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Distributed ML: one machine to many 

• Setting: have iterative, parallel ML algorithm 
– E.g. optimization, MCMC algorithms 
– For topic models, regression, matrix factorization, SVMs, DNNs, etc. 

 

• Critical updates executed on one machine, in parallel 
– Worker threads share global model parameters θ via RAM 
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for (t = 1 to T) { 
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  parallelUpdate(x,θ) 
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Distributed ML: one machine to many 

• Want: scale up by distributing ML algorithm 
– Must now share parameters over a network 

 

• Seems like a simple task… 
– Many distributed tools available, so just pick one and go? 
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Distributed ML Challenges 

• Not quite that easy… 

• Two distributed challenges: 

– Networks are slow 

– “Identical” machines rarely perform equally 
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Networks are (relatively) slow 
• Low network bandwidth: 

– 0.1-1GB/s (inter-machine) vs ≥20GB/s (CPU-RAM) 
– Fewer parameters transmitted per second 

 

• High network latency (messaging time): 
– 10,000-100,000 ns (inter-machine) vs 100 ns (CPU-RAM) 
– Wait much longer to receive parameters 
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Networks are (relatively) slow 
• Parallel ML requires frequent synchronization 

– Exchange 10-1000K scalars per second, per thread 

– Parameters not shared quickly enough → communication bottleneck 

• Significant bottleneck over a network! 
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Networks are (relatively) slow 
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For a “clean” setting with full control over machines and full network capacity 
Real clusters with many users have even worse network:compute ratios! 



Machines don’t perform equally 

• Even when configured identically 
• Variety of reasons: 

– Vibrating hard drive 
– Background programs; part of a distributed filesystem 
– Other users 
– Machine is a VM/cloud service 

• Occasional, random slowdowns in different machines 
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Consequence: Scaling up ML is hard! 

• Going from 1 to N machines: 
– Naïve implementations rarely yield N-fold speedup 

• Slower convergence due to machine slowdowns, network bottlenecks 

– If not careful, even worse than a single machine! 
• Algorithm diverges due to errors from slowdowns! 
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Existing general-purpose scalable ML 

Theory-oriented 
• Focus on algorithm correctness/convergence 

 
• Examples: 

– Cyclic fixed-delay schemes (Langford et al., 
Agarwal & Duchi) 

– Single-machine asynchronous (Niu et al.) 
– Naively-parallel SGD (Zinkevich et al.) 
– Partitioned SGD (Gemulla et al.) 

 
• May oversimplify systems issues 

– e.g. need machines to perform consistently 
– e.g. need lots of synchronization 
– e.g. or even try not to communicate at all 

Systems-oriented 
• Focus on high iteration throughput 

 
• Examples: 

– MapReduce: Hadoop and Mahout 
– Spark 
– Graph-based: GraphLab, Pregel 

 
• May oversimplify ML issues 

– e.g. assume algorithms “just work” in 
distributed setting, without proof 

– e.g. must convert programs to new 
programming model; nontrivial effort 
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Can we take both sides into account? 



Middle of the road approach 

• Want: ML algorithms converge quickly under imperfect systems conditions 

– e.g. slow network performance 

– e.g. random machine slowdowns 

– Parameters are not communicated consistently 

 

• Existing work: mostly use one of two communication models 

– Bulk Synchronous Parallel (BSP) 

– Asynchronous (Async) 

 

• First, understand pros and cons of BSP and Async 
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Bulk Synchronous Parallel 
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The cost of synchronicity 
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The cost of synchronicity 

15 

1 

1 

1 

1 

Thread 1 

Thread 2 

Thread 3 

Thread 4 

2 

2 

2 

2 

3 

3 

3 

3 

Threads must wait for each other 
End-of-iteration sync gets longer with larger clusters 

 
Precious computing time wasted 

Wasted computing time! 

Time 



Asynchronous 
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Slowdowns and Async 
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Async worst-case situation 
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What we really want 

• “Partial” synchronicity 

– Spread network comms evenly (don’t sync unless needed) 

– Threads usually shouldn’t wait – but mustn’t drift too far apart! 

 

• Straggler tolerance 

– Slow threads must somehow catch up 

 

• Is there a middle ground between BSP and Async? 
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That middle ground 
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That middle ground 
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Stale Synchronous Parallel 
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Note: x-axis is now iteration count, not time! 
 

Allow threads to usually run at own pace 
Fastest/slowest threads not allowed to drift >S iterations apart 

Threads cache local (stale) versions of the parameters, to reduce network syncing 
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Thread 1 waits until 
Thread 2 has reached iter 4 



Stale Synchronous Parallel 
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A thread at iter T sees all parameter updates before iter T-S 
Protocol: check cache first; if too old, get latest version from network 

 
Consequence: fast threads must check network every iteration 

Slow threads only check every S iterations – fewer network accesses, so catch up! 
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SSP provides best-of-both-worlds 

• SSP combines best properties of BSP and Async 
 

• BSP-like convergence guarantees 
– Threads cannot drift more than S iterations apart 
– Every thread sees all updates before iteration T-S 

 

• Asynchronous-like speed 
– Threads usually don’t wait (unless there is drift) 
– Slower threads read from network less often, thus catching up 

 

• SSP is a spectrum of choices 
– Can be fully synchronous (S = 0) or very asynchronous (S → ∞) 
– Or just take the middle ground, and benefit from both! 
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Why does SSP converge? 

Instead of xtrue, SSP sees xstale = xtrue + error 
 

The error caused by staleness is bounded 
Over many iterations, average error goes to zero 
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Why does SSP converge? 

