Efficient dynamic programming for high-dimensional, optimal motion
planning by spectral learning of approximate value function symmetries

Paul Vernaza and Daniel D. Lee

Abstract— We demonstrate how to find high-quality motion
plans for high-dimensional holonomic systems efficiently us-
ing dynamic programming in a learned subspace of vastly
reduced dimension. Our approach (SLASHDP) learns the low-
dimensional cost structure of an optimal control problem
via an efficient spectral method. This structure results in
a symmetric value function that serves as a an efficiently-
computable surrogate for the true value function. High-quality
feedback motion plans can then be obtained from the symmetric
value function. Experimental results show that SLASHDP yields
higher-quality plans than can be obtained by post-processing
plans generated by a sampling-based motion planner, and with
less computational effort for very high-dimensional problems.
We demonstrate high-quality dynamic programming plans for
an arm planning problem of up to 144 dimensions without
using any domain-specific knowledge aside from that learned
automatically by SLASHDP. Positive results are also shown for
a high-dimensional deformable robot planning problem.

I. INTRODUCTION

We consider in this work the problem of kinematic motion
planning in high-dimensional spaces with holonomic con-
straints [1]. As is well known, this is generally considered
to be a computationally intractable problem in the most
general case. Fortunately, this does not rule out the possibility
that special cases of this problem can be solved efficiently,
nor does it rule out the existence of practical algorithms
to solve many interesting motion planning problems. The
central concept of our work is that we can efficiently solve a
certain special case of this problem. This solution can then be
leveraged to approximately solve more interesting problems.

To be more specific, we consider an optimal-control-
type version of the motion planning problem, and look for
structure in the cost function of this formulation. Namely, if
the cost function is low-dimensional (i.e., depends on only
a few coordinates in some basis), we can show that the
associated motion planning problem can be solved easily and
efficiently. The challenge, then—and the main topic of this
manuscript—is the automatic discovery of such structure. We
refer to our approach to this problem as Spectral Learning
of Approximate Symmetries for High-dimensional Dynamic
Programming (SLASHDP), for reasons that should hopefully
become apparent soon.

An informal example will serve to elucidate these ideas.
Figure 1 depicts a simple arm planning problem in the
presence of obstacles. Our goal will be to find a small set
of basis motions that cause the most variation in the cost
function, which in this case is a function that penalizes

P. Vernaza and D. D. Lee are with the GRASP Lab, Uni-
versity of Pennsylvania, 3330 Walnut St., Philadelphia, PA 19104
{vernaza,ddlee}@seas.upenn.edu

C(z1,25)

3 \
/

1 St basis vector:

2nd basis vector:
- 4
1l
N‘\'
[] Oy I /
. N\\ 2 0 2 4
A z, = basis 1 projection

basis 2 projection

Zy

(a) Learned basis (b) Learned subspace cost

Fig. 1. Visualization of learned basis vectors and cost as a function of
basis coordinates for an arm planning problem. Basis vectors are illustrated
in 1(a). Each line shows a configuration z;u;, for ¢ € {1,2} and varying
values of z;, superimposed on an obstacle map from which the cost function
is derived. Sampled cost function in (z1,22) coordinates is displayed
in 1(b).

proximity of the arm to obstacles. We will then approximate
the true cost function by a low-dimensional cost function
written as function only of the basis coordinates. Fig. 1(a)
shows the best two basis motions learned by SLASHDP
for the particular obstacle field depicted. The first motion
performs a curling motion that emphasizes motion of the
joints near the base. As was desired, this motion seems to
cause the greatest variation in the cost function. The second
motion again rotates the joints near the base forward, but
it simultaneously counter-rotates the joints further along the
length of the arm, causing the arm to fold in on itself.

Letting 21,29 denote the projections of the state onto
these basis vectors, we now discretize 21,29 space and
numerically estimate the cost as a function of just these
coordinates. The result is shown in Figure 1(b). We can
think of this figure as a visualization of obstacle proximity in
some generalized configuration space that is a rotation and
projection away from our original configuration space. We
can see from the figure that if we start at the origin and move
forward along the first basis vector, the arm will intersect two
obstacles, visible as tall shapes stretched out in the up-down
direction. However, these obstacles have limited extent in
the zo direction. It is easy to see how we could possibly
navigate around them by moving up or down in the 2o
direction as we move forward in z;. This is precisely the kind
of behavior that SLASHDP will exhibit when we generate
a high-dimensional feedback plan for this low-dimensional
cost function.

