
More Effective Distributed ML via a Stale
Synchronous Parallel Parameter Server

Q. Ho, J. Cipar, H. Cui, J.K. Kim, S. Lee,

*P.B. Gibbons, G.A. Gibson, G.R. Ganger, E.P. Xing

Carnegie Mellon University

*Intel Labs

1

Distributed ML: one machine to many

• Setting: have iterative, parallel ML algorithm
– E.g. optimization, MCMC algorithms
– For topic models, regression, matrix factorization, SVMs, DNNs, etc.

• Critical updates executed on one machine, in parallel
– Worker threads share global model parameters θ via RAM

2

for (t = 1 to T) {
 doThings()
 parallelUpdate(x,θ)
 doOtherThings()
}

θ

θ θ

θ

θ

θ θ θ

θ θ

θ θ θ

Parallelize over
worker threads

Share global model
parameters via RAM

Distributed ML: one machine to many

• Want: scale up by distributing ML algorithm
– Must now share parameters over a network

• Seems like a simple task…
– Many distributed tools available, so just pick one and go?

3

Single machine,
multiple threads

Multiple machines,
communicating over

network switches

Distributed Algorithm
θ θ θ θ

Distributed ML Challenges

• Not quite that easy…

• Two distributed challenges:

– Networks are slow

– “Identical” machines rarely perform equally

4

Low bandwidth,
High delay

Unequal
performance

Networks are (relatively) slow
• Low network bandwidth:

– 0.1-1GB/s (inter-machine) vs ≥20GB/s (CPU-RAM)
– Fewer parameters transmitted per second

• High network latency (messaging time):
– 10,000-100,000 ns (inter-machine) vs 100 ns (CPU-RAM)
– Wait much longer to receive parameters

5

High bandwidth
Low latency

Low bandwidth
High latency

Networks are (relatively) slow
• Parallel ML requires frequent synchronization

– Exchange 10-1000K scalars per second, per thread

– Parameters not shared quickly enough → communication bottleneck

• Significant bottleneck over a network!

6

θ

θ θ

θ

θ

θ θ θ

θ θ

θ θ θ

θ θ θ

Networks are (relatively) slow

0

1000

2000

3000

4000

5000

6000

7000

8000

0 8 16 24 32 40 48

Se
co

n
d

s

Time Breakdown: Compute vs Network
LDA 32 machines (256 cores), 10% data per iter

Network waiting time

Compute time

BSP

7

For a “clean” setting with full control over machines and full network capacity
Real clusters with many users have even worse network:compute ratios!

Machines don’t perform equally

• Even when configured identically
• Variety of reasons:

– Vibrating hard drive
– Background programs; part of a distributed filesystem
– Other users
– Machine is a VM/cloud service

• Occasional, random slowdowns in different machines

8

Consequence: Scaling up ML is hard!

• Going from 1 to N machines:
– Naïve implementations rarely yield N-fold speedup

• Slower convergence due to machine slowdowns, network bottlenecks

– If not careful, even worse than a single machine!
• Algorithm diverges due to errors from slowdowns!

9

Existing general-purpose scalable ML

Theory-oriented
• Focus on algorithm correctness/convergence

• Examples:

– Cyclic fixed-delay schemes (Langford et al.,
Agarwal & Duchi)

– Single-machine asynchronous (Niu et al.)
– Naively-parallel SGD (Zinkevich et al.)
– Partitioned SGD (Gemulla et al.)

• May oversimplify systems issues

– e.g. need machines to perform consistently
– e.g. need lots of synchronization
– e.g. or even try not to communicate at all

Systems-oriented
• Focus on high iteration throughput

• Examples:

– MapReduce: Hadoop and Mahout
– Spark
– Graph-based: GraphLab, Pregel

• May oversimplify ML issues

– e.g. assume algorithms “just work” in
distributed setting, without proof

– e.g. must convert programs to new
programming model; nontrivial effort

10

Existing general-purpose scalable ML

Theory-oriented
• Focus on algorithm correctness/convergence

• Examples:

– Cyclic fixed-delay schemes (Langford et al.,
Agarwal & Duchi)

– Single-machine asynchronous (Niu et al.)
– Naively-parallel SGD (Zinkevich et al.)
– Partitioned SGD (Gemulla et al.)

