Language Models and Structured Documents

Paul Ogilvie
Carnegie Mellon University

Motivation: Language Models

- Successful in IR
 - Ad-hoc database retrieval (C. Zhai and J. Lafferty)
 - Distributed retrieval (Si Luo et al)
 - Named-page finding (K. Collins-Thompson et al)
- Established techniques for estimating distributions from small amounts of text
- Easily extended to model document structure

Proposed Model for Structured Documents

- Model document structure as a “parse tree”
- Estimate a language model for each node
 - Leaf nodes estimated directly from text
 - Use a linear interpolation estimate parent’s model
- We know the structure, so we don’t need to estimate the probability of rules
- But we do need to estimate the linear interpolation parameters...

Language Models in Named-Page Finding

- Generative language model
 \[P(Q | \theta) = \prod_{w \in Q} P(w | \theta) \]
- Language models created from different document representations
 - Full text
 - Title
 - In-link
 - Image alt text
 - Meta tags
 - URL
 - Fonts and Headers
- Estimate the page name model by a linear interpolation of the other models
 \[P(w | \theta) = \sum_{j} \alpha_j P(w | \theta_j) \]

A Toy Document

<table>
<thead>
<tr>
<th>document</th>
<th>title</th>
<th>body</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(bird</td>
<td>title)=1</td>
<td>0.5</td>
</tr>
<tr>
<td>P(dog</td>
<td>sec1)=0.7</td>
<td>P(dog</td>
</tr>
<tr>
<td>P(cat</td>
<td>sec1)=0.3</td>
<td>P(cat</td>
</tr>
</tbody>
</table>

Query “dog”

<table>
<thead>
<tr>
<th>document</th>
<th>title</th>
<th>body</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(bird</td>
<td>title)=1</td>
<td>0.5</td>
</tr>
<tr>
<td>P(dog</td>
<td>sec1)=0.7</td>
<td>P(dog</td>
</tr>
<tr>
<td>P(cat</td>
<td>sec1)=0.3</td>
<td>P(cat</td>
</tr>
</tbody>
</table>
Structured Queries

- a AND b = P(a) * P(b)
- a OR b = P(a) + P(b) - NOT a = 1 - P(a)
- Constraints on what component type to return are treated literally
- Query term constraints done as follows:
 - When ranking node x, multiply weights along the path until we get to the constraint node
 - Then take the probability that the constraint node generated the query term

Interpretation of Structured Queries

- Ranking the x where we want y to contain w is like
 - Ranking the document where we want the title to contain bird
- Computing the probability that x generated w and that it was generated by x’s subcomponent y.

Summary

- Proposed a model of structured documents using language modeling
- Showed how some types of structured queries could be evaluated
- Still need to answer how to train linear interpolation weights
- Need to figure out implementation efficiency details
- Open to suggestions from you