other forms of post-write
data reorganization, may not be available on compute nodes. This exemplifies a key difference between an
embedded I/O service and a dedicated data server: a dedicated server is able to leverage ownership of re-
sources to schedule a significant portion of its work in the background whereas to minimize interference,
an embedded data function must co-schedule all its work with application I/O.

Indexing data without post-write data reorganization. With queries restricted to individual data par-
tition, optimizing the per-partition storage layout can further speed up query processing. When dedicated
resources are available, an indexing program could, at the cost of incurring a potentially large number of
storage reads and re-writes, keep integrating incoming data into an on-disk data structure such that the
total number of data locations a query needs to check for any specific key is always logarithmically bound
to the total size of data in a data partition |34, [56]. This frees queries from having to perform linear searches
and enables each of them to check data only at a small number of places.

To speed up reads without requiring costly post-write data reorganization operations, however, this thesis
logs data as a series of data subsequences and for each constructs a filter able to test whether a key might, or
must not, exist in the filter’s paired data subsequence (9| [23]. This enables subsequent queries to each skip
data subsequences that are known to be irrelevant and not spend time reading their data, thus allowing
data to be recalled with fewer storage seeks.

Clustered indexes. Scientific analysis queries typically start with a code cache, and may not possess
enough locality to benefit from caching generally. To retrieve data from storage, the indexes (and the
filters) of the data are often needed and must be read into memory before data can be read. Reading data
indexes can be costly when index data is spread over multiple non-continuous locations in storage and is
not cached in memory. To alleviate this overhead, this thesis packs index data based on expected query
types allowing storage bandwidth to be more fully utilized during analysis queries [38] [85].

21



Parallel reads. To further speed up queries, the underlying storage system’s parallelism can be leveraged
to search multiple data locations in parallel. This allows data to be found faster [49].

3.4.6 Example Application: VPIC

To evaluate and better explain in-situ data processing, this thesis uses LANL’s VPIC (Vector Particle-In-
Cell) code [10] as an example.

Time-base simulations. VPIC applications are time-based particle simulations. In a VPIC simulation,
each simulation process manages a region of cells in the simulation space through which particles move.
Every few timesteps the simulation stops and each simulation process writes a per-process file containing
the state of all the particles currently managed by the process. State for each particle is 48 bytes. Large-
scale VPIC simulations have been conducted with trillions of particles, generating terabytes of data for
each recorded timestep (12, |13].

A needle-in-a-haystack problem. VPIC domain scientists are often interested in the behavior of a tiny
subset of particles with specific characteristics (e.g., high energy). Unfortunately, because particles can
move drastically within the simulation space during a simulation, information about a specific particle is
typically recorded in different per-process output files at different timesteps. Consequently, even though
the IDs of interested particles can be known at the end of a simulation, searching and reading back the
trajectories of these particles is like finding a needle in a haystack. That is, without data reorganization a
complete scan of the entire simulation output may be needed to recall per-particle information.

To speed up VPIC queries, this thesis applies in-situ processing to VPIC’s particle output: dynamically
partitioning and indexing particle data as it is written to storage can enable per-particle information to be
efficiently recalled afterwards without requiring reading back potentially an entire particle dataset.

3.4.7 Readlization: Embedded In-Situ Data Processing as a Special Directory Type

For ease of application adoption, this thesis has chosen to realize in-situ data processing as a software-
defined filesystem directory type, referred to as the Indexed Massive Directory, that can be efficiently in-
stantiated on client middleware [90|. Traditionally, simulation output is directly streamed to per-process
output files (i.e., N-N writing). To have data in-situ reorganized for efficient reads during the writing of
the data, one programs their simulations to write data into an Indexed Massive Directory.

The Indexed Massive Directory API. Indexed Massive Directories are a special type of directory that
are designed to work like a regular directory. While at their simplest, these directories typically contain
a massive number of tiny files. Underneath each such directory is an embedded in-situ data process-
ing pipeline running inside the distributed processes of a parallel simulation. The purpose of having a
directory-oriented interface is to bridge the gap between scientific applications and the underlying data
pipeline: scientific applications expect files whereas the underlying data pipeline speaks in keys and val-
ues. To fill this gap, file data written to an Indexed Massive Directory is transformed to key-value pairs
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Figure 4: Results from real VPIC simulation runs on LANL’s Trinity hardware. The biggest run used 4,096 compute
nodes, 131,072 CPU cores, simulated 2 trillion particles, and generated approximately 480TB of data. The baseline
reader program used all the CPU cores to search particles in parallel, whereas all DeltaFS queries were executed on
a single CPU core.

and sent to the underlying data pipeline: filenames become keys and file contents become opaque values.
Values are appended to keys as data is appended to files. As each directory is backed by an embedded in-
situ data processing pipeline, file data written to these directories is dynamically partitioned and indexed,
with both keyed on filenames. Partitioned and indexed file data is packed and stored as per-partition log
files in the underlying storage, similar to the PLFS filesystem [7]. After a simulation, files can be efficiently
recalled from a massive directory using filenames as the keys.

