More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server

Q. Ho, J. Cipar, H. Cui, J.K. Kim, S. Lee, *P.B. Gibbons, G.A. Gibson, G.R. Ganger, E.P. Xing

> Carnegie Mellon University *Intel Labs

1

Distributed ML: one machine to many

- Setting: have iterative, parallel ML algorithm
 - E.g. optimization, MCMC algorithms
 - For topic models, regression, matrix factorization, SVMs, DNNs, etc.
- Critical updates executed on one machine, in parallel
 - Worker threads share global model parameters θ via RAM

Distributed ML: one machine to many

- Want: scale up by distributing ML algorithm
 - Must now share parameters over a network
- Seems like a simple task...
 - Many distributed tools available, so just pick one and go?

Laboratory for Statistical Artificial Intel·ligence & Integrative Genomics

3

Distributed ML Challenges

- Not quite that easy...
- Two distributed challenges:
 - Networks are slow
 - "Identical" machines rarely perform equally

Networks are (relatively) slow

- Low network bandwidth:
 - 0.1-1GB/s (inter-machine) vs ≥20GB/s (CPU-RAM)
 - Fewer parameters transmitted per second
- High network latency (messaging time):
 - 10,000-100,000 ns (inter-machine) vs 100 ns (CPU-RAM)
 - Wait much longer to receive parameters

Networks are (relatively) slow

- Parallel ML requires frequent synchronization
 - Exchange 10-1000K scalars per second, per thread
 - Parameters not shared quickly enough → communication bottleneck
- Significant bottleneck over a network!

Networks are (relatively) slow

Time Breakdown: Compute vs Network LDA 32 machines (256 cores), 10% data per iter 8000 7000 Network waiting time 6000 Compute time 5000 Seconds 4000 3000 2000 1000 0 BSP

For a "clean" setting with <u>full control over machines</u> and <u>full network capacity</u> **Real clusters with many users have even worse network:compute ratios!**

Machines don't perform equally

- Even when configured identically
- Variety of reasons:
 - Vibrating hard drive
 - Background programs; part of a distributed filesystem
 - Other users
 - Machine is a VM/cloud service
- Occasional, random slowdowns in different machines

Consequence: Scaling up ML is hard!

• Going from 1 to N machines:

- Naïve implementations rarely yield N-fold speedup
 - Slower convergence due to machine slowdowns, network bottlenecks
- If not careful, even worse than a single machine!
 - Algorithm diverges due to errors from slowdowns!

Existing general-purpose scalable ML

Theory-oriented

- Focus on algorithm correctness/convergence
- Examples:
 - Cyclic fixed-delay schemes (Langford et al., Agarwal & Duchi)
 - Single-machine asynchronous (Niu et al.)
 - Naively-parallel SGD (Zinkevich et al.)
 - Partitioned SGD (Gemulla et al.)
- May oversimplify systems issues
 - e.g. need machines to perform consistently
 - e.g. need lots of synchronization
 - e.g. or even try not to communicate at all

Systems-oriented

- Focus on high iteration throughput
- Examples:
 - MapReduce: Hadoop and Mahout
 - Spark
 - Graph-based: GraphLab, Pregel
- May oversimplify ML issues
 - e.g. assume algorithms "just work" in distributed setting, without proof
 - e.g. must convert programs to new programming model; nontrivial effort

Existing general-purpose scalable ML

Theory-oriented

- Focus on algorithm correctness/convergence
- Examples:

Laboratory for Statistical Artificial Intelligence & INtegrative Genomics

- Cyclic fixed-delay schemes (Langford et al., Agarwal & Duchi)
- Single-machine asynchronous (Niu et al.)
- Naively-parallel SGD (Zinkevich et al.)
- Partitioned SGD (Gemulla et al.)
- May oversimplify systems issues
 - e.g. need machines to perform consistently
 - e.g. need lots of synchronization
 - e.g. or even try not to communicate at all

Systems-oriented

- Focus on high iteration throughput
- Examples:
 - MapReduce: Hadoop and Mahout
 - Spark
 - Graph-based: GraphLab, Pregel
- May oversimplify ML issues
 - e.g. assume algorithms "just work" in distributed setting, without proof
 - e.g. must convert programs to new programming model; nontrivial effort

Can we take both sides into account?

