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Combining Representations 

� Multiple sources of evidence are becoming more common
– Structured documents
– Linked documents

� Form document representations from these different sources 
– Flat text of the document
– Text from documents that reference the document
– Representations using structural information about the document

� Goal: combine the document representations in a way that will 
improve results

� Old Idea
– Bayesian Inference Networks can accommodate multiple 

document representations (Inquery)
– Most often done by using different query representations using 

techniques similar to meta-search methods
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Meta-Search Hypotheses [Croft 2000] 
Adapted to Combining Representations

1. Scores/ranks across representations must 
be compatible 
� Same range – it makes sense to combine them

2. Representations must be high quality

3. Scores/ranks across representations should  
agree
� Lower variance for correct documents than 

incorrect documents
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Existing Meta-Search Approaches

� Ranks
– Few assumptions about 

the representations
– Ranks are “on the same 

scale”

� Scores
– More information in 

scores
– May need normalization 

to make the scores 
compatible

– Borda (sum of n - rank)

– Condorcet
– Reciprocal Rank (sum of 

1/rank)

– CombSUM (sum of score)

– CombMNZ (number 
scores != 0 * sum of score)
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Combining Representations 
is Different from Meta-Search

We can:

� choose the ranking algorithms used on the 
document representations

� create score normalization functions tailored 
to the ranking algorithms

� create models that combine information on 
the term level, rather than post-retrieval
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Another Approach to Combining Reps –
A Mixture-Based Language Model

� A straightforward extension of traditional language models in IR
� Combines information on the term level
� Estimate a new language by combining the language models 

estimated from each representation

where D is a document, D(i) is the document’s ith representation
� Different representations can receive different weights (

λ
i), 

based on our belief of the quality of the representation
� Document is ranked by the generative probability of the new 

language model
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Known Item Finding

� User has a specific document in mind

� The user can provide a good, terse 
description of the document

� Search engine’s goal is to return the 
document as high in the ranking as possible
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Evaluation Testbeds

� TREC 10 Homepage Finding
– 80 Training topics (used to empirically set λ i)

– 145 Test Topics

– WT10G Corpus - 1.7 million HTML documents

� TREC 11 Named-Page Finding
– 150 Test Topics

– .GOV Corpus 
� 1 million HTML documents 
� ¼ million other documents

Carnegie Mellon University9 Paul Ogilvie © 2003

Experimental Setup

Base Representations
� Full document

� In-link
� Title 

� META tags 
� Modified fonts

� Image ALT tags

Ranking Functions
� Okapi

� Traditional Generative 
Language Models

� Mixture-based 
Generative Language 
Model
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Performance of Individual 
Document Representations
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Experimental Results: 
Hypothesis 1 - Score Compatibility

CombMNZ for Homepage Finding (OKAPI)
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� X axis cumulative (+full is 3 representations: link, title, and full)
� Appropriate score normalization is important
� A MSE measure can give a prediction on the ordering of score 

normalization methods

CombMNZ for Homepage Finding (LM)
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Experimental Results: 
Hypothesis 2 - Representation Quality

� Graph suggests that only high 
quality representations help

� However: combining the three 
worst representations yields a 
MRR of 0.371!  (Best of the 
three is 0.194)

� Best algorithms are robust to 
the inclusion of bad 
representations

� Preconditions for successful 
combination are not clear

Combining Language Models for 
Named-Page Finding
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Experimental Results: 
Hypothesis 3 - Variance
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� The variance of the correct document is usually HIGHER than those of 
incorrect documents!

� This is different from meta-search!
� Not surprising given the nature of the document representations:

– Correct documents: we expect that a query may be highly ranked for a 
couple of the structurally formed representations, but not all

– Incorrect documents: the query does not match any of the representations 
well, so the scores and ranks are closer to each other across the 
representations
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Conclusions on Combining Document
Representations for Known-Item Finding

� Score normalization important
– Can be tuned to the ranking algorithm

� Not clear on how important the quality of representations is
– Best algorithms are robust

� The score/rank variance of correct documents across 
representations is HIGHER than for incorrect documents

� Can effectively combine representations at the term level
� Language models an effective tool for combining document 

representations 
� Combining document representations is a distinct problem from 

meta-search
� Structural information is very common in documents (HTML,  

XML, … ), so combining representations is an important 
problem

� We should work toward developing techniques that leverage 
the unique characteristics of combining representations 