• May oversimplify systems issues

– e.g. need machines to perform consistently
– e.g. need lots of synchronization
– e.g. or even try not to communicate at all

Systems-oriented
• Focus on high iteration throughput

• Examples:

– MapReduce: Hadoop and Mahout
– Spark
– Graph-based: GraphLab, Pregel

• May oversimplify ML issues

– e.g. assume algorithms “just work” in
distributed setting, without proof

– e.g. must convert programs to new
programming model; nontrivial effort

11

Can we take both sides into account?

Middle of the road approach

• Want: ML algorithms converge quickly under imperfect systems conditions

– e.g. slow network performance

– e.g. random machine slowdowns

– Parameters are not communicated consistently

• Existing work: mostly use one of two communication models

– Bulk Synchronous Parallel (BSP)

– Asynchronous (Async)

• First, understand pros and cons of BSP and Async

12

Bulk Synchronous Parallel

13

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

Synchronization Barrier
(Parameters read/updated here)

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

Time

Threads synchronize (wait for each other) every iteration
Threads all on same iteration #

Parameters read/updated at synchronization barriers

The cost of synchronicity

14

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

2

3

3

3

3

(a) Machines perform unequally
(b) Algorithmic workload imbalanced
So threads must wait for each other

End-of-iteration sync gets longer with larger clusters (due to slow network)

Time

The cost of synchronicity

15

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

2

3

3

3

3

Threads must wait for each other
End-of-iteration sync gets longer with larger clusters

Precious computing time wasted

Wasted computing time!

Time

Asynchronous

16

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

Threads proceed to next iteration without waiting
Threads not on same iteration #

Parameters read/updated any time

6

6

6

6

Parameters read/updated
at any time

Time

Slowdowns and Async

17

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

3

3

3

4

4

4

5

5

5 6

6

6

Machine suddenly slows down (hard drive, background process, etc.)
Causing iteration difference between threads

Leading to error in parameters

2 3 4 5 6

Difference in iterations → parameter error

Time

Async worst-case situation

18

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

3

3

3

4

4

4

5

5

5 6

6

6

Large clusters have arbitrarily large slowdowns!
Machines become inaccessible for extended periods

Error becomes unbounded!

Difference in iterations → parameter error

Time

What we really want

• “Partial” synchronicity

– Spread network comms evenly (don’t sync unless needed)

– Threads usually shouldn’t wait – but mustn’t drift too far apart!

• Straggler tolerance

– Slow threads must somehow catch up

• Is there a middle ground between BSP and Async?

19

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

2

3

3

3

3

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

3

3

3

4

4

4

5

5

5 6

6

6

??? BSP Async

That middle ground

20

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

3

3

3

4

4

4

5

5

5 6

6

6

Force threads to sync up

2 3 4 5 6

Make thread 1 catch up

Time

• “Partial” synchronicity

– Spread network comms evenly (don’t sync unless needed)

– Threads usually shouldn’t wait – but mustn’t drift too far apart!

• Straggler tolerance

– Slow threads must somehow catch up

That middle ground

21

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

3

3

3

4

4

4

5

5

5 6

6

6

Force threads to sync up

2 3 4 5 6

Make thread 1 catch up

Time

How do we realize this?

Stale Synchronous Parallel

22

Note: x-axis is now iteration count, not time!

Allow threads to usually run at own pace
Fastest/slowest threads not allowed to drift >S iterations apart

Threads cache local (stale) versions of the parameters, to reduce network syncing

Iteration 0 1 2 3 4 5 6 7 8 9

Thread 1

Thread 2

Thread 3

Thread 4

Staleness Threshold 3
Thread 1 waits until
Thread 2 has reached iter 4

Stale Synchronous Parallel

23

A thread at iter T sees all parameter updates before iter T-S
Protocol: check cache first; if too old, get latest version from network

Consequence: fast threads must check network every iteration

Slow threads only check every S iterations – fewer network accesses, so catch up!