Compare actual update order to ideal sequential execution 
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Why does SSP converge? 

SSP may lose up to S iterations of updates to the left… 
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Why does SSP converge? 

… as well as gain up to S iterations of updates to the right 
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Why does SSP converge? 

Thus, at most 2S-1 iterations of erroneous updates 
Hence numeric error in parameters is also bounded 

Partial, but bounded, loss of serializability 
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Convergence Theorem 

• Want: minimize convex                                  (Example: Stochastic Gradient) 

– L-Lipschitz, problem diameter bounded by F2 

– Staleness s, using P threads across all machines 

– Use step size 
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• SSP converges according to 
– Where T is the number of iterations 

 

• Note: RHS bound contains (L, F) and (s, P) 
– The interaction between theory and systems parameters 
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SSP solves Distributed ML challenges 

• SSP is a synchronization model for fast and correct distributed ML 
– For “abelian” parameter updates of the form θnew = θold + Δ 

 
• SSP reduces network traffic 

– Threads use stale local cache whenever possible 
– Addresses slow network and occasional machine slowdowns 
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SSP + Parameter Server 
= Easy Distributed ML 

• We implement SSP as a “parameter server” (PS)†, called SSPTable 
– Provides all machines with convenient access to global model parameter 
– Can be run on multiple machines – reduces load per machine 

 
• SSPTable allows easy conversion of single-machine parallel ML algorithms 

– “Distributed shared memory” programming style 
– No need for complicated message passing 
– Replace local memory access with PS access 
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SSPTable 

UpdateVar(i) { 
  old = y[i] 
  delta = f(old) 
  y[i] += delta 
} 

UpdateVar(i) { 
  old = PS.read(y,i) 
  delta = f(old) 
  PS.inc(y,i,delta) 
} 

Single 
Machine 
Parallel 

Distributed 
with SSPTable 

(one or more 
machines) 

Worker 1 Worker 2 

Worker 3 Worker 4 

† Ahmed et al. (WSDM 2012), Power and Li (OSDI 2010) 



SSPTable Programming 

• Easy, table-based programming – just 3 commands! 

– No message passing, barriers, locks, etc. 

 

• read_row(table,row,s) 

– Retrieve a table row with staleness s 

 

• inc(table,row,col,value) 

– Increment table’s (row,col) by value 

 

• clock() 

– Inform PS that this thread is advancing to the next iteration 
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SSPTable Programming 

• Just put global parameters in 
SSPTable! Examples: 

 

• Topic Modeling (MCMC) 
– Topic-word table 

 

• Matrix Factorization (SGD) 
– Factor matrices L, R 

 

• Lasso Regression (CD) 
– Coefficients β 

 

• SSPTable supports generic classes 
of algorithms 
– With these models as examples 
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SSPTable uses networks efficiently 
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Network communication is a huge bottleneck with many machines 
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SSPTable vs BSP and Async 
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NYtimes data 
N = 100M tokens 
K = 100 topics 
V = 100K terms 



SSPTable vs BSP and Async 
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NYtimes data 
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The Quality vs Quantity tradeoff 
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Progress per time is (iters/sec) * (progress/iter) 
High staleness yields more iters/sec, but lowers progress/iter 

Find the sweet spot staleness >0 for maximum progress per second 
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Matrix Factorization (Netflix) 
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Netflix data 
100M nonzeros 
480K rows 
18K columns 
rank 100 



LASSO (Synthetic) 
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Synthetic data 
N = 500 samples 
P = 400K features 
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Recent Results 

• Using 8 machines * 16 cores = 128 threads 
– 128GB RAM per machine 

 
• Latent Dirichlet Allocation 

– NYTimes dataset (100M tokens, 100K words, 10K topics) 
• SSP 100K tokens/s 
• GraphLab 80K tokens/s 

– PubMed dataset (7.5B tokens, 141K words, 100 topics) 
• SSP 3.3M tokens/s 
• GraphLab 1.8M tokens/s 

 
• Network latent space role modeling 

– Friendster network sample (39M nodes, 180M edges) 
– 50 roles: SSP takes 14h to converge (vs 5 days on one machine) 
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Future work 

• Theory 
– SSP for MCMC 
– Automatic staleness tuning 
– Average-case analysis for better bounds 

 
• Systems 

– Load balancing 
– Fault tolerance 
– Prefetching 
– Other consistency schemes 

 
• Applications 

– Hard-to-parallelize ML models 
– DNNs, Regularized Bayes, Network Analysis models 
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Workshop Demo 

• SSP is part of a bigger system: Petuum 

– SSP parameter server 

– STRADS dynamic variable scheduler 

– More features in the works 

 

• We have a demo! 

– Topic modeling (8.2M docs, 7.5B tokens, 141K words, 10K topics) 

– Lasso regression (100K samples, 100M dimensions, 5 billion nonzeros) 

– Network latent space modeling (39M nodes, 180M edges, 50 roles) 

 

• At BigLearning 2013 workshop (Monday) 
– http://biglearn.org/ 
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Summary 

• Distributed ML is nontrivial 

– Slow network 

– Unequal machine performance 

 

• SSP addresses those problems 

– Efficiently use network resources; reduces waiting time 

– Allows slow machines to catch up 

– Fast like Async, converges like BSP 

 

• SSPTable parameter server provides easy table interface 

– Quickly convert single-machine parallel ML algorithms to distributed 

 

• Slides: www.cs.cmu.edu/~qho/ssp_nips2013.pdf 
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