A. Previous work

Numerous techniques for high-dimensional motion plan-
ning have arisen in the last two decades or so. The most
popular and practically useful of these are probably the
class of sampling-based motion planning algorithms, such as
RRT [2], PRM [3][4], SBL [5], and EST [6]. Also notable
are certain modern variants of A*, such as ARA* [7] and
R* [8].

Our method is related to such deterministic search methods
in that we eventually perform a deterministic search to
find a plan. In our case, this amounts to simple dynamic
programming, though we could easily imagine variants of
our work that employ more sophisticated deterministic search
methods. On the other hand, our work differs from all of
the deterministic and randomized search methods mentioned
above in that the search algorithm itself is of secondary
importance to SLASHDP. The critical aspect of our work
is the learning of low-dimensional structure, which we feel
is a much under-appreciated topic.

Perhaps the main reason why this might be so is the
fact that all of the above algorithms introduce discretization
immediately—after which the concept of geometric dimen-
sion becomes lost. We reason about concepts such as the
dimensionality of the cost function and its associated optimal
paths before performing any discretization, which allows us
to use our finite samples much more efficiently. Although
there is some existing literature on learning heuristics for
search ([9], [10], [11]), and other work on exploiting different
sorts of low-dimensional structures in motion planning ([12],
[13]), we believe that none of these approaches is able to
exploit the kind of structure we examine, for precisely this
reason. One could argue that the more limited assumptions
of these methods is an advantage; however, if one is trying
to solve the kind of motion planning problem described here,
we would argue that any method that does not exploit low-
dimensional cost structure, is immediately at a disadvantage.

II. PRELIMINARIES

We begin with some background information about our
particular problem and its generic solution via dynamic
programming.

In this work, we address the feedback optimal motion
planning problem with holonomic constraints. We further
assume that such constraints (such as obstacle penetration
constraints) can be adequately modeled by a suitable strictly
positive cost function C'(x) that penalizes the state « appro-
priately, rather than strictly enforcing these constraints. C'(z)
may also encode other arbitrary penalties.

The goal of our motion planning problem is then to find
an optimal path x(t) that minimizes the cost under C(-)
of moving from some point to the origin. Furthermore, we
would like to generate an entire family of such solutions
by means of a feedback control law that for any state z,
guides the system along an optimal path to the origin, for
a total cost of V(). These concepts are summarized in the
following optimization problem.

Definition 2.1 (Feedback optimal motion planning):

1
V(z) = min / ()l dt
y(t) 0

y(0) =0 (D)
y(1) ==

This indicates that for every state x in some region of state
space, we would like to compute the optimal value V' (z) by
searching over the set of all paths with one endpoint at the
origin and the other at x. In typical dynamic programming
fashion, the optimal control law z — & can be computed as
the negative gradient of V' (z):

& =—-VV(x))

subject to

As is well known, dynamic programming—typically in the
form of the Fast Marching Method [14]—can be employed
to compute the value function on a sampled lattice in time
nearly linear in the size of the lattice. Unfortunately, a
straightforward discretization of a high-dimensional state
space yields a number of samples that scales exponentially
in the dimension, making straightforward calculation of the
value function impossible.

A. Symmetry of the value function

In this this work, however, we assume that the cost func-
tion has some low-dimensional structure which will allow us
to compute the value function efficiently. To elaborate, we
define the dimension of a cost function to be the number
of coordinates on which the cost function depends, or to be
more precise:

Definition 2.2: A (differentiable) cost function C(z) de-
pends on a coordinate x; iff. there exists an = such that
0C(x)/0x; # 0. The dimension of a cost function is the
number of coordinates on which it depends.