Iteration 0 1 2 3 4 5 6 7 8 9

Thread 1 will always see
these updates

Thread 1

Thread 2

Thread 3

Thread 4

Staleness Threshold 3

Thread 1 may not see
these updates (possible error)

SSP provides best-of-both-worlds

• SSP combines best properties of BSP and Async

• BSP-like convergence guarantees
– Threads cannot drift more than S iterations apart
– Every thread sees all updates before iteration T-S

• Asynchronous-like speed
– Threads usually don’t wait (unless there is drift)
– Slower threads read from network less often, thus catching up

• SSP is a spectrum of choices
– Can be fully synchronous (S = 0) or very asynchronous (S → ∞)
– Or just take the middle ground, and benefit from both!

24

Thread 1

Thread 2

Thread 3

Thread 4

Why does SSP converge?

Instead of xtrue, SSP sees xstale = xtrue + error

The error caused by staleness is bounded
Over many iterations, average error goes to zero

25

Why does SSP converge?

Compare actual update order to ideal sequential execution

26

Clock 0 1 2 3 4 5 6 7 8 9

SSP approximates sequential execution

Thread 1

Thread 2

Thread 3

Thread 4

Sequential execution

Why does SSP converge?

SSP may lose up to S iterations of updates to the left…

27

Clock 0 1 2 3 4 5 6 7 8 9

SSP approximates sequential execution

Thread 1

Thread 2

Thread 3

Thread 4

Sequential execution

Possible error
windows for this
update:

Staleness 3

Why does SSP converge?

… as well as gain up to S iterations of updates to the right

28

Clock 0 1 2 3 4 5 6 7 8 9

SSP approximates sequential execution

Thread 1

Thread 2

Thread 3

Thread 4

Sequential execution

Possible error
windows for this
update:

Staleness 3

Why does SSP converge?

Thus, at most 2S-1 iterations of erroneous updates
Hence numeric error in parameters is also bounded

Partial, but bounded, loss of serializability

29

Clock 0 1 2 3 4 5 6 7 8 9

SSP approximates sequential execution

Thread 1

Thread 2

Thread 3

Thread 4

Sequential execution

Possible error
windows for this
update:

Error window (2x3)-1 = 5 iters

Convergence Theorem

• Want: minimize convex (Example: Stochastic Gradient)

– L-Lipschitz, problem diameter bounded by F2

– Staleness s, using P threads across all machines

– Use step size

30

Convergence Theorem

• Want: minimize convex (Example: Stochastic Gradient)

– L-Lipschitz, problem diameter bounded by F2

– Staleness s, using P threads across all machines

– Use step size

• SSP converges according to
– Where T is the number of iterations

• Note: RHS bound contains (L, F) and (s, P)
– The interaction between theory and systems parameters

31

Difference between
SSP estimate and true optimum

SSP solves Distributed ML challenges

• SSP is a synchronization model for fast and correct distributed ML
– For “abelian” parameter updates of the form θnew = θold + Δ

• SSP reduces network traffic

– Threads use stale local cache whenever possible
– Addresses slow network and occasional machine slowdowns

32

Cache Cache Cache Cache

SSP + Parameter Server
= Easy Distributed ML

• We implement SSP as a “parameter server” (PS)†, called SSPTable
– Provides all machines with convenient access to global model parameter
– Can be run on multiple machines – reduces load per machine

• SSPTable allows easy conversion of single-machine parallel ML algorithms

– “Distributed shared memory” programming style
– No need for complicated message passing
– Replace local memory access with PS access

33

SSPTable

UpdateVar(i) {
 old = y[i]
 delta = f(old)
 y[i] += delta
}

UpdateVar(i) {
 old = PS.read(y,i)
 delta = f(old)
 PS.inc(y,i,delta)
}

Single
Machine
Parallel

Distributed
with SSPTable

(one or more
machines)

Worker 1 Worker 2

Worker 3 Worker 4

† Ahmed et al. (WSDM 2012), Power and Li (OSDI 2010)

SSPTable Programming

• Easy, table-based programming – just 3 commands!