Middle of the road approach

- Want: ML algorithms converge quickly under imperfect systems conditions
 - e.g. slow network performance
 - e.g. random machine slowdowns
 - Parameters are not communicated consistently
- Existing work: mostly use one of two communication models
 - Bulk Synchronous Parallel (BSP)
 - Asynchronous (Async)
- First, understand pros and cons of BSP and Async

Bulk Synchronous Parallel

Synchronization Barrier (Parameters read/updated here)

Threads synchronize (wait for each other) every iteration Threads all on same iteration # Parameters read/updated at synchronization barriers

The cost of synchronicity

(a) Machines perform unequally(b) Algorithmic workload imbalancedSo threads must wait for each other

End-of-iteration sync gets longer with larger clusters (due to slow network)

The cost of synchronicity

Threads must wait for each other End-of-iteration sync gets longer with larger clusters

Precious computing time wasted

Asynchronous

Parameters read/updated at any time

Threads proceed to next iteration without waiting

Threads not on same iteration # Parameters read/updated any time

Slowdowns and Async

Machine suddenly slows down (hard drive, background process, etc.) Causing iteration difference between threads Leading to error in parameters

Async worst-case situation

Large clusters have arbitrarily large slowdowns! Machines become inaccessible for extended periods Error becomes unbounded!

What we really want

• "Partial" synchronicity

- Spread network comms evenly (don't sync unless needed)
- Threads usually shouldn't wait but mustn't drift too far apart!

• Straggler tolerance

Slow threads must somehow catch up

• Is there a middle ground between BSP and Async?

That middle ground

• "Partial" synchronicity

- Spread network comms evenly (don't sync unless needed)
- Threads usually shouldn't wait but mustn't drift too far apart!

• Straggler tolerance

Slow threads must somehow catch up

That middle ground

How do we realize this?

Time

Stale Synchronous Parallel

Note: x-axis is now iteration count, not time!

Allow threads to *usually* run at own pace

Fastest/slowest threads not allowed to drift >S iterations apart Threads cache local (stale) versions of the parameters, to reduce network syncing

Stale Synchronous Parallel

A thread at iter T <u>sees all parameter updates</u> before iter T-S Protocol: check cache first; if too old, get latest version from network

Consequence: fast threads must check network every iteration Slow threads only check every S iterations – fewer network accesses, so catch up!

SSP provides best-of-both-worlds

- SSP combines best properties of BSP and Async
- BSP-like convergence guarantees
 - Threads cannot drift more than S iterations apart
 - Every thread sees all updates before iteration T-S
- Asynchronous-like speed
 - Threads usually don't wait (unless there is drift)
 - Slower threads read from network less often, thus catching up
- SSP is a spectrum of choices

Statistical Artificial Intel ligence & INtegrative Genon

- Can be fully synchronous (S = 0) or very asynchronous (S $\rightarrow \infty$)
- Or just take the middle ground, and benefit from both!

24

Instead of x_{true} , SSP sees $x_{stale} = x_{true} + error$

The error caused by staleness is <u>bounded</u> Over many iterations, average error goes to zero

SSP approximates sequential execution

Compare actual update order to ideal sequential execution

SSP approximates sequential execution

SSP may lose up to S iterations of updates to the left...

... as well as gain up to S iterations of updates to the right

Thus, at most 2S-1 iterations of erroneous updates Hence numeric error in parameters is also bounded Partial, but bounded, loss of serializability

Convergence Theorem

- Want: minimize convex $f(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} f_t(\mathbf{x})$ (Example: Stochastic Gradient)
 - L-Lipschitz, problem diameter bounded by F^2
 - Staleness *s*, using *P* threads across all machines

- Use step size
$$\eta_t = \frac{\sigma}{\sqrt{t}}$$
 with $\sigma = \frac{F}{L\sqrt{2(s+1)F}}$

Convergence Theorem

- Want: minimize convex $f(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} f_t(\mathbf{x})$ (Example: Stochastic Gradient)
 - L-Lipschitz, problem diameter bounded by F^2
 - Staleness s, using P threads across all machines

- Use step size
$$\eta_t = \frac{\sigma}{\sqrt{t}}$$
 with $\sigma = \frac{F}{L\sqrt{2(s+1)F}}$

- Note: RHS bound contains (*L*, *F*) and (*s*, *P*)
 - The interaction between theory and systems parameters

SSP solves Distributed ML challenges

- SSP is a synchronization model for fast and correct distributed ML
 - For "abelian" parameter updates of the form $\theta_{new} = \theta_{old} + \Delta$
- SSP reduces network traffic
 - Threads use stale local cache whenever possible
 - Addresses slow network and occasional machine slowdowns