Our core result is that the value function of a motion
planning problem with a low-dimensional cost function, is
symmetric in a way that allows us to efficiently compute it,
as described in the following theorem:

Theorem 2.1: Let C(x1,...,zy5) : RY — R be a d-
dimensional cost function, let C’(xl, sy Tgyr) t RIFL SR
denote the restriction of C' to the first d + 1 coordinates,
and let V(xq,...,zy) : RY — R and V(xl,...,de) :
RI*! — R denote the value functions associated with the
corresponding motion planning problems. Then

Ve, ..., an) = V(e ... x4, m)

Note that this restriction is well-defined because the cost
function does not depend on the other coordinates. The
preceding theorem implies that if we wish to compute the
value function of a motion planning problem with a d-
dimensional cost function, we need only compute the value
function of a d + 1-dimensional motion planning problem,
regardless of the dimension of the state space of the original
problem. Figure 2 illustrates this for a simple case where
the cost function is one-dimensional in an ambient three-
dimensional space.

s\xz 4 —

N
P |
¢ L

X,

Fig. 2. Illustration of symmetry of value function for a shortest-path
problem in three dimensions with a cost function that depends only on
the x1 coordinate. The corresponding value function is symmetric about
the x1 axis. Symmetric optimal paths are shown in yellow.

A useful corollary to this theorem is the following, which
states that optimal paths of low-dimensional cost functions
lie in low-dimensional subspaces.

Corollary 2.2: Consider a motion planning problem of the
form of Definition 2.2 having a d-dimensional cost function.
Any optimal path y*(¢) of such a problem with nonzero
endpoint z, lies completely in the d+ 1-dimensional subspace
spanned by the first d coordinates and x. i.e., there exist
functions y,(t) : R — RY and y.(t) : R — R such that
Ye(t) € 0,1] V¢ and

y*(t) = INxdya(t) + yc(t)xv vt

where Iy g is the identity matrix augmented with rows of
ZEeros.

Both Theorem 2.1 and its corollary can be proved in
a straightforward way via the calculus of variations. We
omit the proofs here for lack of space, instead focusing on
applications of these results.

III. METHOD

We have so far described how a low-dimensional cost
function is useful, but we have not described how one might
be obtained. Certain problems may have a-priori structure
that might be exploited manually to yield a low-dimensional
cost function. In this work, however, we consider the idea of
learning such structure automatically for a given problem.

Our approach to the learning problem is quite simple.
To summarize, we estimate the matrix of second moments
of the gradient of the cost function by random sampling.
The top d eigenvectors of this matrix then form a basis in
which the cost is approximately low-dimensional. We then
discretize this reduced space and deterministically sample
the cost in these coordinates. This discrete, low-dimensional
cost function is finally used to calculate the value function
via dynamic programming.

A. Learning a cost basis

The first critical step in SLASHDP is to estimate a
basis in which the cost is approximately low-dimensional.
That is, suppose our problem is described in some original
coordinates x, and we have a cost function

C(z) = f(x1, 29, ..

'7mN)

i.e., C is a function of all N variables. We then seek a
rotation matrix U and new coordinates z such that x = Uz
and

C(x)=C(Uz) = g(21,22,...,24)

where d < N.

In practice, we need only to find a few columns of U. To
find these, we note that C'(Uz) does not depend on some z;
iff. 9C/0z; = 0 for all z. Therefore, it would make sense to
choose z1 such that ||0C/0z]| is very large in expectation.
Since (letting u; be the ith column of U)

80/821 = VC’Tu1

we can choose u; to satisfy this goal by solving the following
optimization problem:

U] = arg max Ea;uTVC(m)VC(x)Tu 3)

flull=1

We refer to M = E,VC(z)VC(x)T as the matrix
of second moments of the cost gradient. The well-known
solution to the above optimization yields that w; should be
chosen to be the eigenvector corresponding to the largest
eigenvalue of M. Subsequent columns us,...,uq of U
can then be chosen as the eigenvectors corresponding to
eigenvalues in order of descending magnitude.