– No message passing, barriers, locks, etc.

• read_row(table,row,s)

– Retrieve a table row with staleness s

• inc(table,row,col,value)

– Increment table’s (row,col) by value

• clock()

– Inform PS that this thread is advancing to the next iteration

34

SSPTable Programming

• Just put global parameters in
SSPTable! Examples:

• Topic Modeling (MCMC)
– Topic-word table

• Matrix Factorization (SGD)
– Factor matrices L, R

• Lasso Regression (CD)
– Coefficients β

• SSPTable supports generic classes
of algorithms
– With these models as examples

35

L

R
SSPTable

Topic 1

Topic 2

Topic 3

Topic 4

β

SSPTable uses networks efficiently

0

1000

2000

3000

4000

5000

6000

7000

8000

0 8 16 24 32 40 48

Se
co

n
d

s

Time Breakdown: Compute vs Network
LDA 32 machines (256 cores), 10% data per iter

Network waiting time

Compute time

BSP

36

SSPTable uses networks efficiently

0

1000

2000

3000

4000

5000

6000

7000

8000

0 8 16 24 32 40 48

Se
co

n
d

s

Staleness

Time Breakdown: Compute vs Network
LDA 32 machines (256 cores), 10% data per iter

Network waiting time

Compute time

Network communication is a huge bottleneck with many machines
SSP balances network and compute time

37

BSP

SSPTable vs BSP and Async

-1.30E+09

-1.25E+09

-1.20E+09

-1.15E+09

-1.10E+09

-1.05E+09

-1.00E+09

-9.50E+08

-9.00E+08

0 500 1000 1500 2000

Lo
g-

Li
ke

lih
o

o
d

Seconds

LDA on NYtimes Dataset
LDA 32 machines (256 cores), 10% docs per iter

BSP (stale 0)

async

BSP has strong convergence guarantees but is slow
Asynchronous is fast but has weak convergence guarantees

38

NYtimes data
N = 100M tokens
K = 100 topics
V = 100K terms

SSPTable vs BSP and Async

-1.30E+09

-1.25E+09

-1.20E+09

-1.15E+09

-1.10E+09

-1.05E+09

-1.00E+09

-9.50E+08

-9.00E+08

0 500 1000 1500 2000

Lo
g-

Li
ke

lih
o

o
d

Seconds

LDA on NYtimes Dataset
LDA 32 machines (256 cores), 10% docs per iter

BSP (stale 0)

stale 32

async

BSP has strong convergence guarantees but is slow
Asynchronous is fast but has weak convergence guarantees

SSPTable is fast and has strong convergence guarantees

39

NYtimes data
N = 100M tokens
K = 100 topics
V = 100K terms

The Quality vs Quantity tradeoff

0

100

200

300

400

500

600

700

800

900

1000

0 2000 4000 6000 8000

It
e

ra
ti

o
n

s

Seconds

Quantity: iterations versus time
LDA 32 machines, 10% data

-1.30E+09

-1.25E+09

-1.20E+09

-1.15E+09

-1.10E+09

-1.05E+09

-1.00E+09

-9.50E+08

-9.00E+08

0 200 400 600 800 1000

Lo
g-

Li
ke

lih
o

o
d

Iterations

Quality: objective versus iterations
LDA 32 machines, 10% data

BSP (stale 0)

stale 16

stale 24

stale 48

Progress per time is (iters/sec) * (progress/iter)
High staleness yields more iters/sec, but lowers progress/iter

Find the sweet spot staleness >0 for maximum progress per second

40

The Quality vs Quantity tradeoff

Progress per time is (iters/sec) * (progress/iter)
High staleness yields more iters/sec, but lowers progress/iter