Case study: one file for each particle. Consider a VPIC simulation. Interested in the trajectories of a
tiny subset of particles whose identities are not known until the end of a simulation, VPIC could benefit
from a dynamically constructed lookup table mapping particle IDs to particle trajectories so that any par-
ticle’s trajectory can be efficiently recalled following each simulation. To achieve this, VPIC instantiates an
Indexed Massive Directory for each simulation and creates a file for each particle it simulates. Each file is
named by the ID of the particle it represents. During the course of a simulation, particle state at different
timesteps is appended to the same per-particle files. Since every Indexed Massive Directory is constructed
to dynamically reorganize itself for its files to be efficiently recalled and each file is written with the entire
trajectory of a specific particle, it directly serves as a particle trajectory lookup table for VPIC at the end of
a simulation. To retrieve the trajectory of a specific particle, a reader program uses the Indexed Massive
Directory API to open and access the corresponding file of that particle. Internally, the Indexed Massive
Directory uses its per-partition log files to quickly locate the data of that file. This data location process is
transparent to the reader program. Located file data, which is opaque to the Indexed Massive Directory,
is read by the reader program and interpreted by it as a particle trajectory.

3.4.8 Demonstration and Results

To demonstrate the potential of in-situ data processing, experiments were done using a prototype imple-
mentation of the Indexed Massive Directory, DeltaFS, and the VPIC application (introduced in §3.4.6) on
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the LANL’s Trinity computing cluster. A maximum of 4,096 Trinity compute nodes were used, amounting
to 131,072 CPU cores. compares the performance of running VPIC simulations and performing
VPIC particle trajectory queries with and without DeltaFS in-situ processing.

Experiment setup. Each experiment consisted of a real VPIC simulation configuration both with and
without DeltaFS. Each simulation run had one simulation process on each CPU core. For VPIC baseline
runs, the simulation wrote one output file per simulation process. For DeltaFS runs, the VPIC simulation
wrote into an Indexed Massive Directory, with DeltaFS dynamically partitioning and indexing the data,
and writing the results as parallel logs. Both the data partitioning and the indexing were keyed on particle
IDs, and the data was partitioned using a hash function. The largest run simulated 2 trillion particles
across 131,072 simulation processes.

Across all runs, simulation data was first written to a fast burst-buffer storage tier and was later staged out
to an underlying Lustre file system. The experiments kept the compute node to burst-buffer node ratio
fixed at 32 to 1. Writing data from compute nodes to burst-buffer nodes is bottlenecked on the burst-buffer
node’s NIC’s. Each burst-buffer node can absorb data at approximately 5.3GB per second.

After each simulation, queries were executed directly from the underlying file system with each query
targeting a random particle and reading all of its data. Particle data was written out over time as the
simulation ran through timesteps. Each simulation was configured to output all particle data for 5 of those
timesteps. Each query therefore returns data from 5 distinct points in time. To retrieve the trajectory of a
particle, the VPIC baseline reader always reads the entire simulation output and each query was repeated
only 1 or 2 times. As DeltaFS can handle queries more efficiently, all DeltaFS queries were repeated 100
times. Each query started with a cold data cache. The average query latency is reported. DeltaFS used a
single CPU core to execute queries, whereas the baseline reader used the number of simulation processes
to read data in parallel.

Orders of magnitude faster queries. [Figure 4a|shows the read performance. While the baseline reader
used all the CPU cores to run queries, a single-core DeltaFS reader was still up-to 1,740x faster. This is
because without an index for particles, the baseline reader reads all the particle data so its query latency
is largely bounded by the underlying storage bandwidth. As DeltaFS builds indexes in-situ, it is able to
quickly locate per-particle information after a simulation and maintain a low query latency (about 300ms
in these experiments) as the simulation scales.

Small write overhead. [Figure 4b|shows the I/O overhead DeltaFS adds to the simulation’s I/O phases for
building the data indexes. Part of the overhead comes from writing the indexes in addition to the original
simulation output. The rest is due to the reduced I/0O efficiency resulting from DeltaFS performing the
in-situ indexing work. DeltaFS had large but decreasing overheads for the first 5 runs. This is because
those jobs are not large enough to saturate the burst-buffer storage, so the system is dominated by the
extra work DeltaFS performs to build the indexes. Starting from the sixth run the jobs began to bottleneck
on the storage, and there is a modest DeltaFS slowdown of about 10%. For the last 2 runs, the job sizes are
deliberately increased to demonstrate the performance at scale, and there is a slowdown of 20%-35%.
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4 Conclusion

Every once in a while, a revolutionary paradigm shift comes along that dramatically changes the way
people build filesystems. One such breakthrough was made by the NASD project, which asked people
to stop serving data from the filesystem’s metadata plane |25|. For decades, this idea has been the under-
pinning of enabling scalable bandwidth from the object storage systems that underlie modern distributed
and parallel filesystems [15| 24l |31l |72l |81l |84]. This thesis informs people of what it takes to further adapt
filesystems to future HPC platforms. With the convergence of HPC and big data, the changes put forth in
this thesis may prove necessary for other areas of computing as well.

At exascale and beyond, synchronization of anything global should be avoided, even if the changes needed
to do so are drastic. Conventional parallel filesystems, with fully synchronous namespaces, mandate
synchronization with file create and other filesystem metadata operations. This must stop. Moreover, the
idea of dedicating a single filesystem metadata service to meet the needs of all applications running on
a single computing environment, is archaic and inflexible. This too must stop. By shifting away from
global namespaces and transforming dedicated filesystem metadata servers to per-job client software,
this thesis breaks established filesystem designs, and identifies the changes needed for future scalable file
system metadata. Furthermore, by designing and implementing Indexed Massive Directories, this thesis
demonstrates the opportunity for the use of storage writeback buffering to serve in-situ operations, and
shows an effective mechanism for efficiently achieving this, even at scale.
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