Of course, since M is not known a-priori, it must be esti-
mated by sampling. Although sampling in high-dimensions
is generally difficult, intuition suggests that if the spectrum of
M is sufficiently tapered, it should not be difficult to estimate
the eigenvectors corresponding to its largest eigenvalues. As
an extreme example of this, we might consider the case
where M has only one nonzero eigenvalue: drawing any
single sample of the cost gradient will perfectly recover the
eigenvector corresponding to the nonzero eigenvalue, but
we will never draw a sample corresponding to any other
eigenvalue. It is therefore logical to expect that eigenvectors
corresponding to large eigenvalues are easy to estimate, while
those corresponding to small eigenvalues are difficult to
estimate; fortunately, we have no need to estimate the latter.

B. Estimating the transformed cost function

Given a basis U, we now wish to estimate the cost
function in the reduced coordinates, C(Uz). We proceed
by discretizing z coordinates on a regular grid, which will
eventually enable us to compute the value function using a
fast, grid-based version of the FMM. For each of these points
z[i], we must obtain an estimate of C'(Uz[i]). This is very
simple in the ideal case; since C(Uz) truly only depends on
d < N z coordinates, we can take C'(Uz[7]) to be the value
of C(x) for any x such that = Uz; all such = will have
the same cost.

In the likely event that C'(+) is not perfectly d-dimensional,
different states that project to the same z coordinates will
have different cost values—although we intentionally chose
our basis to minimize the expected difference, in some sense.
The obvious solution to this problem is to sample the costs of
states projecting to the same coordinates z, and to set C(Uz)

to the mean, max, or min of all such values. However, we
can do much better given a reasonable assumption.

Let us assume for now that we are only interested in
finding the optimal path to the goal for a particular guery
state x,. In this case, we know by Corollary 2.2 that the
optimal path will be contained in a certain known subspace.
When sampling to obtain C'(Uz), we should therefore only
choose samples that lie in this subspace.

Concretely, suppose we wish to find a sample z[i] that
projects to some coordinates z[i]. We can write any such
x[i] as

zli] = Uz[i] + (I = UUT)y

for some y. If we want x[¢] to lie in the optimal subspace
pertaining to x4, then Corollary 2.2 implies that we must
choose y such that
Y =4S

for some scalar s € [0,1] to be determined. We have
therefore reduced our problem from having to sample in the
N — d-dimensional null space of U to having only to sample
in a one-dimensional subspace.

In practice, we have found that sampling s is actually
unnecessary; instead, we deterministically choose s by the
following heuristic. For a given sample z[i], and writing z, =
Uqu, we choose

1Ll
1zqll + 1I2[2] — zqll

. This ensures that z[i] = 0 when z[i] = 0, z[i]| = z; when
z[i] = z[q], and a smooth interpolation elsewhere.

We note that these simplifications depend on the choice of
a specific query configuration. Therefore, one might question
whether a feedback policy obtained with this assumption
would still be valid for other query configurations. Though
we will not delve deeply into this issue, it seems reasonable
to expect that the resulting feedback policy will be valid
for at least a neighborhood of states surrounding the query
optimal path. Our experimental results support this intuition.

C. Planning a path

After learning a d-dimensional basis in which the cost
is approximately low-dimensional and discretely sampling
the cost in these coordinates, we can use the Fast Marching
Method to compute a d+ 1-dimensional value function from
which we can derive a high-dimensional value function by
invoking Theorem 2.1. This value function is a symmetric
approximation of the problem’s true value function, which
cannot be computed tractably. Since we have learned a basis
such that most of the variation of the cost is captured in this
basis, we anticipate that the resulting symmetric approximate
value function will be a good approximation to the true one.

Given the high-dimensional, symmetric, approximate
value function obtained in this way, we can efficiently
compute the corresponding optimal paths by integrating (2).
In practice, however, we compute these paths by the equiv-
alent method of integrating (2) with respect to the d + 1-
dimensional value function and lifting these paths to the
original high-dimensional space by means of Corollary 2.2.

D. Locally low-dimensional paths

The method we have described so far is useful for prob-
lems where the original coordinates are a rotation away from
a new set of coordinates in which the cost is approximately
low-dimensional. However, for some problems, this may
only be true locally. For such problems, we suggest the
following approach: given an initial path, randomly choose
two points on this path, and find a new path between them
via SLASHDP. If the cost of the found path is lower than
the original segment, replace the old segment with the new
one; otherwise, keep the original segment. Repeat as many
times as desired.