Find the sweet spot staleness >0 for maximum progress per second

41

More
Staleness

Matrix Factorization (Netflix)

0.00E+00

2.00E+08

4.00E+08

6.00E+08

8.00E+08

1.00E+09

1.20E+09

1.40E+09

0 500 1000 1500 2000

O
b

je
ct

iv
e

Seconds

Objective function versus time
MF 32 machines (256 threads)

BSP (stale 0)

stale 7

42

Netflix data
100M nonzeros
480K rows
18K columns
rank 100

LASSO (Synthetic)

4.20E-01

4.30E-01

4.40E-01

4.50E-01

4.60E-01

4.70E-01

4.80E-01

0 500 1000 1500 2000 2500 3000 3500 4000

O
b

je
ct

iv
e

Seconds

Objective function versus time
Lasso 16 machines (128 threads)

BSP (stale 0)

stale 10

stale 20

stale 40

stale 80

43

Synthetic data
N = 500 samples
P = 400K features

-1.4E+09

-1.3E+09

-1.2E+09

-1.1E+09

-1E+09

-9E+08

-8E+08

0 2000 4000 6000 8000 10000

Lo
g-

Li
ke

lih
o

o
d

Seconds

LDA on NYtimes dataset
(staleness = 10, 1k docs per core per iteration)

32 machines (256 cores)

16 machines (128 cores)

8 machines (64 cores)

4 machines (32 cores)

2 machines (16 cores)

1 machine (8 cores)

Double # machines:
→ 78% speedup

→ converge in 56% time

SSPTable scaling with # machines

SSP computational model scales with increasing # machines
(given a fixed dataset)

0

5

10

15

20

25

30

35

0 10 20 30 40 In
ve

rs
e

 t
im

e
 t

o
 c

o
n

ve
rg

e
n

ce

machines

Ideal Scaling

SSP

44

Recent Results

• Using 8 machines * 16 cores = 128 threads
– 128GB RAM per machine

• Latent Dirichlet Allocation

– NYTimes dataset (100M tokens, 100K words, 10K topics)
• SSP 100K tokens/s
• GraphLab 80K tokens/s

– PubMed dataset (7.5B tokens, 141K words, 100 topics)
• SSP 3.3M tokens/s
• GraphLab 1.8M tokens/s

• Network latent space role modeling

– Friendster network sample (39M nodes, 180M edges)
– 50 roles: SSP takes 14h to converge (vs 5 days on one machine)

45

Future work

• Theory
– SSP for MCMC
– Automatic staleness tuning
– Average-case analysis for better bounds

• Systems

– Load balancing
– Fault tolerance
– Prefetching
– Other consistency schemes

• Applications

– Hard-to-parallelize ML models
– DNNs, Regularized Bayes, Network Analysis models

46

Coauthors

47

Eric P. Xing Garth A. Gibson Gregory R.
Ganger

Phillip B.
Gibbons

James Cipar

Henggang Cui

Jin Kyu Kim
Seunghak Lee

Workshop Demo

• SSP is part of a bigger system: Petuum

– SSP parameter server

– STRADS dynamic variable scheduler

– More features in the works

• We have a demo!

– Topic modeling (8.2M docs, 7.5B tokens, 141K words, 10K topics)

– Lasso regression (100K samples, 100M dimensions, 5 billion nonzeros)

– Network latent space modeling (39M nodes, 180M edges, 50 roles)

• At BigLearning 2013 workshop (Monday)
– http://biglearn.org/

48

Summary

• Distributed ML is nontrivial

– Slow network

– Unequal machine performance

• SSP addresses those problems

– Efficiently use network resources; reduces waiting time

– Allows slow machines to catch up

– Fast like Async, converges like BSP

• SSPTable parameter server provides easy table interface

– Quickly convert single-machine parallel ML algorithms to distributed

• Slides: www.cs.cmu.edu/~qho/ssp_nips2013.pdf

49