SSP + Parameter Server = Easy Distributed ML

- We implement SSP as a "parameter server" (PS)⁺, called SSPTable
 - Provides all machines with convenient access to global model parameter
 - Can be run on multiple machines reduces load per machine

SSPTable allows easy conversion of single-machine parallel ML algorithms

- "Distributed shared memory" programming style
- No need for complicated message passing
- Replace local memory access with PS access

SSPTable Programming

- Easy, table-based programming just 3 commands!
 - No message passing, barriers, locks, etc.
- read_row(table,row,s)
 - Retrieve a table row with staleness s
- inc(table,row,col,value)
 - Increment table's (row,col) by value
- clock()
 - Inform PS that this thread is advancing to the next iteration

SSPTable Programming

- Just put global parameters in SSPTable! Examples:
- Topic Modeling (MCMC)
 - Topic-word table
- Matrix Factorization (SGD)
 Factor matrices L, R
- Lasso Regression (CD)
 - Coefficients β
- SSPTable supports generic classes of algorithms
 - With these models as examples

SSPTable uses networks efficiently

Time Breakdown: Compute vs Network

LDA 32 machines (256 cores), 10% data per iter

SSPTable uses networks efficiently

Time Breakdown: Compute vs Network

LDA 32 machines (256 cores), 10% data per iter

Network communication is a huge bottleneck with many machines SSP balances network and compute time

SSPTable vs BSP and Async

BSP has strong convergence guarantees but is slow Asynchronous is fast but has weak convergence guarantees

SSPTable vs BSP and Async

BSP has strong convergence guarantees but is slow Asynchronous is fast but has weak convergence guarantees SSPTable is fast and has strong convergence guarantees

The Quality vs Quantity tradeoff

Progress per time is (iters/sec) * (progress/iter) High staleness yields more iters/sec, but lowers progress/iter Find the sweet spot staleness >0 for maximum progress per second

The Quality vs Quantity tradeoff

High staleness yields more iters/sec, but lowers progress/iter Find the sweet spot staleness >0 for maximum progress per second

Matrix Factorization (Netflix)

Netflix data

LASSO (Synthetic)

<u>Synthetic data</u> N = 500 samples P = 400K features

SSPTable scaling with # machines

SSP computational model scales with increasing # machines (given a fixed dataset)

Recent Results

- Using 8 machines * 16 cores = 128 threads
 - 128GB RAM per machine
- Latent Dirichlet Allocation
 - NYTimes dataset (100M tokens, 100K words, 10K topics)
 - SSP 100K tokens/s
 - GraphLab 80K tokens/s
 - PubMed dataset (7.5B tokens, 141K words, 100 topics)
 - SSP 3.3M tokens/s
 - GraphLab 1.8M tokens/s
- Network latent space role modeling
 - Friendster network sample (39M nodes, 180M edges)
 - 50 roles: **SSP takes 14h to converge** (vs 5 days on one machine)

Future work

• Theory

- SSP for MCMC
- Automatic staleness tuning
- Average-case analysis for better bounds

Systems

- Load balancing
- Fault tolerance
- Prefetching
- Other consistency schemes

Applications

- Hard-to-parallelize ML models
- DNNs, Regularized Bayes, Network Analysis models

Coauthors

Henggang Cui

Jin Kyu Kim

Seunghak Lee

Phillip B. Gibbons

Laboratory for Statistical Artificial InteLligence & INtegrative Genomics

≙\|₿

Garth A. Gibson

Gregory R. Ganger

Eric P. Xing

James Cipar

Workshop Demo

• SSP is part of a bigger system: Petuum

- SSP parameter server
- STRADS dynamic variable scheduler
- More features in the works
- We have a demo!
 - **Topic modeling** (8.2M docs, 7.5B tokens, 141K words, 10K topics)
 - Lasso regression (100K samples, 100M dimensions, 5 billion nonzeros)
 - Network latent space modeling (39M nodes, 180M edges, 50 roles)
- At BigLearning 2013 workshop (Monday)
 - http://biglearn.org/

Summary

Distributed ML is nontrivial

- Slow network
- Unequal machine performance

SSP addresses those problems

- Efficiently use network resources; reduces waiting time
- Allows slow machines to catch up
- Fast like Async, converges like BSP
- SSPTable parameter server provides easy table interface
 - Quickly convert single-machine parallel ML algorithms to distributed
- Slides: www.cs.cmu.edu/~qho/ssp_nips2013.pdf