For each such iteration, we can focus our learning efforts
on a smaller search volume surrounding the path endpoints. It
is our hope that the cost function in this smaller volume can
be adequately represented as a function of a small number
of basis projections. If this does hold, we expect to be able
to find a nearly optimal path interpolating these endpoints.

This method can be seen as a generalization of the
straight-line shortcut heuristic [15] widely used to post-
process feasible motion plans generated by sampling-based
methods. The straight-line shortcut heuristic might be de-
scribed in this way: connect two points on a path with
a straight line; if the cost of this path is lower than the
original segment, replace it with a straight line. If our
cost function is constant in the free space, then a straight
line is the optimal path. The straight-line shortcut method
can then be seen as a special case of our method that
arises when a 0-dimensional (constant) approximation of
the cost function is used. SLASHDP, however, can employ
higher-dimensional cost approximations, resulting in higher-
dimensional, nonlinear shortcuts—if we use a d-dimensional
cost approximation, we can search over a space of paths
spanning a d + 1-dimensional space.

E. Computational considerations

We note that there are three major components to the
computational cost of SLASHDP: sampling cost gradients,
sampling the cost function in the reduced space, and per-
forming dynamic programming. For a d-dimensional cost
approximation using k£ samples per dimension, sampling the
cost function takes time O(k?), and dynamic programming
takes time O(k%*1(d+1)logk), due to the need to augment
the cost function with an additional dimension in order to be
able to compute the symmetric value function. If we make the
reasonable assumption that we will not need to sample more
gradients than there are samples in our grid, then sampling
the gradients also takes time O(k?). In practice, any one of
these factors may dominate the computation time, depending
on the relative expense of computing the cost function and
cost gradients vs. dynamic programming. However, we note
that the sampling steps are embarrasingly parallel; therefore,
given sufficient processors, we expect the bottleneck to be
in the low-dimensional dynamic programming step. As it is
possible to implement DP very efficiently, SLASHDP would
probably benefit dramatically from extreme parallelization of
the sampling component (say, for instance, using a GPU).

IV. RESULTS

We have applied the methods described so far to two
problems: planning for a robot arm with many degrees of
freedom and planning for a deformable robot. Both are
challenging high-dimensional motion planning problems.

A. Planning for a robot arm

For this experiment, we simulated planar arms with vary-
ing numbers of joints. We attempted to optimize a maximum-
clearance-type objective that exponentially penalizes proxim-
ity to obstacles. Specifically, we attempted to find paths ¢(t)
in joint angle space optimizing the cost functional

1 -
Jq] = / (1 4 e~ (dovs(a®)=do)/dy| 4|t
0

where d,p5(q) is the nearest distance to an obstacle when the
arm is in configuration ¢, and dy and d are fixed parameters.

We compared the performance of SLASHDP on this
scenario to two others: a bidirectional RRT [2], and a naive
method based on a low-dimensional projection. The naive
method calculates a two-dimensional feedback plan for the
end-effector that optimizes a similar objective to the one
above, but only considering the end-effector coordinates
independently of the rest of the arm. It then lifts this plan to
joint space by mapping the feedback controller’s desired end-
effector velocity to joint velocities via the pseudoinverse of
the Jacobian. The RRT consists of a standard bidirectional
RRT using linear interpolation as a local planning method
and Euclidean distance as a distance metric.

Qualitative results for this experiment are shown in Fig-
ure 3. Each subfigure shows the set of points swept out by a
36-dimensional arm as it travels along the solution trajectory
obtained with each method. The naive method produces a
smooth solution, but it collides with an obstacle, since the
geometry of the arm was not taken into consideration during
construction of the low-dimensional path. The RRT produces
a collision-free path, but it is very complicated. The arm
sweeps out a large area as it travels along this trajectory,
and it comes very close to collision many times. By contrast,
the SLASHDP solution is smooth and collision-free while
maintaining a large amount of clearance to all obstacles.

These qualitative observations are supported by the quan-
titative results in 4. In this experiment, we compared the
three methods as we scaled the dimensionality of the arm up
to 144 joints. The cost of an initial solution found via each
method is shown in Figure 4(a) (note log scale). As expected,
the naive solution always had a higher cost than the other
methods, since it consistently collided with obstacles. The
RRT produced a lower cost due to its lack of collision, but the
length of these solutions coupled with their occasional prox-
imity to obstacles still caused them to have a relatively high
cost. SLASHDP produced solutions that were consistently on
the order of 100 to 200 times less costly than the RRT for
very high-dimensional problems. Furthermore, the cost of the
SLASHDP solutions actually decreased monotonically as we
increased the dimensionality of the problem while the other
methods exhibited either a stable or generally increasing

=K &

(b) RRT
- 4
"

(c) SLASHDP

(a) Naive

Fig. 3. Subjective comparison of different methods applied to a 36-
dimensional arm planning problem. Black shapes represent obstacles. Col-
ored/shaded areas represent set of points visited by each method’s solution
path. Naive method produces a smooth solution, but it collides with an
obstacle. RRT produces a feasible solution, but it is complicated and passes
near many obstacles. SLASHDP generates a high-quality solution that is
smooth and maintains a large amount of clearance to obstacles.

trend. This implies that SLASHDP, instead of being confused
by the extra dimensions, was able to exploit the extra degrees
of freedom to further decrease the cost.

We then post-processed each of these solutions using a
local smoothing method (in particular, an elastic band [16]),
not stopping until a local optimum was found. All of the
methods benefitted from this step, though to varying degrees.
Post-processing decreased the RRT and naive costs by a
factor of 5-20-still not enough to surpass the quality of
the initial plans generated by SLASHDP. It decreased the
SLASHDP cost by a factor of 1.5 at most, obtained for
the arm of the lowest dimensionality and decreasing to just
1.1 for the 144-dimensional arm. The opposite trend was
observed for the RRT, where the higher-dimensional cases
were the farthest from optimality.

The total time spent processing the path with each method,
including post-processing, is given in Figure 4(c). The per-
formance of SLASHDP was characterized by a large fixed
cost of performing DP on a 100x100x10x100 lattice and the
cost of computing the sampled cost values and gradients,
which scales linearly in the dimension, and which domi-
nated the cost for large dimensions. Finding an initial plan
with SLASHDP was therefore quite expensive compared to
the other methods for small dimensions, but less so for
large dimensions. Looking at the total time including post-
processing, however, yields a very different picture. Though
the RRT is still faster for small dimensions, SLASHDP is
roughly twice as fast for dimensions greater than 36. This is
due to the fact that the elastic band spends an inordinate
amount of time optimizing the RRT solution—which is
very far from even local optimality—while it terminates
very quickly for the SLASHDP solution, which is probably
already close to optimal.

-©-SLASHDP -©-SLASHDP -©-SLASHDP
—>-RRT ->RRT —10*
* Naive 2
2 40 @ 4 ¥k c
g 10 g 10 S
S 3
5 5 g
3 |eo.g 3 2
__________ w 2
10° O 0 10° £
- . d 10’ . - .
0 50 - 100 150 0 50 100 150 0 50 100 150
Dimension Dimension Dimension

(a) Initial solution cost

Fig. 4.

(b) Post-smoothing cost

(c) Elapsed time

Results of experiments comparing different methods applied to very high-dimensional arm planning problem pictured in Figure 3, as a function

of problem dimension. 4(a) shows cost of solution produced by each method. 4(b) shows cost of each solution after post-processing with elastic band. 4(c)
shows total time to find each solution, including post-processing. Note log scale of y axes. Paths produced by SLASHDP, even without post-processing, are
much superior to those produced by the other methods with post-processing included. SLASHDP solutions also decrease in cost as dimension is increased.
The other methods are faster for low-dimensional problems, but ours easily outperforms RRT + post-processing for very high-dimensional problems.

B. Planning for a deformable robot

We also evaluated SLASHDP on a challenging high-
dimensional deformable robot problem. We assume the robot
to live in a two-dimensional space, where it can translate
freely and deform in a way that is controlled by a high-
dimensional set of configuration parameters g. Specifically,
we assume the robot boundary is given by a function (6, q)
that gives the distance of the boundary from a reference point
at angle 6, when the robot is in configuration q. We assume
this function is given as a Fourier series expansion:

N
r(0,q) =ro+ Z Sokqok o8 kO + Sok11qok+1 sin kO
k=1
where the sj, are constant scale parameters.
The position (6, q) of a point on the robot boundary is
then given as

GoN+2 cos 6
z(0,q) = + r(6, .
.0 = (2272) +rt00) (o)
. We define a cost function C'(z) that penalizes the proximity
of any point on the boundary to an obstacle:

C(l‘) =1 —+ ef(dobS(m)*do)/d

For computational purposes, we choose K evenly-spaced
0 € [0,27) along the boundary of the robot. Let x(q) =
r(0k,q) denote the position of the kth sample. Given this
notation, we can write our cost functional as

s = [(3 ctantan) Il
0 \k=1

. We then applied SLASHDP to the problem in this form.
Figure 5 shows the three-dimensional basis learned for
a specific instance of this problem consisting of a maze-
like environment. As would be expected, the first two basis
vectors encode just the position of the robot with no defor-
mation, while the last encodes a useful-looking deformation
with no translation component. To understand why this is
so, it is useful to view the nature of the maze depicted
in Figure 6, which consists of corridors running in the

= OO0000
basis vector
t- =0 t+
2 QO000
basis vector
t- ey t+
7. RV O QL
basis vector
t- =5 t+

(b) Learned basis

R I
S gde g o
N bk b

(a) Random configurations

Fig. 5. Visualization of random configurations vs. learned basis for
deformable robot planning problem. Randomly sampled configurations are
shown for reference in 5(a). Learned basis vectors are displayed in 5(b).
Each row represents one of three learned basis vectors. Shape in each
column represents the shape with coordinates tu;, where wu; is the ith
learned basis vector. Central arrows show magnitude and magnitude of
translation. First two basis vectors encode position of robot with no
deformation. Third basis vector encodes a useful deformation of robot with
no translation.

“northeast-southwest” and “northwest-southeast” directions.
It is clear that the third basis vector encodes a deformation
that the robot to travel through either type of corridor
with low cost. This is confirmed in the generated paths, in
which the robot deforms between these shapes, transitioning
through a circular phase at the corners.

To demonstrate the usefulness of SLASHDP to generate
a feedback plan, we initially generated a path using a query
pair of configurations, depicted in Figure 6(a). We then used
the generated value function to quickly produce solutions
for a variety of final configurations, two of which are shown
in Figure 6(b). Although the initial plan was very costly to
create (on the order of tens of minutes), subsequent plans
were generated very quickly (on the order of milliseconds)
thanks to the availability of the value function.

Quantitative results are given in Figure 7. For this series of
experiments, we tested the ability of SLASHDP both to find
an initial path and to post-process a path by the generalized
shortcuts heuristic presented in Section III-D. As a baseline,
we computed a plan for the center of mass that merely
translated the robot through the maze without deformation.
We then attempted to post-process this path with different
methods in order to lower its cost. Neither an elastic band

(a) Queried plan (b) Extra plans

Fig. 6. Visualization of results of experiment in planning for deformable
robot. Figure 6(a) shows plan obtained by planning for a given query
configuration. Fig. 6(b) shows additional plans obtained very quickly from
the value function computed for 6(a).

Relative solution cost

Fig. 7. Results of planning for a deformable robot. Left group of bars
represent cost of plans obtained by using different methods to post-process
an initial plan generated for the robot’s centroid with no deformation
(bar labeled COM plan). Right group of bars represent cost of plans
obtained by post-processing initial plan generated by SLASHDP (bar labeled
SLASHDP). +smoothing indicates post-processing with an elastic band,
+naive shortcuts post-processing with a straight-line shortcut heuristic, and
+SLASHDP shortcuts post-processing by using SLASHDP to generate local
shortcuts.

nor the naive shortuct heuristic described in Section III-D
was able to significantly decrease the cost of this initial plan.
Post-processing with SLASHDP shortcuts, however, reduced
the cost of this plan by nearly 40%.

Similar results were obtained when we started with an
initial plan generated by SLASHDP. The initial path was a
modest 10% better than the path obtained via translation-
only planning. This path was not significantly improved
by post-processing with an elastic band or naive shortcuts.
SLASHDP shortcuts, however, again yielded a large decrease
in the objective value, settling to a value very close to that
obtained by smoothing the purely translational path with
SLASHDP.

V. CONCLUSIONS

We have presented SLASHDP, a novel learning-based
approach to solving high-dimensional holonomic motion
planning problems using dynamic programming. SLASHDP
efficiently produces high-dimensional motion plans that are
of a quality far surpassing what can be obtained with

traditional global search + smoothing methods. Furthermore,
by the nature of its use of dynamic programming, we addi-
tionally obtain a value function that can be used to generate
a feedback optimal control law. We have also demonstrated
how SLASHDP can be used as a powerful generalization
of the naive shortcut heuristic typically used for path post-
processing. Experimental results have shown the method’s
ability to scale effortlessly to very large-dimensional arm
planning problems while producing very high-quality solu-
tions. Results from a deformable robot planning problem
also show the method’s ability to serve as an exceptional
post-processing method by exploiting local low-dimensional
structure.

In the near future, we would like to explore how best
to extend SLASHDP to handle nonholonomic constraints.
We are currently investigating the use of the SLASHDP
value function as an oracle or heuristic in the context of
heuristic search methods such as A*, which can leverage
this heuristic while taking nonholonomic constraints into
account. Similarly, we anticipate that the SLASHDP value
might be usable as a distance function for randomized
planning methods.

Our hope is that this work will stir interest in the system-
atic discovery of structure in planning problems of different
sorts, which we anticipate is a direction that will produce
interesting advances in the future.

REFERENCES

[1] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.

[2] J. Kuffner and S. LaValle, “RRT-connect: An efficient approach to
single-query path planning,” in /CRA, 2000.

[3] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, 1996.

[4] N. M. Amato and Y. Wu, “A randomized roadmap method for
path and manipulation planning,” in Proceedings IEEE International
Conference on Robotics & Automation, 1996, pp. 113-120.

[5] G. Sénchez and J.-C. Latombe, “A single-query bi-directional proba-
bilistic roadmap planner with lazy collision checking,” in Proceedings
International Symposium on Robotics Research, 2001.

[6] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive
configuration spaces,” International Journal Computational Geometry
& Applications, vol. 4, pp. 495-512, 1999.

[71 M. Likhachev, G. Gordon, and S. Thrun, “ARA*: Anytime A* with
provable bounds on sub-optimality,” in NIPS, 2004.

[8] M. Likhachev and A. Stentz, “R* search,” in AAAI, 2008.

[9] R.E. Korf, “Real-time heuristic search,” Artificial Intelligence, vol. 42,
no. 2-3, pp. 189 — 211, 1990.

[10] A. E. Prieditis, “Machine discovery of effective admissible heuristics,”
Machine Learning, 1993.

[11] N. D. Ratliff, “Learning to search: structured prediction techniques
for imitation learning,” Ph.D. dissertation, Carnegie Mellon Univeristy,
2009.

[12] E. Plaku and L. E. Kavraki, “Quantitative analysis of nearest neigh-
bors search in high-dimensional sampling-based motion planning,” in
WAFR, New York, NY, 2006.

[13] I. A. Sucan and L. E. Kavraki, “Kinodynamic motion planning by
interior-exterior cell exploration,” in WAFR, Guanajuato, Mexico,
2008.

[14] J. A. Sethian, “A fast marching level set method for monotonically
advancing fronts,” PNAS, vol. 93, no. 4, pp. 1591-1595, 1996.

[15] R. Geraerts and M. Overmars, “Clearance based path optimization for
motion planning,” in /CRA, 2004, pp. 2386-2392.

[16] S. Quinlan and O. Khatib, “Elastic bands: Connecting path planning
and control,” in In Proceedings of the International Conference on
Robotics and Automation, 1993, pp. 802-807.

